Journal of Information Security and Applications 93 (2025) 104078

Contents lists available at ScienceDirect

INFORMATION
Journal of Information Security and Applications ALY

0 1

journal homepage: www.elsevier.com/locate/jisa

L))

Check for

GuardFS: A file system for integrated detection and mitigation of Linux-based e
ransomware
Jan von der Assen ?®-*, Chao Feng 2®, Alberto Huertas Celdran *®, Rébert Oles?,

Gérome Bovet P®, Burkhard Stiller 2

a Communication Systems Group CSG, Department of Informatics Ifl, University of Zurich UZH, CH—8050 Ziirich, Switzerland
b Cyber-Defence Campus within armasuisse Science & Technology, CH—3602 Thun, Switzerland

ARTICLE INFO ABSTRACT

Keywords: Although ransomware has received broad attention in media and research, this evolving threat vector still
Cybersecurity poses a systematic threat. Related literature has explored their detection using various approaches leveraging
Ra‘]‘S"mware Machine and Deep Learning. While these approaches are effective in detecting malware, they do not answer
Malware

how to use this intelligence to protect against threats, raising concerns about their applicability in a hostile
environment. Solutions that focus on mitigation rarely explore how to prevent and not just alert or halt its
execution, especially when considering Linux-based samples. This paper presents GuardFS, a file system-based
approach to investigate the integration of detection and mitigation of ransomware. Using a bespoke overlay
file system, data is extracted before files are accessed. Models trained on this data are used by three novel
defense configurations that obfuscate, delay, or track access to the file system. The experiments on GuardFs test
the configurations in a reactive setting. The results demonstrate that although data loss cannot be completely
prevented, it can be significantly reduced. Usability and performance analysis demonstrate that the defense
effectiveness of the configurations relates to their impact on resource consumption and usability.

Fingerprinting
Machine learning

1. Introduction even more severe damages. For example, in the case of the Brno Uni-

versity Hospital in the Czech Republic, the deployment of ransomware

Digitalization has become pervasive in today’s business landscape. led to the redirection of patients and the inability to conduct urgent
The technological advancements that uphold today’s enterprises have surgical interventions [6,7]
,71.

brought many advantages, such as reduced operational costs, improved
time-to-market strategies, and global access to suppliers and customers.
However, this also made organizations vulnerable to cybersecurity
breaches. As past instances have shown, the impact of successful
breaches can take many forms, ranging from economic damage to the
endangerment of personal health [1,2].

The constant evolution of ransomware attacks, in terms of attack
behavior and sophistication, has stimulated research on how to defend
against it. Nowadays, thousands of papers address different areas of the
cyber kill chain of ransomware. For example, industry leaders such as
IBM [8] name threat detection as one of the main pillars of defense.

Within the lively threat landscape, many attack vectors are em- Here, Al-driven solutions are vital to detect the constantly chang-
ployed. One threat that has been evolving over multiple decades of pro- ing attack behavior [8]. Indeed, numerous papers have demonstrated
liferation is ransomware. Ransomware distributed over floppy drives high accuracy in detecting ransomware, many of them achieving 99%
has been mentioned as early as the 1980s [3]. Nevertheless, ran- accuracy [9-12].
somware was not a widely discussed attack until the emergence of Looking at the broad coverage of ransomware detection in current
digital payment solutions in the 2010s. Nowadays, even the greater research, one could reason that the ransomware threat can be disre-
public is aware of this threat vector. In terms of numbers, ransomware garded in light of intelligent intrusion detection systems. However,

has been accounted to attribute for up to 20% of all cybercrime [4].
Economically speaking, the average cost of a ransomware attack has
been estimated in the range of 1 to 8 Million USD [5]. While ran-
somware can be seen as a business-endangering attack, there are even
specific breaches where the unavailability of ransomware has led to

from an incident response perspective, the current state of the art
presents multiple challenges. First, even though ransomware is an im-
portant threat, on a system level, ransomware is rare to be encountered
since the large majority of runtime would be spent in a benign state.

* Corresponding author.
E-mail address: vonderassen@ifi.uzh.ch (J. von der Assen).

https://doi.org/10.1016/j.jisa.2025.104078

Available online 24 June 2025
2214-2126/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/jisa
https://www.elsevier.com/locate/jisa
https://orcid.org/0000-0002-0591-8887
https://orcid.org/0000-0002-0672-1090
https://orcid.org/0000-0001-7125-1710
https://orcid.org/0000-0002-4534-3483
https://orcid.org/0000-0002-7461-7463
mailto:vonderassen@ifi.uzh.ch
https://doi.org/10.1016/j.jisa.2025.104078
https://doi.org/10.1016/j.jisa.2025.104078
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jisa.2025.104078&domain=pdf
http://creativecommons.org/licenses/by/4.0/

J. von der Assen et al.

Due to this low base rate, even a high accuracy in detecting ransomware
may lead to many false positives [13], which must be resolved through
incident response. This is costly since a single false alert requires up to
30 min of active human investigation [14].

Secondly, ransomware defense is mainly centered around recov-
ery [8]. As such, most systems are not resilient enough to prevent
ransomware but instead focus on recovering data. In general, research
in intrusion detection does not always investigate or discuss the actual
implications of the defense that it enables [13]. Therefore, there is a
clear opportunity to investigate the usefulness of Al-driven detection
in conjunction with an integrated, reactive defense that can mitigate
ransomware in a resilient way while demonstrating the portability of
the models and their application in realistic settings, including novel
Al-based evasion methods [15].

To address the previously mentioned challenges, the work at hand
presents the following contributions:

+ The design and implementation of an integrated mitigation frame-
work for ransomware in Linux-based systems, which has seen a
strong rise (e.g, an increase of 75% the first half of 2022) of
ransomware attacks. The emergence of these Linux-based ran-
somware samples targeting popular hypervisors such as ESXi may
indicate a relevant attack path [16]. The proposed framework
uses the file system abstraction present in the operating system as
a target level to implement this functionality. Thus, a file system
composed of an overlay and underlay file system is presented. The
detection uses file system-related system calls to extract data on a
process level. By processing a variety of features extracted during
a pre-defined duration, individual processes can be classified as
malicious or benign. For mitigation, several novel and baseline
defense strategies, including deceptive and defensive techniques,
are designed for various workloads that are differentiated by data
sensitivity and latency criticality.

The instantiation and deployment of the framework on a Rasp-
berry Pi acting as an FTP server affected by three ransomware
samples. Here, the detection system’s delay and accuracy perfor-
mance are assessed when presented with known and unknown
malware while running a benign workload in parallel.

To measure the effectiveness (i.e., security guarantees) and ef-
ficiency (i.e., the resource consumption), a pool of experiments
have been performed. Here, a virtualized testbed using a fast
storage underlay system is used to measure the usefulness of
reactive defense from a mitigation perspective. Specifically, eight
ransomware samples were retrieved and tested against seven
different defense scenarios. The resulting 48 experiments assess
the number of bytes lost and the resource consumption when de-
ploying each ransomware. Several experiments are conducted to
assess the usefulness of the different defense strategies when run-
ning benign workloads, which are oriented towards specific use
cases (e.g., server administration, sensor persistence). Based on
this analysis, recommendations are made regarding selecting a de-
fense strategy given the data criticality and latency requirements
of the benign workload.

The remainder of this work is structured as follows. Section 2
reviews related work dealing with dynamic ransomware detection sys-
tems. While Section 4 presents the design of the proposed framework,
Section 5 shows its implementation details. Then, Section 6 introduces
the testbeds and ransomware samples used to validate the frame-
work. Section 7 evaluates the framework detection performance and
consumption of resources in the previous scenario. Furthermore, the
applicability of the defense methods against different sets of require-
ments is analyzed. Finally, Section 8 presents conclusions of this work
and outlines future areas of research in ransomware mitigation.

Journal of Information Security and Applications 93 (2025) 104078
2. Related work

This section reviews the literature combining ransomware detection
and mitigation. Neglecting the adversarial context of detection systems
is a common pitfall [13]. Thus, ransomware detection systems are
analyzed from a defense perspective and discussed based on their
applicability. Furthermore, the review analyzes the design and scenario
of related studies; since the results are established on concrete sce-
narios and malware samples, a direct quantitative comparison is not
presented, since the underlying factors are not comparable.

Cryptolock [17] safeguards against Windows-based Ransomware by
warning users when there is a possibility of encryption occurring on the
system. The system assesses each process through a reputation score,
which indicates the level of suspicion associated with that process over
time. Additionally, the system employs a similarity hash function called
sdhash [18] to gauge the likeness between the original version of a
file and its updated version after a write operation. Since the score is
computed after the file is written, data loss prevention is only realistic
after the detection duration.

Another approach that leverages the notion of entropy is presented
by [12]. In their approach, the ransomware detection system computes
the entropy based on the file name suffix. For comparison, a backup
system is used to compute and compare the entropy of user data. In an
optional step, multiple Machine Learning (ML) models are available if
the system load allows their application in terms of system resources.
The authors stress that this computation has to be applied by cate-
gorizing data based on the types of files that are accessed. While the
authors present highly promising results with respect to the detection
of malware, they do not directly assess the effectiveness or efficiency
in a real-world defense scenario. Furthermore, the authors only outline
that file recovery is a conceptually compatible strategy.

Since many ransomware instances not only encrypt data but also
communicate over the network (e.g., for key exchange, operational
control), RansomSpector [19] monitors both the file system and network
traffic to provide improved accuracy. The proposed monitoring compo-
nent captures the system calls via a hypervisor and checks whether the
system call is related to the file system (e.g, OPEN, LINK, WRITE) or
network activity (e.g., CONNECT, BIND). If it is, the system call is sent
to the Detector, which then performs pattern matching. If both file sys-
tem and network operations match the malicious pattern, the process is
identified as malicious. RansomSpector has been evaluated on Windows
7 to establish the detection rate and performance consumption, not the
defense effectiveness. Due to the alert-based mitigation strategy, files
may not be preserved. Thus, substantial management efforts may need
to be dedicated to resolving false and true positives (i.e., file recovery).

Redemption [21] stands out as a newly proposed system capable of
detecting and preventing ransomware. It achieves this by intercepting
write operations, redirecting them to mirrored files, and preserving the
original files. The implemented kernel intercepts file system operations
calculates entropy ratios, utilizes File Content Overwrite, and consid-
ers access frequency to identify suspicious activity. To evaluate their
system, Windows was chosen as the only target. Using this testbed,
they assessed the detection performance and the resource overhead
incurred by the system. Furthermore, they conducted usability exper-
iments. While the results are promising, it is not clear whether the
defense metrics were measured or whether they were inferred from the
mitigation performance. Furthermore, [15] demonstrated that explicit
feedback to ransomware can be used by an adaptive attacker since the
solution is not deceptive.

ShieldFS [20] is a self-healing file system that adds ransomware
protection capabilities to the Windows operating system. For the data
collection, an I/O file system sniffer has been developed that incorpo-
rates additional information, namely entropy, process identifier (PID),
and timestamp. When trained classifiers report malicious behavior,
the file system discards written copies and terminates the process. To
assess the effectiveness of this approach, virtual machines were used

J. von der Assen et al.

Journal of Information Security and Applications 93 (2025) 104078

Table 1

Categorization of surveyed related work.

Work Mitigation Prevent Detect Platform Evaluation metrics Data collection
[17] 2016 Alerts, Process termination X v Windows D|M User data
[20] 2016 Shadow drive Buffering, Discard writes v 4 Windows DIM|P|U IRPLogger
[21] 2017 Buffers, Termination v v Windows D|IP|U 1/0 System
[12] 2019 Backup recovery X v Backup systems D X
[19] 2020 User notification X v KVM/Windows D System calls
[9] 2023 Trap directories, File renaming X v Linux D| P Performance metrics
[22] 2023 MTD: Trapping, Delays X X Linux M|P Performance metrics
[23] 2024 Isolation, Process termination X v Windows sandbox D Windows API calls
[24] 2024 Explainable alerts X v Windows Sandbox D | P Windows API calls
This Process termination, Delaying v v Linux DIM|P|U File system calls

Deceptive Modifications, Tracking

D = Detection evaluation, M = Mitigation evaluation, P = Performance analysis, U = Usability impact analysis.

for experimental deployment. Aside from assessing the classification,
it was assessed how well the system can recover the files. Aside from
promising detection and prevention results, several limitations are
present. First, the system was only assessed for the Windows platform.
Furthermore, DoS attacks could be executed on the buffers, and the
termination signal could be used for adaptation [15].

[9] presented an ML-based detection system using performance
metrics gathered from the Linux kernel. Among other malware, ran-
somware was identified with high accuracy. Different Moving Target
Defense (MTD) techniques can be deployed after successful detection.
As shown during experiments with real malware, these techniques
allow the ransomware to be terminated at some point. Nevertheless,
reactive deployments lead to data loss, while proactive ones were
considered wasteful in terms of resources.

Novel approaches in ransomware detection acknowledge the evo-
lutionary nature of ransomware, hence the necessity for a detection
system to keep up with the changing nature of ransomware. FeSAD,
a recently proposed framework, was demonstrated to apply binary
classification for this context successfully. While the work confirms
the effectiveness of using Windows API calls and reasons about the
applicability of potential mechanisms such as system isolation or task
termination, no preventative measures are proposed [23].

[22] provides a virtualization of the MTD-based defense from [9],
leading to multiple defense methods. First, the recursive (i.e., infinite)
directory tree defense is implemented in the file system, where a direc-
tory listing is extended by a specific directory. If this directory is listed,
the directory itself is returned, leading to an infinite trap if one were
to apply a depth-first directory traversal. Furthermore, operations can
be cheaply delayed, and it is possible to obfuscate the file suffixes and
the identifying magic bytes. The effectiveness is analyzed in a reactive
setting, showing that multiple samples can be prevented. Importantly,
this relies on the traversal strategy of the samples employed. Moreover,
no assessment of the impact on benign workloads has been performed.

Arguing that existing models for ransomware detection lack ex-
plainability, [24] propose XRan, a Convolutional Neural Network-based
model. The authors leverage multiple dynamic and static sources (e.g,
Windows API calls, linked libraries) to achieve local and global explain-
ability. While the authors add an effective and explainable detection
method to the growing body of literature, the effectiveness of the
approach in a defense scenario is not tested, and no discussion on
portability to other platforms is present.

Table 1 summarizes the previously analyzed contributions in terms
of their mitigation, prevention, and detection strategies, the platform
they target, how data is being collected, and the approach to evaluating
the work. In conclusion, despite the advances in OS-level ransomware
detection and mitigation, the following five challenges are still open:

(chl) Only limited experience is drawn from platforms targeting Linux-
based operating systems. It is not only unclear how well ap-
proaches can be ported to Linux-based systems due to the lack
of experiments; assumptions of these approaches may not be
aligned with common workloads (e.g., the presence of a user to
warn, the ability to use shadow drives).

(ch2) Ransomware mitigation approaches informed by a reactive de-
ployment scenario terminate the encryption behavior. However,
the understanding of how to stop and prevent ransomware dur-
ing execution is sparsely covered.

(ch3) The usefulness of detection systems is not discussed in the con-
text of an actual defense scenario. Thus, not only the develop-
ment of novel detection methods, but their usefulness in reactive
defense is to be investigated.

(ch4) As a fourth challenge, all ransomware mitigation approaches
provide feedback to the attacker (e.g, file recovery, process
termination). As showcased in [15], this threat model may not
be realistic anymore.

(ch5) Evaluating these defense approaches is based on simulation
results without covering real-world ransomware samples.

In summary, there is no work applying a reactive ransomware de-
fense system that deceptively prevents ransomware on Linux-based
systems, especially when considering a broad set of real-world samples
in realistic execution settings.

3. Ransomware threat model

Although the term ransomware is often used unanimously during
threat modeling, there exist various flavors. The most aggressive ran-
somware variant is crypto-ransomware, which traverses the file system
of the target and potentially mapped file systems (e.g., NFS, Samba
shares). For each of the files of interest (usually a subset of all files),
an encrypted copy is produced in lieu of the original file. Thus, the
availability of the original data is threatened, for at least the time it
takes to restore the data from a backup. In the worst case, all data can
be lost if victims are not able to retrieve the encryption key [25].

When the key cannot be retrieved by means of law enforcement,
victims consider the payment of the ransom that is demanded by
the attackers, although it is not clear if the key is actually released.
Without actually encrypting data, scareware tries to trick users into
believing that their data has been compromised, although it may not
have actually been breached by the attackers. In that sense, one could
reason that this threat vector is less impactful [26].

More similar to crypto-ransomware is locker malware, which tries
to make data or functional assets unavailable by other means than file
encryption. For example, a specific lock screen may be installed by the
malware to lock the user out of the device [27].

Ransomware-as-a-service cannot necessarily be differentiated by its
damage or breach function but rather describes the business model and
degree of sophistication of the threat actors. Here, a ransomware strain
can be bought from the attackers, which may also offer to take care of
other aspects such as payment processing [28].

Finally, extortion-based ransomware aims to increase the chances
of paying the ransom. Here, one or more of the previously described
attack vectors (e.g., file encryption or deletion) are combined with the
leakage of sensitive data so that victims can be pressured into paying
the ransom to avoid publication of the data [29].

J. von der Assen et al.

Journal of Information Security and Applications 93 (2025) 104078

[FUSE Kernel Module

u Defense Reconfiguration]

Model Testing]

Kernel
aoeds Jasn

[Virtual Fille System]

Overlay File System

KERNELCONNECTOR] Log

[Underlay File System]

GuardFS-middleware

Dataset Generation]

Block Device

| Application l

Data Curation |

File 'System Plane

Data Acquisition]

Detection Plane

Fig. 1. File system-based framework architecture.

With all the previously defined damage methods, a wide array of
infection methods are possible. For example, spear phishing is a com-
mon approach the gain initial access to the victim’s infrastructure [29].
For the threat model considered in this work, the infection method is
not ignored. Thus, it is assumed that the ransomware has user-space
access to a Linux system and that it has sufficiently elevated privileges
to be able to read, write, and delete files. Furthermore, it is assumed
that the attacker can execute binaries and scripts on the host. With
respect to the damage function, crypto-ransomware is considered due
to its aggressive nature and its prevalence in conjunction with other
behaviors.

4. Framework design

This section presents a framework for integrated detection and
mitigation of ransomware in autonomous Linux-based devices by ap-
plying both aspects from a file system abstraction level. More in detail,
it shows the details of the framework architecture and that aims to
overcome the challenges chl to ch2 outlined in Section 2.

4.1. Architecture

To defend against the previously described ransomware attack
model on Linux-based devices (chl), the framework shown in Fig. 1
is proposed. The primary motivation behind the design is the evidence
provided in [22], attesting to a file system-based defense. Due to its
proactive defense, it could hypothetically act earlier but with less in-
sight on the malicious behavior (e.g., working directory of the process,
process name). Thus, several files were lost in [22], motivating the
need for a reactive framework, where additional information would
be available. The framework is designed in a distributed manner, with
two planes separating concerns and responsibilities. This allows com-
putationally weaker devices (e.g., resource-constrained devices, mobile
devices) to implement the defense and data creation components, with
an external node running all components related to the detection.
However, a computationally capable device could run all components
in the same execution environment. As presented in the architecture,
the following two planes provide two functions.

1. File System Plane. It is a fully functional overlay file system in
charge of servicing any file system-related system call. The be-
havior of the call handler depends on the defense configuration.
Secondly, the file system acts as a data collector and transmitter
for the detection system.

2. Detection Plane. It provides intelligence in the device for reactive
mitigation. Input data can be received and collected from the
file system plane. Due to its positioning in user space, additional
data sources can be integrated.

4.1.1. File system plane

The most important task of the file system plane is to act, as the
name implies, as a file system. Since it is conceptualized as an overlay
file system, this means that it will receive system calls from an abstract
representation of a file system (i.e., the virtual file system running in
the kernel). The overlay file system must handle the system call and
return the appropriate response to the calling process. For example,
when a hypothetical process writes to a file, the following system call
is invoked in the overlay file system.

ssize_t write(int fd,

)8

const void buf[.count], size_t count

Now, the overlay file system can invoke the same system call on the
underlay file system, which can be any file system mounted on the Linux
machine that operates on the underlying storage. To do so, it sends the
same system call, passing the file handle £d, buffer buf, and a number
of bytes written count. Finally, it returns the count back.

With this behavior, the overlay file system forwards calls to the
file system, which is simply the existing file system implementation
in a Linux operating system. However, the actual execution of the
call would depend on the defense reconfiguration. This configuration
describes how to intercept system calls. For example, one configuration
could involve looking up the calling process by process identifier (PID)
and ignoring the system call. To design a defense configuration, it is
important to consider the ransomware threat model. For example, for
ransomware that overwrites the target file, the write () system call
behavior can be modified. However, other crypto-ransomware will sim-
ply create a new file and delete the target file — thus, the unlink ()
system call is considered. The actual behavior of the defense can be
made more granular, depending on the output of the detection system.
In summary, this enables stealthy defense approaches (ch3) beyond
simply terminating the process (ch2).

The second task of the file system is to provide data to the Detection
Plane. This is especially critical when mitigation and detection should
be aligned in a way that enables not only the detection of damage
done but also the prevention thereof. For example, a detection system
could easily detect encrypted files based on resource consumption (i.e.,
ongoing encryption) [9] or based on activity on the files in the normal
file system. However, this would detect damages already done to the
system. Thus, the (overlay) file system presents a unique opportunity,
as the system calls received and the data passed in them is “the last
mile” before the damage is written to disk. Nevertheless, data collection
is optional, and proactive defenses could be implemented, too.

There are numerous system calls from which data can be captured.
Thus, the first dimension is the system call type. Similarly, many
system calls are parametrized by flags, which can be captured. Next
are the file paths and file descriptors. Here, the file suffix can be an
important dimension since ransomware differs by the subset of file
types they target [22]. It is important to consider that only calls such
as open () give access to the file path, whereas others use the internal

J. von der Assen et al.

representation of a descriptor. Another important dimension is buffers,
such as the ones passed by write () and read (). Processing buffers
can lead to high resource consumption. One approach is to transform
it into the entropy, measuring the randomness. For example, Eq. (1)
computes the Shannon Entropy.

H=-KY) pilog(p,) @

m
i=1

4.1.2. Detection plane

The Detection Plane provides all necessary capabilities to imple-
ment ML/DL-driven reactivity to reconfigure defenses. Thus, this plane
houses all data analysis-related aspects, starting from data acquisition to
the actual model evaluation. As presented in Fig. 1, the model training
and algorithm selection steps are only considered during the implemen-
tation (or its continuous refinement) of the proposed platform.

The main consideration in the Data Acquisition step is how data can
be pulled from the file system. Thus, the business logic is informed by
the behavior of the data producer. For example, if logs are continuously
provided by the file system plane in a stream, they should be consumed
in a stream-based manner. If logs are only written periodically, regular
checks are performed. Logs from a file system, especially based on
system calls, can contain many elements per slice. Furthermore, the size
of the logs can vary greatly, with some logs potentially being empty
when no process accesses the file system during the monitoring cycle.

This synchronization and preliminary buffering must be considered
in the Data Curation step, along with the selection of features and the
processing of computed features. At this stage, data from the file system
can be correlated with other data. For example, for each process that
was involved with file system activity, data about its resource con-
sumption can be extracted from the process monitor. For example, [30]
presents an overview of kernel events and performance metrics that
can be extracted. Here, many pitfalls must be considered, as outlined
by [13]. For example, spurious correlation between the features and
the class it represents must be avoided. To finalize the creation of a
dataset, the Dataset Generation step persists the data and splits it into a
training and evaluation dataset.

During the instantiation of the framework, the next step is the
Algorithm Selection, where different algorithms for the classification of
the data are evaluated. The most appropriate one is selected for the
Model Training step, where the data is fed to the algorithm, producing
one or more models based on the hyperparameters defined. Finally, the
Model Testing stage applies to the creation of the framework and to
its continuous operation. For the latter, new vectors are continuously
evaluated to produce a classification of the file system activity. Impor-
tantly, the output must be published to inform a closed loop between
the two planes. After all, successful detection of malicious behavior is
only effective if the right action is taken in a time-effective manner
(ch3). Thus, the classification results are published, at least for results
that evaluate to malicious behavior. For example, the identifiers of
malicious processes can be written to a file log, queue, or socket so
that the file system plane can reconfigure the defense behavior.

5. Framework implementation

With the conceptual elements in the framework introduced, this
section presents a specific instantiation of the framework, consisting
of an overlay file system with multiple defense configurations and an
ML-based binary classifier for reactive deployment of the configura-
tions. The purpose of the prototype is to illustrate the viability of the
framework and the usefulness of reactive mitigation by using real-world
samples during testing (ch5 and ch3). Here, [22] stands as a motivating
counter-example that provided a proactive mitigation approach using
file system semantics.

Journal of Information Security and Applications 93 (2025) 104078
5.1. File system plane

The file system plane is implemented as an overlay file system by
leveraging bindings to the FUSE [31] library from the Go programming
language [32]. Essentially, each system call destined to the subtree of
the file system under the mount point can be hooked into, effectively
overwriting the normal behavior. Thus, the overlay system is achieved
by receiving system calls, adapting the parameters passed, and issuing a
new system call. For example, in an open () system call, the file path
of the file to open or create is passed. Here, the path is changed to
reflect the path in the underlay, a new open() system call is executed,
and the results are passed to the caller.

To gather data about malicious and benign processes, a separate
thread collects data for a number of seconds before writing it to an out-
put stream that also persists in the underlay file system. Three different
intervals (i.e, 1, 5, and 10 s) were evaluated for buffering. In theory,
longer buffers should present richer behavioral data [33] but at the
cost of delayed detection and higher memory constraints. For example,
in [22], it was demonstrated that fast samples were able to encrypt
at a rate of ~14 MB/s. Hence, ten seconds is used as an upper bound
since already a proactive approach could potentially lead to lower
losses. The lower bound of one second had been established once the
framework was fully implemented, highlighting that lower delays led
to a high computational load. Based on a preliminary analysis of three
ransomware samples, only the read () and write () operations and
their parameters were considered for persistence. Due to the high num-
ber of system calls produced by the aggressive ransomware behavior,
the following dimensions are recorded: (i) the process identifier (PID) is
recorded to distinguish between processes. For write () calls, (ii) the
Shannon Entropy of the buffers passed is calculated. Furthermore, (iii)
a timestamp is recorded so that additional metrics can be computed.
Furthermore, (iv) the file path, including the file name and suffix, are
recorded. Detection systems, such as the one experimentally used in
Section 5.6, can use the path information as a feature or, as in this
case, to adapt the data pre-processing.

Besides collecting data and routing system calls, the file system
plane implements four different defense configurations that can be
reactively and selectively applied. This means that two processes could
access (e.g, write to or read from) the same file. However, only the
benign one will be forwarded to the underlay, while the malicious one
will be deceived or mitigated.

5.2. Defense 1: Killing processes (PKILL)

The first technique is the conceptually simplest one, which has
already been explored in the literature [17,23]. As such, it should
also serve as a comparison baseline for other defense configurations.
Furthermore, it is implemented in the overlay file system to add the
novel element of delaying any modifying system calls until a time
T has expired. This duration shall allow enough time to gather data
about the process, classify its behavior, and decide how to react. As
presented in Fig. 2, PKILL invokes a process termination through the
operating system based on the PID if the file system receives the signal
of it being malicious. Any explicitly benign behavior is forwarded to
the underlying file system while returning this response to the calling
process of the system call.

5.3. Defense 2: Obfuscating responses (OBF)

While the previous defense may be successful in deterring certain
types of ransomware, it inadvertently shows weaknesses. First, it does
not protect against upcoming damage, and a controller could redeploy
the malware. Secondly, as shown in a recent research work [15], a
limitation of this type of defense is that it presents an explicit trigger
to the attacker. Thus, an attacker will be able to learn precisely under
which circumstances the ransomware was detected, potentially leading

J. von der Assen et al.

] [Gua(dFs] [DETECT] (FS]

Y

Fig. 2. PKILL defense.

([RW] [Gua(dFs] [DETECT] ([Fs |

A~ o o

-A: write (f1)-p| write (f1)}— >
<t-res(f1, ok)— res(f1, ok)—|
log(A)}—

LB: write (f2)p-| [<€—Classify(A)
malicious

|g—res(f2, ok)

benign
i it (72—
|l g—res(f2, ok)— |=-res(f2, ok)—

\

v v v v

Fig. 3. OBF defense.

to an adaptation of the behavior. For example, as demonstrated in [34],
an RL-based agent could learn an optimal attack policy based on
connection loss (i.e., being detected) and current action (e.g., encryption
rate, algorithm). Thus, OBF presents a defense that does not give an
attacker explicit feedback while protecting against loss of data.

As shown in Fig. 3 any operations of unknown processes are imme-
diately forwarded to the underlay systems. During each time period 7',
data is collected about all processes. After evaluating the current buffer
of logs, benign processes are continuously given access to the underlay
file system. However, for malicious processes, the PID is cached in the
file system, and any damage-inflicting system calls are decepted. Thus,
aread() system call is still granted; however, write (), rename (),
and unlink () (i.e., deleting a file or directory) are ignored in a special
way. No actual system call to the underlay is executed. However, a
falsified response is crafted to let the caller believe it was executed.
For example, a write() system call passes the file descriptor and a buffer.
The caller expects a single number that indicates how many of the bytes
in the buffer were written. Thus, this defense configuration heuristically
waits a small amount of time and then responds with the length of the
input buffer, leading the caller to believe that all data was successfully
written. In future iteration cycles, each behavior is newly evaluated.

5.4. Defense 3: Delaying and obfuscating responses (DEL+OBF)

The previously described defense (i.e., OBF) applies response obfus-
cation to all file system operations that would lead to changes in the
underlay system if they were issued from a process that was previously
classified as malicious. DEL+0BF is designed for use cases where data
is even more sensitive, but latency is not critical. For example, a data
collector for a long-term heart monitor may constitute highly sensitive
data. However, the latency might not be critical, especially if the sensor
already transmits collected data in batches (e.g., once per hour). In such
a case, it only matters that the data is eventually persisted, but since
there are no immediate read operations, a short delay can be tolerated.
From an implementation perspective, the effect of this delay would
need to consider various OS-related aspect, such as page cache, which
influence the buffering between user-space and VFS.

Journal of Information Security and Applications 93 (2025) 104078

] [Gua(dFs] [DETECT] (FS)

\

log(A)—>|
lg—classify(A)-]

—write (fll(—
la—res(f1, ok)}—]

\

v v v v

Fig. 4. DEL+0BF defense.

Thus, this technique implements the same defense for maliciously
classified processes (i.e., obfuscate system call responses). However, as
shown in Fig. 4, all system calls of all processes are blocked for the
duration of the timer T. By adhering to this timer, the situation where
a system call is responded to without knowing if its payload is malicious
or not does not arise. In theory, this is done at the expense of the
buffering requirements represented by the following equation, which
have to be accommodated in the memory of the device. Later, a process’
behavior is evaluated without considering the previous classification.

(min(6,€) + min(5, f)) X T 2)

Intuitively, the memory requirements are calculated for the duration
of the buffering. Then, the duration is multiplied by the effective load
caused by untracked processes, which consists of malicious behavior
(ie., encryption) and benign behavior (i.e., any other write operations).
The load from encryption ¢ is controlled by the ransomware and bound
by the disk or file system throughput 6. Although the ransomware
encryption rate may not seem useful, it is an important construct,
as will be presented in the experiments, since highly sequential ran-
somware will be limited in terms of encryption rate due to the buffering
itself since they do not implement an asynchronous (i.e., non-blocking)
traversal and encryption. Analogously, the throughput for all benign
untracked processes is considered by the factor of g, since the buffering
has to be performed for these processes, too, as indicated in Eq. (2).
Thus, it is important to consider that buffering and blocking are applied
to all processes since the trustworthiness is not known beforehand, and
it is not considered for the full process lifecycle.

5.5. Defense 4: Tracking processes (TRACK)

In terms of design, DEL+0BF should present the highest security
guarantee, while OBF presents the lowest latency of benign processes.
The final configuration TRACK tries to maintain state information about
long-running processes and discriminate between malicious and benign
processes by looking at the calling PID.

As presented in Fig. 5, unknown processes receive the same response
as all processes do in DEL+0BF - they are responded to in a blocking
manner. Thus, for duration T, their activity is collected and classified
by the detection system. Only then is a response created. The response
behavior follows the same obfuscating behavior for malicious processes
while it forwards system calls for benign processes. This state informa-
tion is then tracked for subsequent calls to the file system by adding
the PID to a hash table.

For known benign processes (i.e., for hits in the hash table), the
system calls are immediately forwarded to the underlay file system.
However, that does not mean that their behavior is not monitored. In
an opposing way, their behavior is tracked by a different monitoring
thread for a time duration T, after which the classification is evaluated,
and the hash tables are updated. In the case of a benign process that
at some point exhibits malicious behavior, the average data loss would
be represented by Eq. (3) (assuming that malicious behavior would be

J. von der Assen et al.

(RW) [Gua(dFs] [DETECT] [Fs |

Y
>
[malicious <—CIaSSifY(A)_
benign
|——write(f1)— >
lg-res(f1, ok)—] |<e—res(f1, ok)
v \ \/ v

Fig. 5. TRACK defense.

detected). The factor of 0.5 is introduced to indicate an average loss,
assuming a uniform distribution of data loss materialization.

min(6,e) X T X 0.5 3)

For processes that are known to be malicious, the file system will
immediately invoke the obfuscating responses. This is an important
factor to consider since, in this configuration, ransomware may only
be blocked for one monitoring iteration. Afterward, responses are ob-
fuscated and sent back at high throughput without blocking the calling
process. In parallel, data is still continuously collected, even though the
process was classified as malicious.

5.6. Detection plane

Due to the pure user-space implementation of the file system plane
described in 5.1, several approaches for detecting ransomware are
feasible. For example, kernel metrics, hardware counters, system calls,
or performance measurements could be used. However, to implement
a pure file system approach, only related system calls are used. Thus,
in the monitoring thread that implements the Detection Plane, a dataset
is curated from continuously reading the system calls and aggregating
them to buckets. The bucketing is applied so that for each time slice,
the metrics in Table 2 are aggregated.

Three ransomware samples were executed to create malicious and
benign behavior. These represent only a minority of all obtained sam-
ples used for the subsequent experiments, since it is assumed that
a defender cannot train on all existing samples, since ransomware
is highly polymorphic in practice. More specifically, RansomwarePoC,
DarkRadiation, and roar (see Section 6.3) were deployed by directly
giving them shell access. RansomwarePoC was selected since it rep-
resents an open-source Proof-of-Concept sample, DarkRadiation was
selected since it represents a full-fledged sample which incorporates
Command-and-Control interaction, and roar represents a stealthy sam-
ple. To the best of the authors knowledge, roar is the only available
sample developed for this specific purpose. For benign behavior, a
workload consisting of many read-and-write operations with various
file contents is needed. Otherwise, deciding between benign behavior
and ransomware would be trivial. For example, simulating a desktop
scenario with only a few infrequent write operations to a plain text
file could be easily distinguished against an attack scenario. Thus,
an FTP server was deployed on the same Raspberry Pi device (see
Section 6.1), and the load was generated using the Apache JMeter [35]
stress testing suite. The choice of this application scenario may ap-
pear arbitrary. However, it has been chosen since to the best of the
authors’ knowledge, there is no dynamic execution payload that yields
a representative dataset. Thus, the following rationale was followed:
from the file system detection plane, the application protocol does

Journal of Information Security and Applications 93 (2025) 104078

Table 2

Shape of aggregated dataset.
Time Writes Reads pid e_min e_mean e_max
20 131 102 232 7.86 7.86 7.86
20 73 2 533 7.94 7.95 7.96

not influence the activity since there is only visibility into the file
operations. However, to provide a non-trivial detection problem, var-
ious files with different levels of entropy should be used with a high
amount of traffic. Hence, the choice of the application protocol does
not necessarily matter as long as it enables one to easily generate a lot
of activity in the file system. By configuring multiple client threads in
the stress testing tool, a high load was placed on the server, consisting
of reading and traversing the directory structure. The files deployed
on the device used a broad set of file types provided by [36]. Another
subset from the corpus was used to upload it to the device so that
write operations with high entropy (e.g., ZIP archives, JPG images) are
also present in benign behavior. Under these conditions, normal data
was collected for 258 min (~ four hours). Data collection involving
encryption by each ransomware sample and benign behavior spanned
several hours. roar did not achieve full encryption in that time and
was, therefore, terminated after roughly two hours. Due to the low
encryption activity of roar, only 1.7% of the collected system calls are
labeled as malicious in the resulting dataset. For DarkRadiation, 13.9%
of all system calls were labeled as malicious, and for RansomwarePoC,
9.2% were malicious calls. For labeling, a set of benign processes are
pre-defined allowing unrelated PIDs to be labeled as malicious and ones
related to those benign processes to be labeled as benign [37].

Once data was collected, the datasets that included the presence
of different behaviors (i.e., benign or one of the three ransomware
samples) were aggregated into buckets of 2, 5, and 10 s. Furthermore,
time-sensitive or leaking features (e.g, file extensions, paths, time, PID)
were removed. Ultimately, each row in the dataset holds for each
process the number of operations per system call type (e.g., read, write,
rename) and the minimum, maximum, and mean entropy of the buffers
while using the file path to identify the suffix. Finally, each dataset was
split, where 80% was to be used for training and 20% for testing.

Two approaches were followed to implement the model training
component using ML. First, an aggregated dataset was used to create
one global model, where all ransomware data was labeled as malicious
and the remaining data as benign. In the second approach, three models
were trained for each bucket configuration. Here, only two out of three
ransomware samples were included in the training data to analyze
whether unknown ransomware behavior can be detected based on the
behavior of other samples. Of course, only benign data was used for
anomaly detection.

Thus, for both approaches and all three bucketing configurations, a
model was created using three algorithms: Random Forest Classifier,
Logistic Regression, and Isolation Forest [38]. These algorithms do
not exhaustively demonstrate the effectiveness of ML-based detection;
however, they represent popular choices and may fulfill the goal of
obtaining a simple classifier to test the reactive defense system. As
shown in the subsequent experiments, all classifiers achieved high accu-
racy in classifying the malicious behavior using the default parameters
provided by scikit-learn, so no parameter tuning involving a validation
split was used.

6. Validation scenarios

To assess the effectiveness and efficiency of the described proto-
type, it was deployed in multiple scenarios, ranging from single-board
computing to a container-based testbed. All scenarios are inspired by
a non-interactive server scenario. This section describes the configura-
tions and related artifacts that were used in the experiments. Sources,
samples, and data are available in [37].

J. von der Assen et al.

____________ e d
__________________________ 2
|&3 M zFS Storage Pool H—
__..Viual Machine)
________________________ Y
Hypervisor]
] Host OS (Bare Metal) ;
Base Image) Snapshot Creation |-

(Complarison)

0 Results

Fig. 6. Virtualized ransomware testbed architecture.

6.1. Single-board computing

Raspberry Pi devices are implemented as a system on a chip, making
them a low-cost computing platform that can be used in a variety
of use cases. Due to them being exposed to ransomware in the past,
they fit the threat model described in this work. Furthermore, since
they are considered resource-constrained devices (either in terms of
computational resources or management capabilities), they present an
excellent test bed that allows one to experiment with the effectiveness
of the platform. Specifically, a Raspberry Pi 4B with 2 GB of memory
was used to run an FTP server at high load. On this device, experiments
are performed to assess the capabilities of the detection system both in
an online and offline experiment (i.e., with data gathered on the device,
but evaluated locally).

6.2. Virtualized testbed

While the deployment of real-world malware in a real device allows
experimentation close to reality, it is tedious to gather data in a
reproducible and scalable way so that numerous samples can be tested.
Thus, the testbed shown in Fig. 6 is developed, where the hardware
presents high-performance access to storage, by means of two NVMe
storage devices and an AMD Ryzen 5700G processor running at 4.7 GHz
with 64 GB of DDR4 memory. Experiments are executed in containers
where a ZFS dataset is mounted. Optionally, a configuration of GuardFS
can be mounted, too. Since the underlay resides on the ZFS dataset,
snapshots can be easily created and compared to understand the effects.

6.3. Malware samples

Aside from RansomwarePoC, DarkRadiation, and roar, which have
already been used during the implementation of the framework (i.e.,
for the model creation step), a broad set of malware was obtained from
malware databases and integrated into the testbed. As of the author’s
knowledge, there is no Linux-based testbed with a higher number of
samples to perform dynamic analysis (i.e., non-simulated experiments).

* Babuk is sophisticated malware, whose source code was leaked.
The ransomware is written in golang, targeting different plat-
forms. Thus, the encryption module was extracted and compiled
for the x86 platform [39].

Journal of Information Security and Applications 93 (2025) 104078

* Blackbasta is a renowned ransomware-as-a-service enterprise. A
leaked binary was obtained as an ELF file. After reverse-
engineering it was discovered that it targets specific folder paths
used by VMWare. Thus, GuardFS is mounted on /vmfs/vol-
umes [40].

ClOp is a strain of a famous group of attackers. A binary was
fetched from MalwareBazaar [40].

Conti operates as a service since 2020. A binary is available in
MalwareBazaar [40].

DarkRadiation is a ransomware that targets Linux-based systems.
This sophisticated ransomware is implemented entirely in bash
using Telegram for communication instead of a dedicated C&C
server [41].

GoCry is an educational, open-source ransomware written in
golang [42].

* javaRansomware is an educational, portable, open-source ran-
somware developed in Java [43].

lockbit is another strain of the real-world ransomware that was
operational in 2023 [40].

lollocker is an open-source ransomware strain using bash to
orchestrate the encryption using OpenSSL [44].

Monti is a modified strain of existing real-world ransomware [45],
which can be retrieved as an ELF-file on MalwareBazaar [40].
Ransomware-PoC is a proof of concept open-source Python ran-
somware payload [46].

roar appears the most technically elaborate ransomware. Techni-
cally, it is an open-source adaption of RansomwarePoC, aiming at
diversifying the encryption behavior (e.g, encryption algorithm,
encryption speed) and optimizing the most stealthy operation by
using Reinforcement Learning [15].

Thus, the selection of samples includes both educational, open-
source samples (i.e., javaRansomware, Ransomware-PoC, roar), with the
remaining attributed to real-world incidents, where samples are ob-
tained from a malware databse [40].

7. Experiments

This section presents a pool of experiments that evaluates the perfor-
mance of the proposed framework while detecting and classifying the
ransomware families introduced in Section 6. Although the detection
methods do not constitute a key contribution to the field, under-
standing their performance is relevant to contextualizing the results
of the reactive defense. Thus, the detection plane is evaluated against
the testing datasets to understand how well it detects ransomware
samples in two cases. First, when the given ransomware sample is
present in the training data, and second, when it is considered an
unseen behavior. Next, the experiments move to a production scenario,
considering the Single-board computing scenario, where the detection
delay is contextualized in terms of files encrypted until detection. In
the end-to-end experiments, the detection plane is integrated with the
defense techniques. Here, the previously described virtualized testbed
is employed so that the seven different configurations of the defense
strategies are confronted with eight ransomware samples to compute
the amount of data that is lost. Finally, the overhead of the detection
and defense components on benign workloads is established, leading
to a comparison with related approaches. As such, it is assumed that
an operational model is available; in-depth discussions on the effect
of misclassifications (i.e., false negatives on malicious behavior and
false positives on benign behavior) within varied scenarios represent
a limitation of the work, as outlined in Section 7.4.1.

7.1. Evaluating test datasets

To assess the performance of the detection plane in isolation, data
obtained in the Single-Board computing scenario is leveraged, consider-
ing multiple samples. The actual evaluation is carried out on the remote
device that was used for training the models.

J. von der Assen et al.

Journal of Information Security and Applications 93 (2025) 104078

Table 3 Table 4
Accuracy for unseen Ransomware — random forest classifier. Accuracy of models trained on three samples.
Time window RansomwarePoC DarkRadiation Roar Algorithm 2s 5s 10 s
2s 99.92% 94.71% 99.43% Logistic regression 99.53% 99.76% 99.87%
5s 99.91% 95.55% 99.65% Random forest classifier 99.93% 99.97% 99.98%
10 s 99.90% 96.92% 100%
Table 5
Performance of RF model (5 s).
7.1.1. Classifying unseen ransomware F TPR FNR FPR TNR
To understand how well the file system behavior classification 99.9967% 99.887% 0.113% 0.8313% 99.1687%
performs for unseen malware samples, the datasets were combined into
nine different combinations to train one model based on the Ransom Table 6
Forest Classifier. Thus, one model was trained for each combination Detection delay (5 s model).
of t};e three dlfferentf tlrﬁle windows (i.e., 2 s, l5 s, andl 10 s) and Sample Min. Avg. Max. Data loss
combining two out of three ransomware samples (i.e., leaving out
K 8 o P (e, 8 . RansomwarePoC 4s 6s 10 s 18 files — 12.3 kB
either RansomwarePoC, DarkRadiation, and roar). Two second time DarkRadiation 45 8s 10 s 35 files — 23.9 kB
windows have been defined since they present the lower bound at Roar 8s 19s 44 s 3 files — 2.1 kB

which the monitoring and evaluation cycle operates stable. The upper
bound has been set at 10 s, since larger windows would likely lead
to large data losses (e.g., 20 s of uninterrupted encryption). The three
samples (see Section 5.6) were chosen as their approach, and technical
implementation provide a diverse sample set.

Table 3 shows the accuracy for the different combinations of ran-
somware data and time window sizes. The random forest classifier
performed best when aggregating the behavioral data into 5- or 10-s
slices. In the 2-s time window, the accuracy is the lowest, although
just a slight difference compared to other others (e.g., 2.21% difference
in the worst case). This can be explained by the fact that, when
aggregating into the 2-s window, not enough file system operations may
be gathered at all times since ransomware samples cannot constantly
encrypt at full speed, since they, like every other userspace process,
may be interrupted by another process or blocked by I/0 operations.

Even in the 5-s time period, the accuracy of detecting roar is lower
compared to the 10-s time window; evaluating the 5-s time window
multiple times over 10 s would likely provide comparable accuracy to
the model with a longer window size.

For both RansomwarePoC and DarkRadiation, the accuracy in the
10-s window size is close to 100%. Thus, using these models, it is
possible to detect the two strains, even when data was collected from
other samples. For DarkRadiation, the accuracy increases with increas-
ing window size, with the highest accuracy observed at 96.92%. The
fact that DarkRadiation is detected with a lower accuracy is surprising
since it encrypts without trying to be stealthy and in fact, encrypts
at the highest speed. The result can be explained by the fact that
DarkRadiation is the only sample that uses pools of subprocesses to
parallelize the encryption process. Thus, grouping data based on PID
leads to multiple vectors for each time window for DarkRadiation,
so certain features may not reflect the malicious behavior as robust
as others, as it leads to different patterns in the dataset, leading to
difficulties during the classification stage. Another contributing factor
is that the average entropy of RansomwarePoC and Roar is 6, whereas,
in the case of DarkRadiation, it is around 8 due to differences in
encryption behavior and implementation. Nevertheless, the random
forest classifier is relatively robust to these differences, as the accuracy
is above 94% for all time windows considered.

7.1.2. Classifying known ransomware

Even in the previously described setup with partial training data,
most vectors can be accurately classified for all window sizes. However,
more data is available in practice, given the breadth of available ran-
somware samples. Thus, assuming that the behavior can be generalized
over multiple samples, a dataset is created using training data from all
samples. Again, models are trained by aggregating the data into three
window sizes. Furthermore, we compare two algorithms (i.e., Random
Forest and Logistic Regression) for classification. After concatenating
all Ransomware and benign datasets together and splitting the data into

80% train and 20% test datasets, the respective models were trained.
Both logistic regression and random forest classifier have shown high
accuracy — close to 100%, as shown in Table 4.

In summary, the Random Forest (RF) Classifier for a window size of
10 s presents the best results. For practical reasons, the 5-s variant may
provide comparable performance while providing faster detection. This
model is used for the subsequent experiments involving the execution
of ransomware. To contextualize the model’s performance, where false
positives and false negatives both influence data loss, the confusion
matrix is illustrated in Table 5. Specifically, the true positive rate (TPR),
false negative rate (FNR), false positive rate (FPR), and true negative
rate (TNR) are presented and the F; score is computed.

7.2. Evaluating after deployment

To understand how effective and efficient the detection plane can
be when running in a real device, the Single-Board Computing (see
Section 6) scenario was instantiated. The detection system and the FTP
workload run in parallel for each sample. Then, the delay between
malware deployment and detection is measured. Furthermore, it is
computed how many files were successfully encrypted by the sample
in that time. This contrast is especially important in light of stealthy
malware samples, such as roar, that decrease the encryption speed
in favor of appearing less aggressive. The results, shown in Table 6,
reflect that intelligent ransomware such as roar is, in fact, able to evade
detection better than other strains. Overall, the maximum detection
delay observed across ten iterations of the experiment was 44 s, while
the minimum was 4 s. However, putting this into the perspective of
the encryption speed, stealthy ransomware such as roar cannot encrypt
as many files as the other samples since it uses periodic phases of
hibernation, which explains the variations of detection delay.

Most samples can be detected based on a few seconds of active
encryption. While the number of files lost appears daunting, it has to be
emphasized that in this scenario, no defense mechanism is present. As
will be shown by the subsequent experiments, the file system defense
can save some of the data that the ransomware is encrypting until the
classification is positive.

7.3. End-to-end experiment

So far, the detection plane was developed using a small number of
ransomware samples, leveraging strains that differ in implementation
and purpose. As such, the previous experiments demonstrated detection
performance in offline and online settings. However, measuring the
usefulness of an Al-based detection system for mitigating cyberattacks
must include the complexities of the defense behavior. For example, ac-
tive mitigation advertently changes the device’s behavior and, ideally,

J. von der Assen et al.

Journal of Information Security and Applications 93 (2025) 104078

Table 7

Data lost (in kilobytes) per configuration and Ransomware.
Scenario Delay Babuk Blackbasta Clop conti GoCry javaRansomware lollocker Monti Average
NO DEFENSE 0 10,655,744 10,655,744 10,655,744 561,152 10,655,744 2,634,752 2,926,592 10,655,744 7,425,152
PKILL 0 107,752 9,168 668,159 49,255 0 39,762 620,125 28,889 190,388
0BF 0 77,172 9168 70,644 96,371 0 48,500 137,304 88,259 65,931
DEL+0BF 1s 1,286 8,266 19,598 69 0 0 1,692 69 3873
DEL+0BF 5s 1,289 4,313 0 0 0 0 19 0 703
DEL+0BF 10s 1,286 4,313 387 19 0 0 19 10 754
TRACK+0BF <5s 27,025 8,781 0 42,427 0 12,149 29,777 19,489 17,456

even the malicious behavior, as the goal is to interrupt, diminish, or
prevent the behavior. Thus, if such a system considers only detection
without mitigation, the actual performance can only be approximated.

Thus, a series of experiments are executed using the virtualized
testbed presented in Section 6.2, spanning all malware samples from
Section 6.3. Concerning the detection plane, the same Random Forest-
based model from the online test is deployed in the testbed. Then, in
each round, one workload is considered to assess (i) the defense effec-
tiveness as established by the number of bytes lost when ransomware
is deployed, (ii) the resources consumed by the ransomware and the
defense platform, and (iii) the impact of the defense platform on benign
workloads.

7.3.1. Defense effectiveness

One experiment per defense configuration and ransomware sample
have been performed. To compare the performance of the malware,
each sample is also deployed against a baseline strategy, where no de-
fense is active. At the beginning of each experiment, the detection plane
is executed, which monitors access to the file system in the background.
If a process is classified as ransomware, the defense strategy, which is
the subject of the experiment, is deployed. The ransomware is given
enough privileges to directly execute any operations on the files in the
home directory. All files are available through the overlay file system
to account for any encrypted files in the experiments.

Algorithm 1 Pessimistic Computation of Data Loss

Require: BASELINE FILES # nil
Require: SNAPSHOT_FILES # nil
SNAPSHOT_CHECKSUMS « |[]
FILES_MODIFIED « []
BYTES_LOST « 0
PTR « 0
while prr < snapsHOT FiLES.length() do
F < SNAPSHOT_FILES[PTR]

SNAPSHOT_CHECKSUM :: sha256sum(r)
PTR < PTR+1
end while
while ptr < BaseLINE_FiLES.]ength() do
F < BASELINE_FILES[PTR]
CHECKSUM < sha256sum(r)
if CHECKSUM is not in SNAPSHOT_CHECKSUMS then
FILES_MODIFIED bl F
BYTES_LOST <« BYTES_LOST + lookup_size(r)
end if
PTR < PTR+1
end while

After a maximum of five minutes after the sample has entered the
encryption phase, the experiment is concluded, and the snapshot of
the underlay is created. To assess the damage done by the sample,
Algorithm 1 computes the number of bytes lost. First, a list of check-
sums is computed based on the file contents in the snapshot after the
experiment. Then, the same is done for the files in the initial dataset.
Finally, for each file in the initial dataset, it is checked whether the
checksum is contained in the post-experiment checksums. If not, the
file size of the original file is assessed and added to the final result
number.

10

In that sense, the amount of data loss is computed on a pessimistic
approach. For example, if only a single bit of the file is modified,
the whole file is considered lost since no assumptions on the type
of data are made. This also presents the danger that some malware
samples may appear stronger than they realistically are. For example,
some samples could delete many files without encrypting them, which
would be computationally cheap. Nevertheless, it is assumed that this
computation of the file modifications presents a fair approximation of
data loss. It is key to highlight that only data loss is quantified — other
impacts, such as loss of confidentiality from data access, are out of
scope.

As evident from the first row in Table 7 where no security mecha-
nisms are present, most samples achieve full encryption of the ~10 GB
of data in the system. Still, there are differences in terms of data
loss since certain samples focus on a dedicated set of file types. On
average, 7.43 GB of data is encrypted or lost when the samples are not
interrupted. The second baseline measurement (i.e., a defense strategy
that has already been explored in research and thus implemented for
comparative purposes) is the PKILL defense, which enacts process ter-
mination upon detection. The first observation for this defense strategy
is that even without a novel defense mechanism, reactive detection
can lead to the large majority of data being protected, as 97% of data
remains unmodified compared to the uninterrupted case. Nevertheless,
some malware samples can still destroy multiple hundred Megabytes of
data until the process is positively classified and terminated. For exam-
ple, Blackbasta encrypts roughly 9 KB of data until mitigation. In these
cases, it is likely that this defense approach can be truly autonomous,
and some degree of administrative intervention (e.g., decommissioning
the device, restoring backups) is needed. This shows that by itself, the
delay for detection should be further optimized to save more data.
Furthermore, there is a clear termination signal that the ransomware
could leverage for self-adaptation, motivating the need for additional
measures.

Next, OBF presents a different mitigation approach, which also
operates in a non-blocking manner (ie., the behavior until the first
monitoring cycle does not face interference). Nevertheless, this defense
configuration can reduce the data loss by ~65% compared to PKILL.
This may indicate that the obfuscating defense is more suppressive
against the malicious sample. Furthermore, looking into the modifica-
tion times in the snapshot, it is revealed that after the detection of the
ransomware, the ransomware continues to execute without any data
loss. This indicates that the defense is indeed stealthy (i.e., the attacker
does not receive an immediate signal that it is being mitigated), which
could prevent sophisticated ransomware such as roar from improving.

To improve the damage dealt until the detection system raises the
alarm and deploys the defense, the three variants of DEL+0BF (i.e.,
ones blocking for 1, 5, and 10 s) all show another strong improvement
compared to either killing the process or just obfuscating file system
responses. First, based on a 1-s timer, only 3.87 MB of data is lost
on average for the whole experiment — ~98% less than in the PKILL
defense. The main reason this residual data is lost is that the initial
delay is not long enough for the detection system. This also explains
why the 5 and 10-s timers can save an additional ~81.85% of data,
comparing the average data loss to the 1-s timer. Naturally, some data is
lost, as the detection system does not perform perfectly for all samples.
Furthermore, the encryption windows may not be perfectly aligned

J. von der Assen et al.

Journal of Information Security and Applications 93 (2025) 104078

__ 100 \ 100 100
S —CPU(F) || =
o 151 —8-RAM (F) H " 751 +4 o 750 N
o - - CPU (R) - &
S 50| RAMR) | S 5o 1 2 s0f 8
[} [} (0]
o o g
3 25) 13 25t 1 3 250 3
ci:ﬂ 3 3]

0B Ea e © (e seaeaadeaes ¥ (oeeeemmmwwwE

0 100 200 300 0 100 200 300 0 100 200 300

Time [s] Time [s] Time [s]
(a) DEL+0BF [1s] Defense (b) DEL+0BF [5s] Defense (c) DEL+OBF [10s] Defense
100 T T 100 T T 100 T T

[0) 75 [~] [0] ()
Q0 Q0 a0
3 3 3
> 50| - - o
6 8 g
3 250 * 7 3 3
0 n wn
2 2 @ o

() SER=m=n=a=n==N n=nin=m-a=am

0 50 100 150

Time [s]

(d) PKILL Defense

(e) 0BF Defense

(f) TRACK+0BF Defense

Fig. 7. Performance analysis of different defense methods and configurations against javaRansomware.

with the monitoring windows (e.g., the first 5-s window may contain
the first 100 ms of encryption towards the end). Interestingly, using a
larger time window does not improve the defense.

Although the strategies that incorporate both obfuscation after an
initial delay clearly present the most robust defense guarantees, they do
so at the cost of an increased delay. Thus, application scenarios where
persistence delay is critical would suffer from this strategy. To present
a hybrid solution, TRACK+0BF applies only an initial delay for new
processes. Thus, delayed critical applications would only suffer from
a single performance hit, and subsequent operations can be services
like benign applications. Of course, this comes at the cost that the
defense is weakened. If ransomware first exhibits a benign behavior
and then turns to encryption, this behavior is only detected with the
delay of the monitoring and detection cycle. As shown in the last
row, this is the case, as ~#17.46 MB of data are lost on average. Thus,
it outperforms the remaining non-blocking defense mechanisms while
underperforming against the ones delaying the execution for improved
detection. Furthermore, it does so at the cost of increased complexity
since the state must be maintained longer than the monitoring cycle.

In summary, the proposed defense methods provide an improved de-
fense system. For workloads that require high-security guarantees while
being able to sacrifice delay requirements, the DEL+0BF defense for a
5-s timer is the best choice. If the application should still perform with
low delay, the TRACK+0BF and OBF strategies could be considered, as
indicated in Table 7. The former presents stronger security guarantees
but at increased complexity for managing the state and thus increased
resource requirements.

7.3.2. Resource efficiency

Although all defense mechanisms present a certain improvement
in resilience against ransomware attacks, they lead to different be-
haviors from the offensive (i.e., blocking or non-blocking encryption)
and defensive (i.e., stateless or stateful) perspective. In Fig. 7, the
analysis of executing the javaRansomware sample against the different
defense configurations regarding resource consumption is visualized.
For each experiment, the relative CPU consumption and the reserved
system memory are visualized. These two metrics are assessed for the
process (and subprocesses) spawned by the ransomware and for the file

11

system, which includes the defense and detection planes running in the
background.

The first observation is that, due to the delaying aspect of the
DEL+0BF defense family, the overall resource consumption is
smoothed, resulting in less bursty resource consumption. However,
it is important not to confuse “less bursty” with “fewer resources
consumed” - overall, the same resources are consumed since the same
workload is performed. Still, the ransomware iterates through all the
buffers representing the protected files, encrypts them, and attempts
to write them to disk. In that sense, delaying and obfuscating the
modifying operations (i.e., rename, delete, write), not only mitigates
the modifications but also slows down the ransomware.

Since the OBF and TRACK+0BF defenses do not extensively delay
the ransomware execution but instead try to mimic the file system in
its normal state, there is substantially bursty resource consumption.
Here, it can be seen that keeping up with computationally intensive ran-
somware leads to significant resource consumption by the file system,
too. However, assuming that ransomware attacks are still rare, it could
be argued that this resource consumption can be afforded. Interestingly,
the execution of the ransomware does not change once the file system
mitigation goes into action, emphasizing that the ransomware may not
detect the mitigation. This is magnified by the fact that the ransomware
stops the encryption process by itself once the target data is consumed,
encrypted, and disk persistence is attempted.

If the DEL+0BF strategies are compared to the PKILL defense, it
is clear that these novel defense mechanisms are not more resource-
effective. Indeed, PKILL is the most resource-effective approach since
only a few monitoring cycles exhibit ransomware behavior. However,
this comes at a cost, where it is assumed that (i) the ransomware
does not alter its behavior based on the KILL signal and (ii) that it
is actually possible to prevent further execution of the sample. Here,
the defense methods introduced in this paper present the advantage of
being stealthy while avoiding the damage function of the ransomware,
even if the sample may not be removable.

In summary, the PKILL defense is the most resource-effective one,
although at the expense of weak security (ie., assuming killing the
process mitigates the malware). The other strategies require roughly the
same amount of resources, although the ones involving a delay com-
ponent smooth the consumption over time while providing a slightly
stronger defense.

J. von der Assen et al.

Table 8

Overhead on Benign workloads.
Scenario Time [s] CPU [%] RAM [MB]

System GuardFS System GuardFS

WL1 3 19.7 - 2.6 -
WL1+TRACK+0BF 8 13.4 56.5 1.8 10.8
WL2 4 1 - 4.8 _
WL2+TRACK+0BF 6 1 1 4.9 14.1
WL3 16 51.1 - 13.43 -
WL3+TRACK+0BF 20 33.33 1 1.9 121
WL4 23 9.8 - 10.5 -
WL4+TRACK+0BF 24 2.24 50.1 2.25 7.28

7.3.3. Usability in benign workloads

Although efficient resource usage when mitigating ransomware is
important, efficient operation in benign settings is also critical since
devices likely spend much more time in a non-infected state. Thus,
efficiency optimizations when running benign workloads are an im-
portant pillar to ensure the overall efficiency of the solution. Previ-
ous experiments demonstrated that the TRACK+0BF defense presents
strong defense effectiveness. Due to its design optimizations concern-
ing efficiency, this defense mechanism is deployed in this scenario
while confronting it against several additional workloads. The follow-
ing workloads are then measured concerning their execution time and
the resources required by the workload and the defense system. For
each workload, these values are established when running them in the
overlay system without any monitoring, detection, or mitigation system
running and when deploying them with the aforementioned defense
strategy (see Table 8):

+ In the first workload WL1, the effect of the system on system
administration is considered. Thus, the packages for apache2,
BIND9, and MariaDB servers are downloaded and subsequently
installed into the overlay file system. This task involves many
(concurrent) read and write operations involving high entropy
data.

For WL2, a reading from a real air quality sensor is retrieved
and stored on the disk. Thus, this workload shows low read
operations, a single longrunning write operation with low delay
requirements.

The third workload WL3, involves the creation of a backup —
here, an archive of 977 files, protected by the file system, is
created. The resulting archive is stored as a GZIP-compressed
tarball on the same file system.

In WL4, a long-running, write-intensive task is carried out, which
involves continuous download of the libreoffice suite into the
file system. Here, it is also investigated how the system per-
forms when there are no other bottlenecks, leading to highly
asynchronous operation. Thus, the data is downloaded over a
local network link provisioned at 1 Gbit/s. In that sense, writing
network data at such a high throughput also resembles a stress
test for the file system.

Looking at the Time column, it can be seen that the defense and
monitoring system does lead to a delay in execution time. This comes
as expected, as this defense configuration involves an initial delay
for each process (and any spawned child processes) to classify the
first interaction with the file system. This efficiency is least optimal
for short-running processes that involve the creation of many files by
numerous parallel processes, as represented by WL1 in the first row.
This effect becomes less prominent for workloads like WL4 that are
long-running and involve continuous write operations. Furthermore, for
workloads such as WL2, that are not delay-critical and operating in a
highly asynchronous manner (i.e., spending a lot of time waiting for
other I/0 tasks such as network requests), this constraint may likely not

12

Journal of Information Security and Applications 93 (2025) 104078

play a difference. In such cases, the added defense effectiveness could
provide a credible tradeoff between usability and security. Another ob-
servation is that even for creating high entropy data, such as in WL3, no
false alerts (and thus mitigation) were raised during regular operation.
Regarding resource consumption, it can be seen that for short-running,
bursty workloads involving many system calls, the file system requires
substantial compute resources and static memory consumption in the
magnitude of roughly 10 MB.

7.4. Comparison with related work

In the proactive approach proposed in [22], a file-system-based
ransomware mitigation is described, enabling a comparison of reactive
and proactive paradigms in autonomous ransomware defense. As high-
lighted by the experiments that assess the overhead in benign settings,
the reactive approach shown in this paper does present one issue. To
be able to react to attacks, data must be monitored continuously. In
this paper, file system-related system call parameters were considered.
This makes detection robust. However, processing system calls becomes
more expensive as more system calls are created. In that sense, the
higher the load on a system, the more resources are required to assess
the system calls. This monitoring cost is avoided in a proactive defense
since the defense techniques are deployed beforehand.

To make proactive defense viable, deploying such a defense strategy
imposes constraints on how the defense can be designed. After all,
the defense strategy is constantly executing, which leads to overhead
created by the mitigation. In [9], the proactive defense was found too
expensive, especially for ransomware, since deception was achieved
by creating a set of actual files to trap the ransomware encryption.
Thus, only a lightweight defense mechanism was considered suitable
for proactive deployment. In that sense, [22] presents a lightweight de-
fense mechanism that can be deployed without intelligence. However,
implementing it relies on specific assumptions of adversarial behavior,
thus weakening the defense’s effectiveness. For example, one of the
techniques relies on the ransomware performing a full traversal of the
target file system before attempting any encryption. Although this was
demonstrated to be effective, it could potentially be circumvented by
changing the traversal strategy or by performing traversal in parallel
to the encryption. Indeed, the defense mechanisms presented here
also rely on the attacker performing encryption (and thus creating
a specific pattern of read and write operation, as well as creating
high entropy data as output). However, as discussed in the history of
ransomware, crypto-ransomware is still a highly relevant threat vector
and has been so for a long time. This is backed by the results on the
defense effectiveness, which show that the proactive approach led to
~300 MB being lost, while the experiments on this reactive deployment
showed losses between ~66 MB for the worst case and ~0.7 MB for the
best strategy. In summary, reactive mitigation can provide optimized
defense, although resources for continuous monitoring, processing, and
classification are needed.

7.4.1. Limitations

Based on the results obtained using the methodology of this study,
the following limitations of the work are explicitly discussed. First, it
must be acknowledged that the assumption of the threat model is that
an attack only has black-box access to the system. It is assumed that the
attack can only learn from the actions taken on-device, i.e., interpret the
obfuscated answers. Nevertheless, other channels could be leveraged by
malware to understand the success of their actions.

Secondly, a productive implementation would need to continuously
recreate datasets to account for the influence of the defense systems.
As part of this, special considerations would need to be given to the
case where a long-running malicious process is misclassified, leading
to successful attack execution. Similarly, a misclassified benign process
would be blocked from writing benign data. In the current manuscript,

J. von der Assen et al.

these cases are only investigated experimentally (i.e., assessing over-
head on benign workloads and measuring data loss from ransomware
execution). Further studies could address this by collecting additional
data (e.g., combining configurations of benign and malicious executions
and evaluating model performance regarding misclassification).

8. Conclusion

This work presented the design and prototypical implementation of
an integrated defense platform that leverages the file system to pro-
vide autonomous and fully automated mitigation against ransomware,
assuming that a detection system is in place. The detection plane relies
on system call data that can be intercepted on the file system level of
the operating system. With this data, an ML-based binary classifier can
deploy different strategies in the defense plane. Then, multiple novel
mechanisms involving stealthy defense have been proposed. Finally,
a set of experiments has shown the performance of the detection
plane in offline and online tests, while the detection and mitigation
capabilities were assessed against several ransomware samples in a real
scenario and using a virtualized testbed. Here, the defense effective-
ness, resource consumption, and side effects on benign workloads were
studied, leading to a comparison of proactive defense solutions with a
data-driven, reactive defense.

In conclusion, this work demonstrated that ML-based reactivity can
optimize the defense capabilities of a defense system. Depending on the
security requirements, the defense strategy with the highest robustness
could provide an almost completely automated defense system, with
no manual intervention required after successful detection. It is critical
to select the appropriate defense configuration depending on the type
of workload to be performed in the benign setting. For highly delay-
critical, and short-lived processes, the most complex defense method
TRACK+0BF is suitable. In contrast, ones that can sacrifice delay for
improved security benefit from the DEL+0BF mechanisms. These two
also show different effects on resource consumption, with the second
one being less bursty. Finally, from the detection plane, it can be
concluded that the ML-based classifier presents robust detection for a
myriad of different ransomware samples, even when behavioral data
was gathered for different (and thus unseen) samples. Still, monitoring
system-call data comes at a cost, especially at high load, where the
number of system calls to be processed increases.

Based on the experiences drawn, multiple avenues for further re-
search are identified. First, it will be investigated how the detection
plane could be made more lightweight for scenarios where data pro-
cessing cannot be offloaded. Here, different data sources, such as
performance metrics will be analyzed. Furthermore, the platform will
be tested using other benign workloads (e.g., office usage, IoT sce-
narios) and additional ransomware samples, especially ones aiming to
be stealthy. Here, the portability of the platform to other operating
systems will be investigated.

CRediT authorship contribution statement

Jan von der Assen: Writing — review & editing, Writing — original
draft, Visualization, Validation, Supervision, Methodology, Conceptu-
alization. Chao Feng: Writing — review & editing, Conceptualization.
Alberto Huertas Celdran: Writing — review & editing, Project admin-
istration. Rébert Oles: Writing — review & editing, Visualization, Soft-
ware, Methodology, Data curation. Gérome Bovet: Writing — review
& editing, Supervision, Resources, Project administration. Burkhard
Stiller: Writing — review & editing, Supervision, Resources, Project
administration, Funding acquisition.

13

Journal of Information Security and Applications 93 (2025) 104078
Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Jan von der Assen, Chao Feng, Alberto Huertas, Burkhard Stiller reports
financial support was provided by Cyber-Defence Campus. If there
are other authors, they declare that they have no known competing
financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work has been partially supported by (a) the Swiss Federal Of-
fice for Defense Procurement (armasuisse) with the CyberMind project
(CYD-C-2020003) and (b) the University of Ziirich UZH.

Data availability

Included in the manuscript.

References

[1] Cybersecurity Agency IS. Shifting the balance of cybersecurity risk:
Principles and approaches for security-by-design and -default. 2023, https:
//www.cisa.gov/sites/default/files/2023-04/principles_approaches_for_security-
by-design-default_ 508_0.pdf [Last Visit December 2023].

Von Der Assen J, Franco MF, Killer C, Scheid EJ, Stiller B. CoReTM: An
approach enabling cross-functional collaborative threat modeling. In: 2022 IEEE
international conference on cyber security and resilience. CSR, 2022, p. 189-96.
CrowdStrike Holdings Inc. A brief history of ransomware. 2022, https://www.
crowdstrike.com/cybersecurity-101/ransomware/history-of-ransomware/, [Last
Visit January 2024].

Isabella H. 10 common types of malware attacks and how to prevent
them. 2023, https://www.techtarget.com/searchsecurity/tip/10-common-types-
of-malware-attacks-and-how-to-prevent-them, [Last Visit January 2024].

IBM. Cost of a data breach 2022. 2023, https://www.ibm.com/reports/data-
breach, [Last Visit January 2024].

Botek A. Brno university hospital ransomware attack (2020). 2020, https:
//cyberlaw.ccdcoe.org/wiki/Brno_University_Hospital ransomware_attack_(2020),
[Last Visit January 2024].

Jon R. Ransomware attacks on hospitals have changed. 2023, https:
//www.aha.org/center/cybersecurity-and-risk-advisory-services/ransomware-
attacks-hospitals-have-changed, [Last Visit January 2024].

IBM. Ransomware protection solutions - prevent ransomware attacks. 2023,
https://www.ibm.com/ransomware, [Last Visit January 2024].

Assen Jvon der, Celdran AH, Sanchez PMS, Cedefio J, Bovet G, Pérez GM,
Stiller B. A lightweight moving target defense framework for multi-purpose mal-
ware affecting IoT devices. In: IEEE international conference on communications.
2023, p. 1-6.

Sénchez PMS, Celdran AH, Bovet G, Pérez GM, Stiller B. SpecForce: A Framework
to Secure IoT Spectrum Sensors in the Internet of Battlefield Things. IEEE
Commun Mag 2023;61:174-80.

Celdréan AH, Sénchez PMS, Castillo MA, Bovet G, Pérez GM, Stiller B. Intelligent
and behavioral-based detection of malware in IoT spectrum sensors. Int J Inf
Secur 2023;22:541-61.

Kyungroul L, Sun-Young L, Kangbin Y. Machine learning based file en-
tropy analysis for ransomware detection in backup systems. IEEE Access
2019;7:110205-15.

Arp D, Quiring E, Pendlebury F, Warnecke A, Pierazzi F, Wressnegger C,
Cavallaro L, Rieck K. Dos and don’ts of machine learning in computer security.
In: 31st USeNIX security symposium. USENIX Security 22, 2022, p. 3971-88.
Willis C. Reducing the dreaded false positives. 2021, https://www.zencos.com/
blog/next-generation-aml-false-positives, [Last Visit January 2024].

von der Assen J, Celdran AH, Luechinger J, Sanchez PMS, Bovet G, Pérez GM,
Stiller B. RansomAl: Al-powered ransomware for stealthy encryption. In: 2023
IEEE global communications conference. IEEE; 2023, p. 2578-83.

Trend Micro Research. Defending the expanding attack surface: Trend
micro 2022 midyear cybersecurity report | trend micro (US). 2025,
https://www.trendmicro.com/vinfo/us/security/research-and-analysis/threat-
reports/roundup/defending-the-expanding-attack-surface-trend-micro-2022-
midyear-cybersecurity-report.

Nolen S, Henry C, Patrick T, evin RB, K B. CryptoLock (and Drop It): Stopping
Ransomware Attacks on User Data. IEEE 36th Int Conf Distrib Comput Syst
2016;30:3-312.

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

https://www.cisa.gov/sites/default/files/2023-04/principles_approaches_for_security-by-design-default_508_0.pdf
https://www.cisa.gov/sites/default/files/2023-04/principles_approaches_for_security-by-design-default_508_0.pdf
https://www.cisa.gov/sites/default/files/2023-04/principles_approaches_for_security-by-design-default_508_0.pdf
https://www.cisa.gov/sites/default/files/2023-04/principles_approaches_for_security-by-design-default_508_0.pdf
https://www.cisa.gov/sites/default/files/2023-04/principles_approaches_for_security-by-design-default_508_0.pdf
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb2
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb2
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb2
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb2
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb2
https://www.crowdstrike.com/cybersecurity-101/ransomware/history-of-ransomware/
https://www.crowdstrike.com/cybersecurity-101/ransomware/history-of-ransomware/
https://www.crowdstrike.com/cybersecurity-101/ransomware/history-of-ransomware/
https://www.techtarget.com/searchsecurity/tip/10-common-types-of-malware-attacks-and-how-to-prevent-them
https://www.techtarget.com/searchsecurity/tip/10-common-types-of-malware-attacks-and-how-to-prevent-them
https://www.techtarget.com/searchsecurity/tip/10-common-types-of-malware-attacks-and-how-to-prevent-them
https://www.ibm.com/reports/data-breach
https://www.ibm.com/reports/data-breach
https://www.ibm.com/reports/data-breach
https://cyberlaw.ccdcoe.org/wiki/Brno_University_Hospital_ransomware_attack_(2020)
https://cyberlaw.ccdcoe.org/wiki/Brno_University_Hospital_ransomware_attack_(2020)
https://cyberlaw.ccdcoe.org/wiki/Brno_University_Hospital_ransomware_attack_(2020)
https://www.aha.org/center/cybersecurity-and-risk-advisory-services/ransomware-attacks-hospitals-have-changed
https://www.aha.org/center/cybersecurity-and-risk-advisory-services/ransomware-attacks-hospitals-have-changed
https://www.aha.org/center/cybersecurity-and-risk-advisory-services/ransomware-attacks-hospitals-have-changed
https://www.aha.org/center/cybersecurity-and-risk-advisory-services/ransomware-attacks-hospitals-have-changed
https://www.aha.org/center/cybersecurity-and-risk-advisory-services/ransomware-attacks-hospitals-have-changed
https://www.ibm.com/ransomware
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb9
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb9
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb9
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb9
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb9
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb9
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb9
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb10
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb10
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb10
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb10
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb10
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb11
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb11
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb11
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb11
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb11
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb12
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb12
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb12
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb12
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb12
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb13
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb13
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb13
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb13
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb13
https://www.zencos.com/blog/next-generation-aml-false-positives
https://www.zencos.com/blog/next-generation-aml-false-positives
https://www.zencos.com/blog/next-generation-aml-false-positives
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb15
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb15
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb15
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb15
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb15
https://www.trendmicro.com/vinfo/us/security/research-and-analysis/threat-reports/roundup/defending-the-expanding-attack-surface-trend-micro-2022-midyear-cybersecurity-report
https://www.trendmicro.com/vinfo/us/security/research-and-analysis/threat-reports/roundup/defending-the-expanding-attack-surface-trend-micro-2022-midyear-cybersecurity-report
https://www.trendmicro.com/vinfo/us/security/research-and-analysis/threat-reports/roundup/defending-the-expanding-attack-surface-trend-micro-2022-midyear-cybersecurity-report
https://www.trendmicro.com/vinfo/us/security/research-and-analysis/threat-reports/roundup/defending-the-expanding-attack-surface-trend-micro-2022-midyear-cybersecurity-report
https://www.trendmicro.com/vinfo/us/security/research-and-analysis/threat-reports/roundup/defending-the-expanding-attack-surface-trend-micro-2022-midyear-cybersecurity-report
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb17
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb17
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb17
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb17
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb17

J. von der Assen et al.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Roussev V. Data fingerprinting with similarity digests. In: Advances in digital
forensics VI: sixth IFIP WG 11.9 international conference on digital forensics,
Hong kong, China, January 4-6 (2010), revised selected papers 6. 2010, p.
207-26.

Fei T, Boyang M, Jinku L, Fengwei Z, Jipeng S, Jianfeng M. Ransomspector:
An introspection-based approach to detect crypto ransomware. Comput Secur
2020;97:101997.

Continella A, Guagnelli A, Zingaro G, Pasquale GDe, Barenghi A, Zanero S,
Maggi F. Shieldfs: A self-healing, ransomware-aware filesystem. In: Proceedings
of the 32nd annual conference on computer security applications. 2016, p.
336-47.

Amin K, Engin K. Redemption: Real-time protection against ransomware at
end-hosts. In: Research in attacks, intrusions, and defenses: 20th international
symposium. 2017, p. 98-119.

von der Assen J, Celdran AH, Sefa R, Stiller B, Bovet G. MTFS: a moving
target defense-enabled file system for malware mitigation. In: 2024 IEEE 49th
conference on local computer networks. LCN, Los Alamitos, CA, USA: IEEE
Computer Society; 2024, p. 1-6.

Fernando DW, Komninos N. FeSAD ransomware detection framework with ma-
chine learning using adaption to concept drift. Comput Secur 2024;137:103629.
Gulmez S, Gorgulu Kakisim I. XRan: Explainable deep learning-based ransomware
detection using dynamic analysis. Comput Secur 2024;139:103703.
Almashhadani AO, Kaiiali M, Sezer S, O’Kane P. A multi-classifier network-based
crypto ransomware detection system: A case study of locky ransomware. IEEE
Access 2019;7:47053-67.

Arslan RS. Identify type of android malware with machine learning based
ensemble model. In: 2021 5th international symposium on multidisciplinary
studies and innovative technologies. ISMSIT, Vol. 62, 2021, p. 8-632.

Chesti IA, Humayun M, Sama NU, Jhanjhi N and. Evolution, mitigation, and
prevention of ransomware. In: 2020 2nd international conference on computer
and information sciences. ICCIS, 2020, p. 1-6.

Alwashali AAMA, Abd Rahman NA, Ismail N. A survey of ransomware as a
service (raas) and methods to mitigate the attack. In: 2021 14th international
conference on developments in eSystems engineering. DeSE, 2021, p. 92-6.
Anand CS, Shanker R. Advancing crypto ransomware with multi level extortion:
A peril to critical infrastructure. In: 2023 2nd international conference for
innovation in technology. INOCON, 2023, p. 1-5.

Sanchez Sanchez PM, Huertas Celdrdn A, Buendia Rubio JR, Bovet G,
Martinez Pérez G. Robust federated learning for execution time-based device
model identification under label-flipping attack. Clust Comput 2023;1-12.
libfuse. Libfuse. 2024, https://github.com/libfuse/libfuse, [Last Visit January
2024].

hanwen. Go-fuse. 2023, https://github.com/hanwen/go-fuse, [Last Visit January
2024].

Cen M, Jiang F, Qin X, Jiang Q, Doss R. Ransomware early detection: A survey.
Comput Netw 2024;239:110138.

Celdran AH, von der Assen J, Feng C, Padovan S, Bovet G, Stiller B. Next
generation of ai-based ransomware. In: 2024 IEEE global communications
conference: communication & information systems security. Cape Town, South
Africa.: IEEE; 2024, p. 1221-6.

The Apache Software Foundation. Apache jmeter. 2024, https://jmeter.apache.
org/, [Last Visit January 2024].

Garfinkel S, Farrell P, Roussev V, Dinolt G. Bringing Science to Digital Forensics
with Standardized Forensic Corpora. Digit Investig 2009;6:2-11.

Cyber-Tracer. Guardfs. 2025, https://github.com/Cyber-Tracer/guardfs, [Last
Visit February 2025].

Géron A. Hands-on machine learning with scikit-learn, keras, and tensorFlow:
concepts, tools, and techniques to build intelligent systems. O’Reilly Media;
2019.

Fraunhofer-Institut fiir Kommunikation, Informationsverarbeitung und Ergonomie
FKIE. Babuk. 2021, https://malpedia.caad.fkie.fraunhofer.de/details/win.babuk,
[Last Visit January 2024].

abusech. MalwareBazaar. 2024, https://bazaar.abuse.ch/, [Last Visit January
2024].

Huertas Celdrdn A, Sanchez Séanchez PM, Assen Jvon der, Shushack D,
Bovet GAngel Luis Perales Gémez, Martinez Pérez G, Stiller B. Behavioral
fingerprinting to detect ransomware in resource-constrained devices. Comput
Secur 2023;135:103510.

Lima JO. Gocry. 2017, https://github.com/jeffotoni/gocry, [Last Visit January
2024].

Drakatos P. JavaRansomware. 2017, https://github.com/PanagiotisDrakatos/
JavaRansomware, [Last Visit January 2024].

Allen Z. Lollocker. 2015, https://github.com/zmallen/lollocker, [Last Visit
January 2024].

BlackBerry. The curious case of Monti ransomware: A real-world dop-
pelganger. 2022, https://blogs.blackberry.com/en/2022/09/the-curious-case-of-
monti-ransomware-a-real-world-doppelganger, [Last Visit January 2024].
jimmy 1y00. JavaRansomware. 2020, https://github.com/jimmy-ly00/
Ransomware-PoC, [Last Visit January 2024].

14

Journal of Information Security and Applications 93 (2025) 104078

Jan von der Assen received his MSc degree in Informatics
from the University of Zurich. Currently, he is pursuing his
Doctoral Degree under the supervision of Prof. Dr. Burkhard
Stiller at the Communication Systems Group, University of
Zurich. His research interest lies at the intersection be-
tween risk management and the mitigation of cyber threats.
Contact him at vonderasssen@ifi.uzh.ch.

Chao Feng received the MSc degree in Informatics from
the University of Zurich, Switzerland. He is currently pur-
suing his Ph.D. in computer science at the Communication
Systems Group, Department of Informatics at the University
of Zurich. His scientific interests include IoT, cybersecurity,
data privacy, machine learning, and computer networks.
Contact him at cfeng@ifi.uzh.ch.

Alberto Huertas Celdrdn is a senior researcher at the
Communication Systems Group CSG, Department of Infor-
matics Ifl, University of Zurich UZH. He received his Ph.D.
degree in Computer Science from the University of Murcia,
Spain. His scientific interests include cybersecurity, machine
and deep learning, continuous authentication, and computer
networks. Contact him at huertas@ifi.uzh.ch.

Roébert Oles holds a Bachelor’s degree in Economics and
a Master’s in Computer Science. Previously, he worked
as a data scientist with a focus on large-scale geospatial
projects. Robert currently works as a software engineer. His
interests lie in distributed systems, software engineering,
and predictive data analysis. Contact him at olesrobertl @
gmail.com.

Gérome Bovet is the head of data science for the Swiss De-
partment of Defense. He received his Ph.D. in networks and
computer systems from Telecom ParisTech, France. His work
focuses on Machine and Deep Learning, with an emphasis on
anomaly detection, adversarial and collaborative learning in
IoT sensors. Contact him at gerome.bovet@armasuisse.ch.

Burkhard Stiller chairs the Communication Systems Group
CSG, Department of Informatics Ifl, University of Ziirich
UZH, as a Full Professor. He received the MSc and Ph.D. de-
grees from the University of Karlsruhe, Germany. His main
research interests include fully decentralized systems, net-
work and service management, IoT, and telecommunication
economics. Contact him at stiller@ifi.uzh.ch.

http://refhub.elsevier.com/S2214-2126(25)00115-2/sb18
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb18
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb18
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb18
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb18
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb18
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb18
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb19
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb19
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb19
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb19
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb19
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb20
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb20
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb20
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb20
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb20
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb20
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb20
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb21
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb21
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb21
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb21
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb21
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb22
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb22
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb22
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb22
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb22
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb22
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb22
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb23
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb23
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb23
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb24
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb24
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb24
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb25
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb25
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb25
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb25
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb25
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb26
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb26
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb26
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb26
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb26
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb27
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb27
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb27
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb27
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb27
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb28
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb28
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb28
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb28
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb28
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb29
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb29
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb29
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb29
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb29
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb30
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb30
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb30
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb30
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb30
https://github.com/libfuse/libfuse
https://github.com/hanwen/go-fuse
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb33
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb33
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb33
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb34
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb34
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb34
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb34
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb34
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb34
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb34
https://jmeter.apache.org/
https://jmeter.apache.org/
https://jmeter.apache.org/
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb36
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb36
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb36
https://github.com/Cyber-Tracer/guardfs
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb38
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb38
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb38
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb38
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb38
https://malpedia.caad.fkie.fraunhofer.de/details/win.babuk
https://bazaar.abuse.ch/
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb41
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb41
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb41
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb41
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb41
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb41
http://refhub.elsevier.com/S2214-2126(25)00115-2/sb41
https://github.com/jeffotoni/gocry
https://github.com/PanagiotisDrakatos/JavaRansomware
https://github.com/PanagiotisDrakatos/JavaRansomware
https://github.com/PanagiotisDrakatos/JavaRansomware
https://github.com/zmallen/lollocker
https://blogs.blackberry.com/en/2022/09/the-curious-case-of-monti-ransomware-a-real-world-doppelganger
https://blogs.blackberry.com/en/2022/09/the-curious-case-of-monti-ransomware-a-real-world-doppelganger
https://blogs.blackberry.com/en/2022/09/the-curious-case-of-monti-ransomware-a-real-world-doppelganger
https://github.com/jimmy-ly00/Ransomware-PoC
https://github.com/jimmy-ly00/Ransomware-PoC
https://github.com/jimmy-ly00/Ransomware-PoC
mailto:vonderasssen@ifi.uzh.ch
mailto:cfeng@ifi.uzh.ch
mailto:huertas@ifi.uzh.ch
mailto:olesrobert1@gmail.com
mailto:olesrobert1@gmail.com
mailto:gerome.bovet@armasuisse.ch
mailto:stiller@ifi.uzh.ch

	
	Introduction
	Related Work
	Ransomware Threat Model
	Framework Design
	Architecture
	File System Plane
	Detection Plane

	Framework Implementation
	File System Plane
	Defense 1: Killing Processes (PKILL)
	Defense 2: Obfuscating Responses (OBF)
	Defense 3: Delaying and Obfuscating Responses (DEL+OBF)
	Defense 4: Tracking Processes (TRACK)
	Detection Plane

	Validation Scenarios
	Single-board Computing
	Virtualized Testbed
	Malware Samples

	Experiments
	Evaluating Test Datasets
	Classifying Unseen Ransomware
	Classifying Known Ransomware

	Evaluating after Deployment
	End-to-end Experiment
	Defense Effectiveness
	Resource Efficiency
	Usability in Benign Workloads

	Comparison with Related Work
	Limitations

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

