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Abstract
Large Language Models (LLMs) display notable variation in multilingual behavior, yet the role of genealogical
language structure in shaping this variation remains underexplored. In this paper, we investigate whether
LLMs exhibit sensitivity to linguistic genera by extending prior analyses on the MultiQ dataset. We first check
if models prefer to switch to genealogically related languages when prompt language fidelity is not maintained.
Next, we investigate whether knowledge consistency is better preserved within than across genera. We
show that genus-level effects are present but strongly conditioned by training resource availability. We further
observe distinct multilingual strategies across LLMs families. Our findings suggest that LLMs encode aspects
of genus-level structure, but training data imbalances remain the primary factor shaping their multilingual performance.
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1. Introduction

Numerous studies have investigated how variations
in the input prompt affect the outputs of Large Lan-
guage Models (LLMs) (Habba et al., 2025; Liu
et al.,, 2025a; Zhou et al., 2023). Even super-
ficial modifications that leave the semantic con-
tent unchanged can yield substantial differences in
model responses —for example, altering the order of
proposed answers in multiple-choice benchmarks
(Alzahrani et al., 2024) or reordering few-shot ex-
amples (Zhao et al., 2021). A particularly salient di-
mension of this phenomenon is the language of the
prompt. For instance, Bandarkar et al. (2024) show
that gpt3.5-turbo and Llama-2-chat perform dramat-
ically better —by 40.8 and 25.4 points, respectively—
on a QA task when questions are posed in English
rather than Icelandic.

Beyond performance differences, research has
highlighted a related phenomenon: infidelity to the
prompt language. LLMs frequently generate re-
sponses in a language different from that of the in-
put (Shaham et al., 2024; Liu et al., 2025b). When
queried in Arabic, models may partially or fully
switch to English (Chen et al., 2025). Even when
posed mathematical questions in non-English lan-
guages, language-aligned LLMs often produce En-
glish chain-of-thought reasoning before providing
the final answer (Tran et al., 2025; Zhu et al., 2024).
Several studies have documented systematic pat-
terns of such language-switching behaviors across
different models and tasks (Wisniewski et al., 2025;
Almasi and Kristensen-McLachlan, 2025).

While existing research has primarily examined
language-switching as a binary phenomenon (ad-
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herence vs. deviation from the prompt language),
the linguistic structure underlying these behaviors
remains underexplored. In this paper, we introduce
a genealogical perspective on multilingual LLM be-
havior, investigating whether linguistic proximity —as
defined by genealogical classification— correlates
with consistency in model outputs. Our central hy-
pothesis is that LLMs may encode a form of genus-
level coherence, potentially leading to more sta-
ble behaviors within linguistic families than across
them.

Research questions We explore this potential
coherence through two complementary analyses:

1. Genus fidelity: When LLMs fail to respond
in the prompt language, do they preferen-
tially switch to another language of the same
genus?

2. Knowledge sharing across a genus: If an LLM
answers a question correctly in one language,
is it also likely to answer correctly when the
same question is asked in another language
of the same genus?

Throughout the paper, we refer to the prompt’s
original language as the source language, its trans-
lation as the target language, and the LLM’s re-
sponse language as the generation language.

2. Methodology and data

Our methodology builds primarily on the work of
Holtermann et al. (2024), who introduced the Mul-
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tiQ dataset for evaluating multilingual capabilities
of LLMs. Rather than conducting new large-scale
data collection, we leverage these existing re-
sources to perform a targeted secondary analy-
sis focused on genealogical effects —a dimension
not explored in the original study. This approach
allows us to benefit from MultiQ’s extensive cov-
erage and rigorous design while introducing our
novel genealogical perspective on multilingual LLM
behavior.

2.1. The MultiQ dataset (Holtermann
et al., 2024)

Holtermann et al. (2024) developed MultiQ to inves-
tigate fundamental multilingual capabilities of LLMs
through a large-scale parallel question-answering
dataset comprising 27,400 questions across 137
languages. The dataset covers diverse question
types (open-ended, closed-ended, reasoning ques-
tions) and domains (chemistry, physics, astronomy,
history, maths, geography, art, sports, music, an-
imals). The original study evaluated LLMs along
two primary dimensions:

Language fidelity: Whether the model generates
its response in the same language as the input
prompt.

Question-answering accuracy: Whether the gen-
erated response is factually correct.

Their findings revealed substantial variation both
across models and across languages, highlighting
critical gaps in multilingual alignment. However,
their language grouping strategy —while method-
ologically sound for their research questions— was
too coarse for our genealogical analysis.

Model Selection To ensure direct comparability
with existing results, we analyze the same four mod-
els evaluated by Holtermann et al. (2024): Llama-2-
7B-Chat (Touvron et al., 2023), Mistral-7B-Instruct-
v0.1 (Jiang et al., 2023), Mixtral-8x7B-Instruct-v0.1
(Jiang et al., 2024), Qwen1.5-7B-Chat (Bai et al.,
2023)

Apertus-8B The models evaluated in MultiQ are
Open-Weight Models, but not Fully Open Models
(Hernandez-Cano et al., 2025), as their training
data are not completely transparent. However, we
consider it essential to include in our results at least
one Fully Open Model. We therefore select Apertus-
8B, a multilingual model whose pre-training data
are fully disclosed (Hernandez-Cano et al., 2025).
According to its authors, Apertus was trained on
data covering approximately 1,800 languages, with
around 40% of the corpus being non-English.

To integrate Apertus into our evaluation, we gen-
erate responses to the 200 questions in 137 lan-
guages of the MultiQ benchmark, and assess them

both for answer correctness and language identi-
fication. To ensure full comparability, we strictly
replicate the configuration of Holtermann et al.
(2024): we run their publicly released code? and
use the same evaluation models, namely gpt-
4-0125-preview (OpenAl et al., 2024) for an-
swer quality assessmentand cis-1mu/glotlid,
model_v2°® (Kargaran et al., 2023) for language
detection.

2.2. From Family-Level to Genus-Level
Classification

The original MultiQ analysis grouped languages
into three broad categories: English, Same (lan-
guages from the same family as the source lan-
guage), and Other. We argue that for our RQs this
classification proves insufficient as language fami-
lies are too broad and mix together languages of
different characteristics.

Consider, for example, the Indo-European fam-
ily: it encompasses both English —which domi-
nates LLM training corpora (Zhong et al., 2024;
Csaki et al., 2024; Gupta et al., 2025) — and Hindi,
which remains underrepresented in training data.
These two languages are very different in many
aspects. With respect to syntax, English heavily
relies on subject-verb-object order, whereas Hindi
uses subject-object-verb order; with respect to the
writing system, English uses the Latin alphabet and
Hindi uses Devanagari; with respect to vocabulary,
English mostly borrows from Latin while Hindi has
borrowings from Persian and Arabic (Masica, 1993;
Shapiro, 1989). Therefore, as these languages dif-
fer substantially in their representation within LLM
training corpora and their structural characteristics,
making family-level grouping is potentially mislead-
ing.

To address this limitation, we adopt a more fine-
grained, genus-level classification, which provides
optimal granularity for our analysis. Genus repre-
sents an intermediate taxonomic level in linguistic
classification —more specific than family but broader
than individual languages— making it well-suited for
detecting systematic patterns while maintaining suf-
ficient statistical power.

Language Coding and Genus Mapping Our
genus-level analysis required careful alignment
given that multiple coding systems were used in
MultiQ. More specifically:

+ Source languages are annotated with Google
Translate IDs and WALS codes

2Available at https://github.com/
paul-rottger/multiqg/tree/main
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» Generation languages are automatically iden-
tified using GlotLID (Kargaran et al., 2023),
which assigns ISO 639-3 codes

We map all languages to their corresponding gen-
era using the World Atlas of Language Structures
(WALS) database Dryer and Haspelmath (2013),
which contains 2,662 language entries, each anno-
tated with genealogical information including genus
classification. WALS provides both WALS-specific
codes and ISO 639-3 codes, enabling consistent
cross-referencing across the different identifier sys-
tems used in MultiQ. This mapping process in-
volved: 1) a direct mapping: Languages with ex-
isting WALS codes were directly mapped to their
genera and 2) ISO code alignment: Languages
identified only by ISO 639-3 codes were matched
to WALS entries.

The resulting genus mapping covers 47 genera
across 21 language families, providing sufficient
diversity for robust statistical analysis while main-
taining genealogical precision.

Our analysis extends the original MultiQ evalua-
tion framework in two key dimensions:

1. Genus Fidelity Analysis: We examine whether
language-switching patterns respect genealog-
ical boundaries by comparing within-genus vs.
cross-genus switching rates;

2. Cross-Genus Consistency Analysis: We as-
sess whether question-answering accuracy
correlates more strongly within genealogical
groups than across them.

3. Genus fidelity

In this section, we investigate whether LLMs dis-
play systematic biases toward or within specific
language genera. Our primary focus is on genus-
level fidelity, as this provides the most direct test of
genealogical effects.

3.1. Methodology

We operationalize genus fidelity as the tendency
for models to generate responses within the same
genus as the one of the input prompt. For each
source genus, we collect all model responses, clas-
sify their genera using our WALS-based mapping,
and compute generation distributions.

Our primary metric is cross-genus model fidelity
which captures the proportion of outputs in which
the model faithfully maintains the linguistic genus of
the input, thereby providing a quantitative measure
of cross-genus consistency.

Formally, we define the FidelityScore for a given

model as follows:
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where p denotes an input prompt, LLM (p) the
corresponding model output, |.| the cardinality of a
set and G, the genus associated with the text z. In
other words:

FidelityScore, ; ,,

(1)

Niaitvin = Number of prompts where the output
genus matches the input genus,
Niotas = Total number of prompts.

3.2. Results

Model-centric Perspective Table 1 presents
genus fidelity scores across all evaluated models.

Model Fidelity
Llama-2-7b 17.3
Llama-2-14b 23.1
Llama-2-70b 27.9
Mixtral-8x7B 73.9
Mistral-7B 75.0
Qwen1.5-7B-Chat 70.5
Apertus-8B 92.3

Table 1: Genus fidelity score by model.

The results indicate substantial variation in genus
fidelity between models, revealing a clear separa-
tion into three fidelity-score tiers. Models from the
Llama family get the lowest fidelity scores, with
Llama-2-7B achieving as only 0.17 genus consis-
tency. While increasing the model size seems to
have positive effect on genus fidelity score, even the
largest LLama model Llama-2-70B only reaches
0.28 genus fidelity. Mistral-7B, Mixtral-8x7B and
Qwen1.5-7B-Chat have remarkably higher fidelity
scores ranging from 0.7 to 0.75 of genus fidelity.
The highest performing in terms of genus fidelity is
Apertus with 0.92. This suggests that some models
have developed stronger genealogical coherence
in their multilingual representations. However, it is
important to note that fidelity does not guarantee
answer correctness.

Next, we take a closer look at each model sepa-
rately. More specifically, for each model, and every
single prompt p, we extract the input genus G; (the
genus of the input prompt) and the output genus G,
(the genus of the model-generated output LLM (p)).
We present the genus fidelity across different gen-
era (present in MultiQ) and models in Figure 1.



08

06

Fidelity

04
02

00

PP B SO PABEE O
S PP E SIS R
TR

q‘,tlrc)‘\\\(’.i@\\\‘-'\\‘"&\\\" J

Llama-2-7b-chat-hf
Llama-2-13b-chat-hf
Llama-2-70b-chat-hf
Mistral-7B-Instruct-v0.1
Mixtral-8x7B-Instruct-v0.1
Qwen1.5-7B-Chat
apertus-m-7b

Y 3

i+

LY v

- + +
48%csvgentls

San

Figure 1: Fidelity scores across genera (existing in MultiQ) and models (existing in MultiQ + Apertus).

The results reveal clear differences in model be-
haviour across genera. Models from Llama family,
although predominantly having low fidelity scores,
have extremely high fidelity scores for Germanic
genus (around 1,even for the smallest model) and
notably high scores for Ugric (larger bigger mod-
els above 0.8), Romance and Slavic genera (above
0.7). We also observed a strong tendency of Llama
models to default to English (a Germanic language)
when confronted with non-English prompts. Mis-
tral, Mixtral and Qwen show a generally high fi-
delity, though their performances vary accross gen-
era —for example, significantly drops for the Tano,
Quechuan and Kuki-Chin genera. Interestingly,
Mixtral and Qwen exhibit more siilar behaviour to
each other than to Mistral. In particular, for Khmer
and Burmese-Lolo genera, Mistral has a fidelity
score < 0.15 while Mixtral and Qwen have score
> 0.9. Similarly, for Vietic, Kam-Tai and Iranian
genera, Mixtral and Qwen show closer results. De-
spite lacking explicit multilingual branding, Mistral
often responds in the prompt genus, suggesting
robust multilingual competence. Nevertheless, we
noticed that on fallbacks these two models behave
contrastingly: Mixtral almost always uses English
while Qwen is more variable in fallbacks, some-
times producing outputs in unrelated languages
(oftentimes in Chinese). Finally, Apertus demon-
strates near-perfect genus fidelity, having score
< 0.5 only for Tano and Quechuan.

Finally, model descriptions do not always corre-
spond to observed behaviour: despite multilingual
claim, LLaMA exhibits a systematic English bias,
whereas Mistral demonstrates stronger multilingual
fidelity despite the absence of explicit multilingual
positioning.

Genus-level Perspective We further provide a
detailed breakdown of results for eight representa-
tive genera spanning diverse resource levels and
linguistic families: Slavic, Germanic, Romance, Ja-
vanese, Albanian, Turkic, Armenian, and Chinese.
We consider Javanese, Albanian and Armenian to
be low-resource genera since their corresponding
languages (one per genus) are low-resource lan-
guages according to the literature (Nuci et al., 2024;
Goyal et al., 2022).

Results for these eight genera are shown in the
Figure 2. We additionally show Apertus-8B and
Llama-2-7b (having the highest contrasted perfor-
mances) in Figures 3a and 3b, with the other mod-
els detailed in Appendix A.1.

Across all models, Germanic languages consis-
tently achieve high genus fidelity (> 0.75). A similar
trend is observed for Romance languages, except
for the smallest Llama model. Even lower-resource
languages within these genera benefit from this sta-
bility (except from Llama models which show sys-
tematic bias towards English and thus Germanic
genus as a fallback).

For Chinese languages, fidelity significantly
drops for Llama models and Mixtral. In particular,
Llama models again show a pronounced Germanic
bias in over 60% of non-faithful cases. This pattern
suggests weaker multilingual competence for these
genera, with models reverting to training-dominant
languages.

Fidelity to Slavic languages overall remains
strong (over 0.8) apart from two smaller models
from Llama family.

For low-resource genera, fidelity varies substan-
tially across models. While models maintain a min-
imal fidelity to Albanian (even Llama), only non-
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Figure 2: Genus-level fidelity across models. For each representative genus, we report the proportion of
model outputs that remain within the same genus as the prompt language.

Llama models preserve fidelity for Armenian, Mis-
tral and Apertus achieving particularly high fidelity
scores. In contrast, for Javanese most models
struggle and even Apertus barely reaches 0.6 fi-
delity score.

Turkic languages also exhibit complex patterns.
Mistral and Qwen maintain a fielity above 0.75 ,
whereas Llama produces Germanic outputs in over
80% of cases. Detailed inspection reveals substan-
tial intra-genus variation: Turkish prompts yield rel-
atively faithful responses, while Kazakh frequently
triggers English outputs. This disparity likely re-
flects multiple factors: resource imbalance (Turkish
being better represented in training data), script
effects, and contact phenomena.

4. Genus switch

If an LLM answers a question correctly in one lan-
guage, is it more likely to answer correctly when
the same question is posed in another language of
the same genus? We investigate whether genus

consistency facilitates knowledge transfer across
languages.

4.1. Methology

If a model demonstrates knowledge by answering
correctly in one language, changing only the prompt
language should not impede correct responses —
assuming sufficient multilingual competence. We
test whether genealogical proximity preserves this
knowledge consistency better than genealogically
distant language pairs.

Setup Using MultiQ, we identify questions an-
swered correctly in a source language, then eval-
uate the same questions across all available tar-
get languages. This controlled design isolates lan-
guage effects from knowledge availability, since the
model has already demonstrated requisite knowl-
edge.
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Figure 3: Genus-level output distribution by model. For each prompt genus, we indicate the genus of the
model’'s generated response. Remaining models are reported in Appendix A.1.

Metrics We compute SwitchScores measuring
the proportion of questions answered correctly in
target genus g; given correct answers in source
genus g;:

SwitchScore(g;, g¢) = 1 Q9i:9: | 2)

| Qgi |
where Q,, ,, represents questions answered cor-
rectly in both genera, and Q,, represents questions
answered correctly in the source genus.
We distinguish:

» SwitchScore-In (within the same genus):
SwitchScore(g;, g;) - within-genus consistency

 SwitchScore-Out (outside of input genus): Av-
erage performance when switching to other
genera (different from g;)

Question selection The original MultiQ evalu-
ation used the complete dataset across all lan-
guages. However, to ensure that observed dif-
ferences genuinely reflect language effects rather
than artifacts of question difficulty or translation
quality, we construct a filtered subset optimized for
cross-genus comparison.

More specifically, a question is retained if it is
answerable across the compared genera, i.e., the
model produces a correct answer in at least one
language within each genus. This prevents biases
arising from inherently unanswerable questions.

Moreover, we only keep languages where the
model achieves at least a minimal number of correct
answers N, to ensure statistical reliability. We use
N, values of 20, 50 and 100.

Resulting Dataset Characteristics Our filtering
process yields a curated dataset optimized for ge-
nealogical analysis while maintaining the linguistic

diversity required for robust conclusions. Table 2
presents the resulting dataset size under different
filtering thresholds. With this approach, we aim
at prioritizing interpretability and statistical validity
over dataset size, ensuring that our genealogical
findings reflect genuine linguistic patterns.

4.2. Results

Global SwitchScores appear in Table 3. Detailed
genus-level scores are shown in Figures 4 for
Llama-2-70b (4a), Mistral-7B(4b), Apertus-8B (4c)
and Qwen-1.5-7B(4d), with additional results in Ap-
pendix B.

All models show substantially higher knowledge
consistency within genera (80-90%) compared
to cross-genus transfers (40-50%). This 35-40
percentage point advantage demonstrates that
genealogical relatedness significantly facilitates
knowledge preservation.

Detailed Switchscores A key finding is that per-
formance depends critically on the target genus
rather than the source (notice the red/blue column
pattern across Figures 4). Well-resourced genera
(Germanic, Romance) serve as robust targets re-
gardless of source, while poorly resourced genera
(e.g., Kuki-Chin) yield degraded performance even
from high-resource sources.

Moreover, results are asymmetric: for Llama-70b
switching from Javanese (Austronesian) to Ger-
manic maintains high accuracy, whereas the re-
verse direction shows substantial degradation. This
suggests that target language representation in
training data dominates genealogical effects when
resources are scarce.

Genealogical Boundaries Despite overall
genus-level patterns, genealogical classification
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Figure 4: Switchscores across models and thresholds. Each subfigure shows the switchscore distribution
for one model at the specified threshold. As can be seen from red/blue-column patterns, the performance
critically depends on the target genus.

N. Llama-7B Llama-13B Llama-70B Mistral-7B Mixtral-8x7 Qwen-7B Apertus-8B

#q #9 #q #9 #q #9g #q #g #q #9g #q #9g #q #g

20 7 26 5 23 4 24 8 33 3 14 3 22 14 44
50 6 16 4 17 3 15 7 20 3 8 2 9 14 33
100 5 11 3 7 1 6 5 11 2 3 1 4 13 27

Table 2: Number of questions (# g, expressed in thousands) and number of genera (# g) remaining after
applying different filtering thresholds for each model.

does not perfectly predict transfer success. Within  Cyrillic) provides no guarantee of stable transfer
Indo-European, Indic and Slavic genera exhibit  performance. These exceptions highlight that
markedly different behaviors despite shared family ~ while genealogical relatedness provides a useful
membership.  Similarly, script overlap (Latin, organizational principle for understanding multilin-



Model Switch-In Switch-Out
Llama-2-7b 88.9 494
Llama-2-14b 82.8 51.6
Llama-2-70b 86.3 54.0
Mixtral-8x7B 83.6 47.7
Mistral-7B 88.8 41.8
Qwen1.5-7B-Chat 84.1 42.0
Apertus-8B 90.4 60.6

Table 3: Switch scores by model. Obtained with a
threshold of 20.

gual LLM behavior, it competes with training data
distribution, script similarity, and other linguistic
factors in determining cross-lingual knowledge
consistency.

5. Conclusions

In this paper, we examined the genealogical sensi-
tivity of Large Language Models through a genus-
level analysis, extending the work of Holtermann
et al. (2024). We found that LLMs exhibit higher
fidelity and knowledge consistency within genealog-
ical boundaries, but this effect is largely mediated
by training resource availability. Distinct multilingual
strategies also emerged across model families, with
models defaulting to Germanic languages and oth-
ers adopting more nuanced behaviors. Overall, our
findings indicate that resource distribution, rather
than genealogical structure, remains the primary
driver of multilingual performance.

Impact statement

As we are witnessing the progressive usage of
LLMs, also for the scopes of generating different
benchmarks, we would like to remind that even
these less-resource intensive activities contribute
to high energy consumption and carbon emissions.
To give our small contribution to the Al sustain-
ability, we opted to use existing benchmark and
intervene only as needed. We hope that this can
inspire other LLM-related research to leverage ex-
isting resources at least equally optimally.
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A. Genus output detail

A.1. Detail per model

The details of output genera for eight selected gen-
era per model can be seen in Figure 5.
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Figure 5: Genus-level output distribution by model. For each prompt genus, we indicate the genus of the
model’s generated response.



B. Switchscores
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