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 A B S T R A C T

Although ransomware has received broad attention in media and research, this evolving threat vector still 
poses a systematic threat. Related literature has explored their detection using various approaches leveraging 
Machine and Deep Learning. While these approaches are effective in detecting malware, they do not answer 
how to use this intelligence to protect against threats, raising concerns about their applicability in a hostile 
environment. Solutions that focus on mitigation rarely explore how to prevent and not just alert or halt its 
execution, especially when considering Linux-based samples. This paper presents GuardFS, a file system-based 
approach to investigate the integration of detection and mitigation of ransomware. Using a bespoke overlay 
file system, data is extracted before files are accessed. Models trained on this data are used by three novel 
defense configurations that obfuscate, delay, or track access to the file system. The experiments on GuardFS test 
the configurations in a reactive setting. The results demonstrate that although data loss cannot be completely 
prevented, it can be significantly reduced. Usability and performance analysis demonstrate that the defense 
effectiveness of the configurations relates to their impact on resource consumption and usability.
. Introduction

Digitalization has become pervasive in today’s business landscape. 
he technological advancements that uphold today’s enterprises have 
rought many advantages, such as reduced operational costs, improved 
ime-to-market strategies, and global access to suppliers and customers. 
owever, this also made organizations vulnerable to cybersecurity 
reaches. As past instances have shown, the impact of successful 
reaches can take many forms, ranging from economic damage to the 
ndangerment of personal health [1,2].
Within the lively threat landscape, many attack vectors are em-

loyed. One threat that has been evolving over multiple decades of pro-
iferation is ransomware. Ransomware distributed over floppy drives 
as been mentioned as early as the 1980s [3]. Nevertheless, ran-
omware was not a widely discussed attack until the emergence of 
igital payment solutions in the 2010s. Nowadays, even the greater 
ublic is aware of this threat vector. In terms of numbers, ransomware 
as been accounted to attribute for up to 20% of all cybercrime [4]. 
conomically speaking, the average cost of a ransomware attack has 
een estimated in the range of 1 to 8 Million USD [5]. While ran-
omware can be seen as a business-endangering attack, there are even 
pecific breaches where the unavailability of ransomware has led to 

∗ Corresponding author.
E-mail address: vonderassen@ifi.uzh.ch (J. von der Assen).

even more severe damages. For example, in the case of the Brno Uni-
versity Hospital in the Czech Republic, the deployment of ransomware 
led to the redirection of patients and the inability to conduct urgent 
surgical interventions [6,7].

The constant evolution of ransomware attacks, in terms of attack 
behavior and sophistication, has stimulated research on how to defend 
against it. Nowadays, thousands of papers address different areas of the 
cyber kill chain of ransomware. For example, industry leaders such as 
IBM [8] name threat detection as one of the main pillars of defense. 
Here, AI-driven solutions are vital to detect the constantly chang-
ing attack behavior [8]. Indeed, numerous papers have demonstrated 
high accuracy in detecting ransomware, many of them achieving 99% 
accuracy [9–12].

Looking at the broad coverage of ransomware detection in current 
research, one could reason that the ransomware threat can be disre-
garded in light of intelligent intrusion detection systems. However, 
from an incident response perspective, the current state of the art 
presents multiple challenges. First, even though ransomware is an im-
portant threat, on a system level, ransomware is rare to be encountered 
since the large majority of runtime would be spent in a benign state. 
ttps://doi.org/10.1016/j.jisa.2025.104078

vailable online 24 June 2025 
214-2126/© 2025 The Authors. Published by Elsevier Ltd. This is an open access ar
ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/jisa
https://www.elsevier.com/locate/jisa
https://orcid.org/0000-0002-0591-8887
https://orcid.org/0000-0002-0672-1090
https://orcid.org/0000-0001-7125-1710
https://orcid.org/0000-0002-4534-3483
https://orcid.org/0000-0002-7461-7463
mailto:vonderassen@ifi.uzh.ch
https://doi.org/10.1016/j.jisa.2025.104078
https://doi.org/10.1016/j.jisa.2025.104078
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jisa.2025.104078&domain=pdf
http://creativecommons.org/licenses/by/4.0/


J. von der Assen et al. Journal of Information Security and Applications 93 (2025) 104078 
Due to this low base rate, even a high accuracy in detecting ransomware 
may lead to many false positives [13], which must be resolved through 
incident response. This is costly since a single false alert requires up to 
30 min of active human investigation [14].

Secondly, ransomware defense is mainly centered around recov-
ery [8]. As such, most systems are not resilient enough to prevent 
ransomware but instead focus on recovering data. In general, research 
in intrusion detection does not always investigate or discuss the actual 
implications of the defense that it enables [13]. Therefore, there is a 
clear opportunity to investigate the usefulness of AI-driven detection 
in conjunction with an integrated, reactive defense that can mitigate 
ransomware in a resilient way while demonstrating the portability of 
the models and their application in realistic settings, including novel 
AI-based evasion methods [15].

To address the previously mentioned challenges, the work at hand 
presents the following contributions:

• The design and implementation of an integrated mitigation frame-
work for ransomware in Linux-based systems, which has seen a 
strong rise (e.g., an increase of 75% the first half of 2022) of 
ransomware attacks. The emergence of these Linux-based ran-
somware samples targeting popular hypervisors such as ESXi may 
indicate a relevant attack path [16]. The proposed framework 
uses the file system abstraction present in the operating system as 
a target level to implement this functionality. Thus, a file system 
composed of an overlay and underlay file system is presented. The 
detection uses file system-related system calls to extract data on a 
process level. By processing a variety of features extracted during 
a pre-defined duration, individual processes can be classified as 
malicious or benign. For mitigation, several novel and baseline 
defense strategies, including deceptive and defensive techniques, 
are designed for various workloads that are differentiated by data 
sensitivity and latency criticality.

• The instantiation and deployment of the framework on a Rasp-
berry Pi acting as an FTP server affected by three ransomware 
samples. Here, the detection system’s delay and accuracy perfor-
mance are assessed when presented with known and unknown 
malware while running a benign workload in parallel.

• To measure the effectiveness (i.e., security guarantees) and ef-
ficiency (i.e., the resource consumption), a pool of experiments 
have been performed. Here, a virtualized testbed using a fast 
storage underlay system is used to measure the usefulness of 
reactive defense from a mitigation perspective. Specifically, eight 
ransomware samples were retrieved and tested against seven 
different defense scenarios. The resulting 48 experiments assess 
the number of bytes lost and the resource consumption when de-
ploying each ransomware. Several experiments are conducted to 
assess the usefulness of the different defense strategies when run-
ning benign workloads, which are oriented towards specific use 
cases (e.g., server administration, sensor persistence). Based on 
this analysis, recommendations are made regarding selecting a de-
fense strategy given the data criticality and latency requirements 
of the benign workload.

The remainder of this work is structured as follows. Section 2 
reviews related work dealing with dynamic ransomware detection sys-
tems. While Section 4 presents the design of the proposed framework, 
Section 5 shows its implementation details. Then, Section 6 introduces 
the testbeds and ransomware samples used to validate the frame-
work. Section 7 evaluates the framework detection performance and 
consumption of resources in the previous scenario. Furthermore, the 
applicability of the defense methods against different sets of require-
ments is analyzed. Finally, Section 8 presents conclusions of this work 
and outlines future areas of research in ransomware mitigation.
2 
2. Related work

This section reviews the literature combining ransomware detection 
and mitigation. Neglecting the adversarial context of detection systems 
is a common pitfall [13]. Thus, ransomware detection systems are 
analyzed from a defense perspective and discussed based on their 
applicability. Furthermore, the review analyzes the design and scenario 
of related studies; since the results are established on concrete sce-
narios and malware samples, a direct quantitative comparison is not 
presented, since the underlying factors are not comparable.

Cryptolock [17] safeguards against Windows-based Ransomware by 
warning users when there is a possibility of encryption occurring on the 
system. The system assesses each process through a reputation score, 
which indicates the level of suspicion associated with that process over 
time. Additionally, the system employs a similarity hash function called
sdhash [18] to gauge the likeness between the original version of a 
file and its updated version after a write operation. Since the score is 
computed after the file is written, data loss prevention is only realistic 
after the detection duration.

Another approach that leverages the notion of entropy is presented 
by [12]. In their approach, the ransomware detection system computes 
the entropy based on the file name suffix. For comparison, a backup 
system is used to compute and compare the entropy of user data. In an 
optional step, multiple Machine Learning (ML) models are available if 
the system load allows their application in terms of system resources. 
The authors stress that this computation has to be applied by cate-
gorizing data based on the types of files that are accessed. While the 
authors present highly promising results with respect to the detection 
of malware, they do not directly assess the effectiveness or efficiency 
in a real-world defense scenario. Furthermore, the authors only outline 
that file recovery is a conceptually compatible strategy.

Since many ransomware instances not only encrypt data but also 
communicate over the network (e.g., for key exchange, operational 
control), RansomSpector [19] monitors both the file system and network 
traffic to provide improved accuracy. The proposed monitoring compo-
nent captures the system calls via a hypervisor and checks whether the 
system call is related to the file system (e.g., OPEN, LINK, WRITE) or 
network activity (e.g., CONNECT, BIND). If it is, the system call is sent 
to the Detector, which then performs pattern matching. If both file sys-
tem and network operations match the malicious pattern, the process is 
identified as malicious. RansomSpector has been evaluated on Windows 
7 to establish the detection rate and performance consumption, not the 
defense effectiveness. Due to the alert-based mitigation strategy, files 
may not be preserved. Thus, substantial management efforts may need 
to be dedicated to resolving false and true positives (i.e., file recovery).

Redemption [21] stands out as a newly proposed system capable of 
detecting and preventing ransomware. It achieves this by intercepting 
write operations, redirecting them to mirrored files, and preserving the 
original files. The implemented kernel intercepts file system operations 
calculates entropy ratios, utilizes File Content Overwrite, and consid-
ers access frequency to identify suspicious activity. To evaluate their 
system, Windows was chosen as the only target. Using this testbed, 
they assessed the detection performance and the resource overhead 
incurred by the system. Furthermore, they conducted usability exper-
iments. While the results are promising, it is not clear whether the 
defense metrics were measured or whether they were inferred from the 
mitigation performance. Furthermore, [15] demonstrated that explicit 
feedback to ransomware can be used by an adaptive attacker since the 
solution is not deceptive.

ShieldFS [20] is a self-healing file system that adds ransomware 
protection capabilities to the Windows operating system. For the data 
collection, an I/O file system sniffer has been developed that incorpo-
rates additional information, namely entropy, process identifier (PID), 
and timestamp. When trained classifiers report malicious behavior, 
the file system discards written copies and terminates the process. To 
assess the effectiveness of this approach, virtual machines were used 
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Table 1
 Categorization of surveyed related work.
 Work Mitigation Prevent Detect Platform Evaluation metrics Data collection  
 [17] 2016 Alerts, Process termination 7 ✓ Windows D | M User data  
 [20] 2016 Shadow drive Buffering, Discard writes ✓ ✓ Windows D | M | P | U IRPLogger  
 [21] 2017 Buffers, Termination ✓ ✓ Windows D | P | U I/O System  
 [12] 2019 Backup recovery 7 ✓ Backup systems D 7  
 [19] 2020 User notification 7 ✓ KVM/Windows D System calls  
 [9] 2023 Trap directories, File renaming 7 ✓ Linux D| P Performance metrics 
 [22] 2023 MTD: Trapping, Delays 7 7 Linux M | P Performance metrics 
 [23] 2024 Isolation, Process termination 7 ✓ Windows sandbox D Windows API calls  
 [24] 2024 Explainable alerts 7 ✓ Windows Sandbox D | P Windows API calls  
 This Process termination, Delaying ✓ ✓ Linux D | M | P | U File system calls  
 Deceptive Modifications, Tracking  
D = Detection evaluation, M = Mitigation evaluation, P = Performance analysis, U = Usability impact analysis.
for experimental deployment. Aside from assessing the classification, 
it was assessed how well the system can recover the files. Aside from 
promising detection and prevention results, several limitations are 
present. First, the system was only assessed for the Windows platform. 
Furthermore, DoS attacks could be executed on the buffers, and the 
termination signal could be used for adaptation [15].

[9] presented an ML-based detection system using performance 
metrics gathered from the Linux kernel. Among other malware, ran-
somware was identified with high accuracy. Different Moving Target 
Defense (MTD) techniques can be deployed after successful detection. 
As shown during experiments with real malware, these techniques 
allow the ransomware to be terminated at some point. Nevertheless, 
reactive deployments lead to data loss, while proactive ones were 
considered wasteful in terms of resources.

Novel approaches in ransomware detection acknowledge the evo-
lutionary nature of ransomware, hence the necessity for a detection 
system to keep up with the changing nature of ransomware. FeSAD, 
a recently proposed framework, was demonstrated to apply binary 
classification for this context successfully. While the work confirms 
the effectiveness of using Windows API calls and reasons about the 
applicability of potential mechanisms such as system isolation or task 
termination, no preventative measures are proposed [23].

[22] provides a virtualization of the MTD-based defense from [9], 
leading to multiple defense methods. First, the recursive (i.e., infinite) 
directory tree defense is implemented in the file system, where a direc-
tory listing is extended by a specific directory. If this directory is listed, 
the directory itself is returned, leading to an infinite trap if one were 
to apply a depth-first directory traversal. Furthermore, operations can 
be cheaply delayed, and it is possible to obfuscate the file suffixes and 
the identifying magic bytes. The effectiveness is analyzed in a reactive 
setting, showing that multiple samples can be prevented. Importantly, 
this relies on the traversal strategy of the samples employed. Moreover, 
no assessment of the impact on benign workloads has been performed.

Arguing that existing models for ransomware detection lack ex-
plainability, [24] propose XRan, a Convolutional Neural Network-based 
model. The authors leverage multiple dynamic and static sources (e.g.,
Windows API calls, linked libraries) to achieve local and global explain-
ability. While the authors add an effective and explainable detection 
method to the growing body of literature, the effectiveness of the 
approach in a defense scenario is not tested, and no discussion on 
portability to other platforms is present.

Table  1 summarizes the previously analyzed contributions in terms 
of their mitigation, prevention, and detection strategies, the platform 
they target, how data is being collected, and the approach to evaluating 
the work. In conclusion, despite the advances in OS-level ransomware 
detection and mitigation, the following five challenges are still open:

(ch1) Only limited experience is drawn from platforms targeting Linux-
based operating systems. It is not only unclear how well ap-
proaches can be ported to Linux-based systems due to the lack 
of experiments; assumptions of these approaches may not be 
aligned with common workloads (e.g., the presence of a user to 
warn, the ability to use shadow drives).
3 
(ch2) Ransomware mitigation approaches informed by a reactive de-
ployment scenario terminate the encryption behavior. However, 
the understanding of how to stop and prevent ransomware dur-
ing execution is sparsely covered.

(ch3) The usefulness of detection systems is not discussed in the con-
text of an actual defense scenario. Thus, not only the develop-
ment of novel detection methods, but their usefulness in reactive 
defense is to be investigated.

(ch4) As a fourth challenge, all ransomware mitigation approaches 
provide feedback to the attacker (e.g., file recovery, process 
termination). As showcased in [15], this threat model may not 
be realistic anymore.

(ch5) Evaluating these defense approaches is based on simulation 
results without covering real-world ransomware samples.

In summary, there is no work applying a reactive ransomware de-
fense system that deceptively prevents ransomware on Linux-based 
systems, especially when considering a broad set of real-world samples 
in realistic execution settings.

3. Ransomware threat model

Although the term ransomware is often used unanimously during 
threat modeling, there exist various flavors. The most aggressive ran-
somware variant is crypto-ransomware, which traverses the file system 
of the target and potentially mapped file systems (e.g., NFS, Samba 
shares). For each of the files of interest (usually a subset of all files), 
an encrypted copy is produced in lieu of the original file. Thus, the 
availability of the original data is threatened, for at least the time it 
takes to restore the data from a backup. In the worst case, all data can 
be lost if victims are not able to retrieve the encryption key [25].

When the key cannot be retrieved by means of law enforcement, 
victims consider the payment of the ransom that is demanded by 
the attackers, although it is not clear if the key is actually released. 
Without actually encrypting data, scareware tries to trick users into 
believing that their data has been compromised, although it may not 
have actually been breached by the attackers. In that sense, one could 
reason that this threat vector is less impactful [26].

More similar to crypto-ransomware is locker malware, which tries 
to make data or functional assets unavailable by other means than file 
encryption. For example, a specific lock screen may be installed by the 
malware to lock the user out of the device [27].

Ransomware-as-a-service cannot necessarily be differentiated by its 
damage or breach function but rather describes the business model and 
degree of sophistication of the threat actors. Here, a ransomware strain 
can be bought from the attackers, which may also offer to take care of 
other aspects such as payment processing [28].

Finally, extortion-based ransomware aims to increase the chances 
of paying the ransom. Here, one or more of the previously described 
attack vectors (e.g., file encryption or deletion) are combined with the 
leakage of sensitive data so that victims can be pressured into paying 
the ransom to avoid publication of the data [29].
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Fig. 1. File system-based framework architecture.
1

With all the previously defined damage methods, a wide array of 
infection methods are possible. For example, spear phishing is a com-
mon approach the gain initial access to the victim’s infrastructure [29]. 
For the threat model considered in this work, the infection method is 
not ignored. Thus, it is assumed that the ransomware has user-space 
access to a Linux system and that it has sufficiently elevated privileges 
to be able to read, write, and delete files. Furthermore, it is assumed 
that the attacker can execute binaries and scripts on the host. With 
respect to the damage function, crypto-ransomware is considered due 
to its aggressive nature and its prevalence in conjunction with other 
behaviors.

4. Framework design

This section presents a framework for integrated detection and 
mitigation of ransomware in autonomous Linux-based devices by ap-
plying both aspects from a file system abstraction level. More in detail, 
it shows the details of the framework architecture and that aims to 
overcome the challenges ch1 to ch2 outlined in Section 2.

4.1. Architecture

To defend against the previously described ransomware attack 
model on Linux-based devices (ch1), the framework shown in Fig.  1 
is proposed. The primary motivation behind the design is the evidence 
provided in [22], attesting to a file system-based defense. Due to its 
proactive defense, it could hypothetically act earlier but with less in-
sight on the malicious behavior (e.g., working directory of the process, 
process name). Thus, several files were lost in [22], motivating the 
need for a reactive framework, where additional information would 
be available. The framework is designed in a distributed manner, with 
two planes separating concerns and responsibilities. This allows com-
putationally weaker devices (e.g., resource-constrained devices, mobile 
devices) to implement the defense and data creation components, with 
an external node running all components related to the detection. 
However, a computationally capable device could run all components 
in the same execution environment. As presented in the architecture, 
the following two planes provide two functions.

1. File System Plane. It is a fully functional overlay file system in 
charge of servicing any file system-related system call. The be-
havior of the call handler depends on the defense configuration. 
Secondly, the file system acts as a data collector and transmitter 
for the detection system.

2. Detection Plane. It provides intelligence in the device for reactive 
mitigation. Input data can be received and collected from the 
file system plane. Due to its positioning in user space, additional 
data sources can be integrated.
4 
4.1.1. File system plane
The most important task of the file system plane is to act, as the 

name implies, as a file system. Since it is conceptualized as an overlay 
file system, this means that it will receive system calls from an abstract 
representation of a file system (i.e., the virtual file system running in 
the kernel). The overlay file system must handle the system call and 
return the appropriate response to the calling process. For example, 
when a hypothetical process writes to a file, the following system call 
is invoked in the overlay file system.
s s i z e _ t wri te ( i n t fd , const void buf [ . count ] , s i z e _ t count

) ;

Now, the overlay file system can invoke the same system call on the
underlay file system, which can be any file system mounted on the Linux 
machine that operates on the underlying storage. To do so, it sends the 
same system call, passing the file handle fd, buffer buf, and a number 
of bytes written count. Finally, it returns the count back.

With this behavior, the overlay file system forwards calls to the 
file system, which is simply the existing file system implementation 
in a Linux operating system. However, the actual execution of the 
call would depend on the defense reconfiguration. This configuration 
describes how to intercept system calls. For example, one configuration 
could involve looking up the calling process by process identifier (PID) 
and ignoring the system call. To design a defense configuration, it is 
important to consider the ransomware threat model. For example, for 
ransomware that overwrites the target file, the write() system call 
behavior can be modified. However, other crypto-ransomware will sim-
ply create a new file and delete the target file — thus, the unlink()
system call is considered. The actual behavior of the defense can be 
made more granular, depending on the output of the detection system. 
In summary, this enables stealthy defense approaches (ch3) beyond 
simply terminating the process (ch2).

The second task of the file system is to provide data to the Detection 
Plane. This is especially critical when mitigation and detection should 
be aligned in a way that enables not only the detection of damage 
done but also the prevention thereof. For example, a detection system 
could easily detect encrypted files based on resource consumption (i.e.,
ongoing encryption) [9] or based on activity on the files in the normal 
file system. However, this would detect damages already done to the 
system. Thus, the (overlay) file system presents a unique opportunity, 
as the system calls received and the data passed in them is ‘‘the last 
mile’’ before the damage is written to disk. Nevertheless, data collection 
is optional, and proactive defenses could be implemented, too.

There are numerous system calls from which data can be captured. 
Thus, the first dimension is the system call type. Similarly, many 
system calls are parametrized by flags, which can be captured. Next 
are the file paths and file descriptors. Here, the file suffix can be an 
important dimension since ransomware differs by the subset of file 
types they target [22]. It is important to consider that only calls such 
as open() give access to the file path, whereas others use the internal 
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representation of a descriptor. Another important dimension is buffers, 
such as the ones passed by write() and read(). Processing buffers 
can lead to high resource consumption. One approach is to transform 
it into the entropy, measuring the randomness. For example, Eq.  (1) 
computes the Shannon Entropy. 

𝐻 = −𝐾
𝑚
∑

𝑖=1
𝑝𝑖𝑙𝑜𝑔(𝑝𝑖) (1)

4.1.2. Detection plane
The Detection Plane provides all necessary capabilities to imple-

ment ML/DL-driven reactivity to reconfigure defenses. Thus, this plane 
houses all data analysis-related aspects, starting from data acquisition to 
the actual model evaluation. As presented in Fig.  1, the model training 
and algorithm selection steps are only considered during the implemen-
tation (or its continuous refinement) of the proposed platform.

The main consideration in the Data Acquisition step is how data can 
be pulled from the file system. Thus, the business logic is informed by 
the behavior of the data producer. For example, if logs are continuously 
provided by the file system plane in a stream, they should be consumed 
in a stream-based manner. If logs are only written periodically, regular 
checks are performed. Logs from a file system, especially based on 
system calls, can contain many elements per slice. Furthermore, the size 
of the logs can vary greatly, with some logs potentially being empty 
when no process accesses the file system during the monitoring cycle.

This synchronization and preliminary buffering must be considered 
in the Data Curation step, along with the selection of features and the 
processing of computed features. At this stage, data from the file system 
can be correlated with other data. For example, for each process that 
was involved with file system activity, data about its resource con-
sumption can be extracted from the process monitor. For example, [30] 
presents an overview of kernel events and performance metrics that 
can be extracted. Here, many pitfalls must be considered, as outlined 
by [13]. For example, spurious correlation between the features and 
the class it represents must be avoided. To finalize the creation of a 
dataset, the Dataset Generation step persists the data and splits it into a 
training and evaluation dataset.

During the instantiation of the framework, the next step is the
Algorithm Selection, where different algorithms for the classification of 
the data are evaluated. The most appropriate one is selected for the
Model Training step, where the data is fed to the algorithm, producing 
one or more models based on the hyperparameters defined. Finally, the
Model Testing stage applies to the creation of the framework and to 
its continuous operation. For the latter, new vectors are continuously 
evaluated to produce a classification of the file system activity. Impor-
tantly, the output must be published to inform a closed loop between 
the two planes. After all, successful detection of malicious behavior is 
only effective if the right action is taken in a time-effective manner 
(ch3). Thus, the classification results are published, at least for results 
that evaluate to malicious behavior. For example, the identifiers of 
malicious processes can be written to a file log, queue, or socket so 
that the file system plane can reconfigure the defense behavior.

5. Framework implementation

With the conceptual elements in the framework introduced, this 
section presents a specific instantiation of the framework, consisting 
of an overlay file system with multiple defense configurations and an 
ML-based binary classifier for reactive deployment of the configura-
tions. The purpose of the prototype is to illustrate the viability of the 
framework and the usefulness of reactive mitigation by using real-world 
samples during testing (ch5 and ch3). Here, [22] stands as a motivating 
counter-example that provided a proactive mitigation approach using 
file system semantics.
5 
5.1. File system plane

The file system plane is implemented as an overlay file system by 
leveraging bindings to the FUSE [31] library from the Go programming 
language [32]. Essentially, each system call destined to the subtree of 
the file system under the mount point can be hooked into, effectively 
overwriting the normal behavior. Thus, the overlay system is achieved 
by receiving system calls, adapting the parameters passed, and issuing a 
new system call. For example, in an open() system call, the file path 
of the file to open or create is passed. Here, the path is changed to 
reflect the path in the underlay, a new open() system call is executed, 
and the results are passed to the caller.

To gather data about malicious and benign processes, a separate 
thread collects data for a number of seconds before writing it to an out-
put stream that also persists in the underlay file system. Three different 
intervals (i.e., 1, 5, and 10 s) were evaluated for buffering. In theory, 
longer buffers should present richer behavioral data [33] but at the 
cost of delayed detection and higher memory constraints. For example, 
in [22], it was demonstrated that fast samples were able to encrypt 
at a rate of ≈14 MB/s. Hence, ten seconds is used as an upper bound 
since already a proactive approach could potentially lead to lower 
losses. The lower bound of one second had been established once the 
framework was fully implemented, highlighting that lower delays led 
to a high computational load. Based on a preliminary analysis of three 
ransomware samples, only the read() and write() operations and 
their parameters were considered for persistence. Due to the high num-
ber of system calls produced by the aggressive ransomware behavior, 
the following dimensions are recorded: (i) the process identifier (PID) is 
recorded to distinguish between processes. For write() calls, (ii) the 
Shannon Entropy of the buffers passed is calculated. Furthermore, (iii)
a timestamp is recorded so that additional metrics can be computed. 
Furthermore, (iv) the file path, including the file name and suffix, are 
recorded. Detection systems, such as the one experimentally used in 
Section 5.6, can use the path information as a feature or, as in this 
case, to adapt the data pre-processing.

Besides collecting data and routing system calls, the file system 
plane implements four different defense configurations that can be 
reactively and selectively applied. This means that two processes could 
access (e.g., write to or read from) the same file. However, only the 
benign one will be forwarded to the underlay, while the malicious one 
will be deceived or mitigated.

5.2. Defense 1: Killing processes (PKILL)

The first technique is the conceptually simplest one, which has 
already been explored in the literature [17,23]. As such, it should 
also serve as a comparison baseline for other defense configurations. 
Furthermore, it is implemented in the overlay file system to add the 
novel element of delaying any modifying system calls until a time 
𝑇  has expired. This duration shall allow enough time to gather data 
about the process, classify its behavior, and decide how to react. As 
presented in Fig.  2, PKILL invokes a process termination through the 
operating system based on the PID if the file system receives the signal 
of it being malicious. Any explicitly benign behavior is forwarded to 
the underlying file system while returning this response to the calling 
process of the system call.

5.3. Defense 2: Obfuscating responses (OBF)

While the previous defense may be successful in deterring certain 
types of ransomware, it inadvertently shows weaknesses. First, it does 
not protect against upcoming damage, and a controller could redeploy 
the malware. Secondly, as shown in a recent research work [15], a 
limitation of this type of defense is that it presents an explicit trigger 
to the attacker. Thus, an attacker will be able to learn precisely under 
which circumstances the ransomware was detected, potentially leading 
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Fig. 2. PKILL defense.

Fig. 3. OBF defense.

to an adaptation of the behavior. For example, as demonstrated in [34], 
an RL-based agent could learn an optimal attack policy based on 
connection loss (i.e., being detected) and current action (e.g., encryption 
rate, algorithm). Thus, OBF presents a defense that does not give an 
attacker explicit feedback while protecting against loss of data.

As shown in Fig.  3 any operations of unknown processes are imme-
diately forwarded to the underlay systems. During each time period 𝑇 , 
data is collected about all processes. After evaluating the current buffer 
of logs, benign processes are continuously given access to the underlay 
file system. However, for malicious processes, the PID is cached in the 
file system, and any damage-inflicting system calls are decepted. Thus, 
a read() system call is still granted; however, write(), rename(), 
and unlink() (i.e., deleting a file or directory) are ignored in a special 
way. No actual system call to the underlay is executed. However, a 
falsified response is crafted to let the caller believe it was executed. 
For example, a write() system call passes the file descriptor and a buffer. 
The caller expects a single number that indicates how many of the bytes 
in the buffer were written. Thus, this defense configuration heuristically 
waits a small amount of time and then responds with the length of the 
input buffer, leading the caller to believe that all data was successfully 
written. In future iteration cycles, each behavior is newly evaluated.

5.4. Defense 3: Delaying and obfuscating responses (DEL+OBF)

The previously described defense (i.e., OBF) applies response obfus-
cation to all file system operations that would lead to changes in the 
underlay system if they were issued from a process that was previously 
classified as malicious. DEL+OBF is designed for use cases where data 
is even more sensitive, but latency is not critical. For example, a data 
collector for a long-term heart monitor may constitute highly sensitive 
data. However, the latency might not be critical, especially if the sensor 
already transmits collected data in batches (e.g., once per hour). In such 
a case, it only matters that the data is eventually persisted, but since 
there are no immediate read operations, a short delay can be tolerated. 
From an implementation perspective, the effect of this delay would 
need to consider various OS-related aspect, such as page cache, which 
influence the buffering between user-space and VFS.
6 
Fig. 4. DEL+OBF defense.

Thus, this technique implements the same defense for maliciously 
classified processes (i.e., obfuscate system call responses). However, as 
shown in Fig.  4, all system calls of all processes are blocked for the 
duration of the timer 𝑇 . By adhering to this timer, the situation where 
a system call is responded to without knowing if its payload is malicious 
or not does not arise. In theory, this is done at the expense of the 
buffering requirements represented by the following equation, which 
have to be accommodated in the memory of the device. Later, a process’ 
behavior is evaluated without considering the previous classification. 
(𝑚𝑖𝑛(𝛿, 𝜖) + 𝑚𝑖𝑛(𝛿, 𝛽)) × 𝑇 (2)

Intuitively, the memory requirements are calculated for the duration 
of the buffering. Then, the duration is multiplied by the effective load 
caused by untracked processes, which consists of malicious behavior 
(i.e., encryption) and benign behavior (i.e., any other write operations). 
The load from encryption 𝜖 is controlled by the ransomware and bound 
by the disk or file system throughput 𝛿. Although the ransomware 
encryption rate may not seem useful, it is an important construct, 
as will be presented in the experiments, since highly sequential ran-
somware will be limited in terms of encryption rate due to the buffering 
itself since they do not implement an asynchronous (i.e., non-blocking) 
traversal and encryption. Analogously, the throughput for all benign 
untracked processes is considered by the factor of 𝛽, since the buffering 
has to be performed for these processes, too, as indicated in Eq.  (2). 
Thus, it is important to consider that buffering and blocking are applied 
to all processes since the trustworthiness is not known beforehand, and 
it is not considered for the full process lifecycle.

5.5. Defense 4: Tracking processes (TRACK)

In terms of design, DEL+OBF should present the highest security 
guarantee, while OBF presents the lowest latency of benign processes. 
The final configuration TRACK tries to maintain state information about 
long-running processes and discriminate between malicious and benign 
processes by looking at the calling PID.

As presented in Fig.  5, unknown processes receive the same response 
as all processes do in DEL+OBF – they are responded to in a blocking 
manner. Thus, for duration 𝑇 , their activity is collected and classified 
by the detection system. Only then is a response created. The response 
behavior follows the same obfuscating behavior for malicious processes 
while it forwards system calls for benign processes. This state informa-
tion is then tracked for subsequent calls to the file system by adding 
the PID to a hash table.

For known benign processes (i.e., for hits in the hash table), the 
system calls are immediately forwarded to the underlay file system. 
However, that does not mean that their behavior is not monitored. In 
an opposing way, their behavior is tracked by a different monitoring
thread for a time duration 𝑇 , after which the classification is evaluated, 
and the hash tables are updated. In the case of a benign process that 
at some point exhibits malicious behavior, the average data loss would 
be represented by Eq.  (3) (assuming that malicious behavior would be 
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Fig. 5. TRACK defense.

detected). The factor of 0.5 is introduced to indicate an average loss, 
assuming a uniform distribution of data loss materialization. 
𝑚𝑖𝑛(𝛿, 𝜖) × 𝑇 × 0.5 (3)

For processes that are known to be malicious, the file system will 
immediately invoke the obfuscating responses. This is an important 
factor to consider since, in this configuration, ransomware may only 
be blocked for one monitoring iteration. Afterward, responses are ob-
fuscated and sent back at high throughput without blocking the calling 
process. In parallel, data is still continuously collected, even though the 
process was classified as malicious.

5.6. Detection plane

Due to the pure user-space implementation of the file system plane 
described in 5.1, several approaches for detecting ransomware are 
feasible. For example, kernel metrics, hardware counters, system calls, 
or performance measurements could be used. However, to implement 
a pure file system approach, only related system calls are used. Thus, 
in the monitoring thread that implements the Detection Plane, a dataset 
is curated from continuously reading the system calls and aggregating 
them to buckets. The bucketing is applied so that for each time slice, 
the metrics in Table  2 are aggregated.

Three ransomware samples were executed to create malicious and 
benign behavior. These represent only a minority of all obtained sam-
ples used for the subsequent experiments, since it is assumed that 
a defender cannot train on all existing samples, since ransomware 
is highly polymorphic in practice. More specifically, RansomwarePoC,
DarkRadiation, and roar (see Section 6.3) were deployed by directly 
giving them shell access. RansomwarePoC was selected since it rep-
resents an open-source Proof-of-Concept sample, DarkRadiation was 
selected since it represents a full-fledged sample which incorporates 
Command-and-Control interaction, and roar represents a stealthy sam-
ple. To the best of the authors knowledge, roar is the only available 
sample developed for this specific purpose. For benign behavior, a 
workload consisting of many read-and-write operations with various 
file contents is needed. Otherwise, deciding between benign behavior 
and ransomware would be trivial. For example, simulating a desktop 
scenario with only a few infrequent write operations to a plain text 
file could be easily distinguished against an attack scenario. Thus, 
an FTP server was deployed on the same Raspberry Pi device (see 
Section 6.1), and the load was generated using the Apache JMeter [35] 
stress testing suite. The choice of this application scenario may ap-
pear arbitrary. However, it has been chosen since to the best of the 
authors’ knowledge, there is no dynamic execution payload that yields 
a representative dataset. Thus, the following rationale was followed: 
from the file system detection plane, the application protocol does 
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Table 2
Shape of aggregated dataset.
 Time Writes Reads pid e_min e_mean e_max 
 20 131 102 232 7.86 7.86 7.86  
 20 73 2 533 7.94 7.95 7.96  

not influence the activity since there is only visibility into the file 
operations. However, to provide a non-trivial detection problem, var-
ious files with different levels of entropy should be used with a high 
amount of traffic. Hence, the choice of the application protocol does 
not necessarily matter as long as it enables one to easily generate a lot 
of activity in the file system. By configuring multiple client threads in 
the stress testing tool, a high load was placed on the server, consisting 
of reading and traversing the directory structure. The files deployed 
on the device used a broad set of file types provided by [36]. Another 
subset from the corpus was used to upload it to the device so that 
write operations with high entropy (e.g., ZIP archives, JPG images) are 
also present in benign behavior. Under these conditions, normal data 
was collected for 258 min (≈ four hours). Data collection involving 
encryption by each ransomware sample and benign behavior spanned 
several hours. roar did not achieve full encryption in that time and 
was, therefore, terminated after roughly two hours. Due to the low 
encryption activity of roar, only 1.7% of the collected system calls are 
labeled as malicious in the resulting dataset. For DarkRadiation, 13.9% 
of all system calls were labeled as malicious, and for RansomwarePoC, 
9.2% were malicious calls. For labeling, a set of benign processes are 
pre-defined allowing unrelated PIDs to be labeled as malicious and ones 
related to those benign processes to be labeled as benign [37].

Once data was collected, the datasets that included the presence 
of different behaviors (i.e., benign or one of the three ransomware 
samples) were aggregated into buckets of 2, 5, and 10 s. Furthermore, 
time-sensitive or leaking features (e.g., file extensions, paths, time, PID) 
were removed. Ultimately, each row in the dataset holds for each 
process the number of operations per system call type (e.g., read, write, 
rename) and the minimum, maximum, and mean entropy of the buffers 
while using the file path to identify the suffix. Finally, each dataset was 
split, where 80% was to be used for training and 20% for testing.

Two approaches were followed to implement the model training 
component using ML. First, an aggregated dataset was used to create 
one global model, where all ransomware data was labeled as malicious 
and the remaining data as benign. In the second approach, three models 
were trained for each bucket configuration. Here, only two out of three 
ransomware samples were included in the training data to analyze 
whether unknown ransomware behavior can be detected based on the 
behavior of other samples. Of course, only benign data was used for 
anomaly detection.

Thus, for both approaches and all three bucketing configurations, a 
model was created using three algorithms: Random Forest Classifier, 
Logistic Regression, and Isolation Forest [38]. These algorithms do 
not exhaustively demonstrate the effectiveness of ML-based detection; 
however, they represent popular choices and may fulfill the goal of 
obtaining a simple classifier to test the reactive defense system. As 
shown in the subsequent experiments, all classifiers achieved high accu-
racy in classifying the malicious behavior using the default parameters 
provided by scikit-learn, so no parameter tuning involving a validation 
split was used.

6. Validation scenarios

To assess the effectiveness and efficiency of the described proto-
type, it was deployed in multiple scenarios, ranging from single-board 
computing to a container-based testbed. All scenarios are inspired by 
a non-interactive server scenario. This section describes the configura-
tions and related artifacts that were used in the experiments. Sources, 
samples, and data are available in [37].
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Fig. 6. Virtualized ransomware testbed architecture.

6.1. Single-board computing

Raspberry Pi devices are implemented as a system on a chip, making 
them a low-cost computing platform that can be used in a variety 
of use cases. Due to them being exposed to ransomware in the past, 
they fit the threat model described in this work. Furthermore, since 
they are considered resource-constrained devices (either in terms of 
computational resources or management capabilities), they present an 
excellent test bed that allows one to experiment with the effectiveness 
of the platform. Specifically, a Raspberry Pi 4B with 2 GB of memory 
was used to run an FTP server at high load. On this device, experiments 
are performed to assess the capabilities of the detection system both in 
an online and offline experiment (i.e., with data gathered on the device, 
but evaluated locally).

6.2. Virtualized testbed

While the deployment of real-world malware in a real device allows 
experimentation close to reality, it is tedious to gather data in a 
reproducible and scalable way so that numerous samples can be tested. 
Thus, the testbed shown in Fig.  6 is developed, where the hardware 
presents high-performance access to storage, by means of two NVMe 
storage devices and an AMD Ryzen 5700G processor running at 4.7 GHz 
with 64 GB of DDR4 memory. Experiments are executed in containers 
where a ZFS dataset is mounted. Optionally, a configuration of GuardFS
can be mounted, too. Since the underlay resides on the ZFS dataset, 
snapshots can be easily created and compared to understand the effects.

6.3. Malware samples

Aside from RansomwarePoC, DarkRadiation, and roar, which have 
already been used during the implementation of the framework (i.e.,
for the model creation step), a broad set of malware was obtained from 
malware databases and integrated into the testbed. As of the author’s 
knowledge, there is no Linux-based testbed with a higher number of 
samples to perform dynamic analysis (i.e., non-simulated experiments).

• Babuk is sophisticated malware, whose source code was leaked. 
The ransomware is written in golang, targeting different plat-
forms. Thus, the encryption module was extracted and compiled 
for the x86 platform [39].
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• Blackbasta is a renowned ransomware-as-a-service enterprise. A 
leaked binary was obtained as an ELF file. After reverse-
engineering it was discovered that it targets specific folder paths 
used by VMWare. Thus, GuardFS is mounted on /vmfs/vol-
umes [40].

• Cl0p is a strain of a famous group of attackers. A binary was 
fetched from MalwareBazaar [40].

• Conti operates as a service since 2020. A binary is available in 
MalwareBazaar [40].

• DarkRadiation is a ransomware that targets Linux-based systems. 
This sophisticated ransomware is implemented entirely in bash 
using Telegram for communication instead of a dedicated C&C 
server [41].

• GoCry is an educational, open-source ransomware written in
golang [42].

• javaRansomware is an educational, portable, open-source ran-
somware developed in Java [43].

• lockbit is another strain of the real-world ransomware that was 
operational in 2023 [40].

• lollocker is an open-source ransomware strain using bash to 
orchestrate the encryption using OpenSSL [44].

• Monti is a modified strain of existing real-world ransomware [45], 
which can be retrieved as an ELF-file on MalwareBazaar [40].

• Ransomware-PoC is a proof of concept open-source Python ran-
somware payload [46].

• roar appears the most technically elaborate ransomware. Techni-
cally, it is an open-source adaption of RansomwarePoC, aiming at 
diversifying the encryption behavior (e.g., encryption algorithm, 
encryption speed) and optimizing the most stealthy operation by 
using Reinforcement Learning [15].

Thus, the selection of samples includes both educational, open-
source samples (i.e., javaRansomware, Ransomware-PoC, roar), with the 
remaining attributed to real-world incidents, where samples are ob-
tained from a malware databse [40].

7. Experiments

This section presents a pool of experiments that evaluates the perfor-
mance of the proposed framework while detecting and classifying the 
ransomware families introduced in Section 6. Although the detection 
methods do not constitute a key contribution to the field, under-
standing their performance is relevant to contextualizing the results 
of the reactive defense. Thus, the detection plane is evaluated against 
the testing datasets to understand how well it detects ransomware 
samples in two cases. First, when the given ransomware sample is 
present in the training data, and second, when it is considered an 
unseen behavior. Next, the experiments move to a production scenario, 
considering the Single-board computing scenario, where the detection 
delay is contextualized in terms of files encrypted until detection. In 
the end-to-end experiments, the detection plane is integrated with the 
defense techniques. Here, the previously described virtualized testbed 
is employed so that the seven different configurations of the defense 
strategies are confronted with eight ransomware samples to compute 
the amount of data that is lost. Finally, the overhead of the detection 
and defense components on benign workloads is established, leading 
to a comparison with related approaches. As such, it is assumed that 
an operational model is available; in-depth discussions on the effect 
of misclassifications (i.e., false negatives on malicious behavior and 
false positives on benign behavior) within varied scenarios represent 
a limitation of the work, as outlined in Section 7.4.1.

7.1. Evaluating test datasets

To assess the performance of the detection plane in isolation, data 
obtained in the Single-Board computing scenario is leveraged, consider-
ing multiple samples. The actual evaluation is carried out on the remote 
device that was used for training the models.



J. von der Assen et al. Journal of Information Security and Applications 93 (2025) 104078 
Table 3
 Accuracy for unseen Ransomware — random forest classifier.
 Time window RansomwarePoC DarkRadiation Roar  
 2 s 99.92% 94.71% 99.43% 
 5 s 99.91% 95.55% 99.65% 
 10 s 99.90% 96.92% 100%  

7.1.1. Classifying unseen ransomware
To understand how well the file system behavior classification 

performs for unseen malware samples, the datasets were combined into 
nine different combinations to train one model based on the Ransom 
Forest Classifier. Thus, one model was trained for each combination 
of the three different time windows (i.e., 2 s, 5 s, and 10 s) and 
combining two out of three ransomware samples (i.e., leaving out 
either RansomwarePoC, DarkRadiation, and roar). Two second time 
windows have been defined since they present the lower bound at 
which the monitoring and evaluation cycle operates stable. The upper 
bound has been set at 10 s, since larger windows would likely lead 
to large data losses (e.g., 20 s of uninterrupted encryption). The three 
samples (see Section 5.6) were chosen as their approach, and technical 
implementation provide a diverse sample set.

Table  3 shows the accuracy for the different combinations of ran-
somware data and time window sizes. The random forest classifier 
performed best when aggregating the behavioral data into 5- or 10-s 
slices. In the 2-s time window, the accuracy is the lowest, although 
just a slight difference compared to other others (e.g., 2.21% difference 
in the worst case). This can be explained by the fact that, when 
aggregating into the 2-s window, not enough file system operations may 
be gathered at all times since ransomware samples cannot constantly 
encrypt at full speed, since they, like every other userspace process, 
may be interrupted by another process or blocked by I/O operations.

Even in the 5-s time period, the accuracy of detecting roar is lower 
compared to the 10-s time window; evaluating the 5-s time window 
multiple times over 10 s would likely provide comparable accuracy to 
the model with a longer window size.

For both RansomwarePoC and DarkRadiation, the accuracy in the 
10-s window size is close to 100%. Thus, using these models, it is 
possible to detect the two strains, even when data was collected from 
other samples. For DarkRadiation, the accuracy increases with increas-
ing window size, with the highest accuracy observed at 96.92%. The 
fact that DarkRadiation is detected with a lower accuracy is surprising 
since it encrypts without trying to be stealthy and in fact, encrypts 
at the highest speed. The result can be explained by the fact that 
DarkRadiation is the only sample that uses pools of subprocesses to 
parallelize the encryption process. Thus, grouping data based on PID 
leads to multiple vectors for each time window for DarkRadiation, 
so certain features may not reflect the malicious behavior as robust 
as others, as it leads to different patterns in the dataset, leading to 
difficulties during the classification stage. Another contributing factor 
is that the average entropy of RansomwarePoC and Roar is 6, whereas, 
in the case of DarkRadiation, it is around 8 due to differences in 
encryption behavior and implementation. Nevertheless, the random 
forest classifier is relatively robust to these differences, as the accuracy 
is above 94% for all time windows considered.

7.1.2. Classifying known ransomware
Even in the previously described setup with partial training data, 

most vectors can be accurately classified for all window sizes. However, 
more data is available in practice, given the breadth of available ran-
somware samples. Thus, assuming that the behavior can be generalized 
over multiple samples, a dataset is created using training data from all 
samples. Again, models are trained by aggregating the data into three 
window sizes. Furthermore, we compare two algorithms (i.e., Random 
Forest and Logistic Regression) for classification. After concatenating 
all Ransomware and benign datasets together and splitting the data into 
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Table 4
 Accuracy of models trained on three samples.
 Algorithm 2 s 5 s 10 s  
 Logistic regression 99.53% 99.76% 99.87% 
 Random forest classifier 99.93% 99.97% 99.98% 

Table 5
 Performance of RF model (5 s).
 𝐹1 TPR FNR FPR TNR  
 99.9967% 99.887% 0.113% 0.8313% 99.1687% 

Table 6
 Detection delay (5 s model).
 Sample Min. Avg. Max. Data loss  
 RansomwarePoC 4 s 6 s 10 s 18 files — 12.3 kB 
 DarkRadiation 4 s 8 s 10 s 35 files — 23.9 kB 
 Roar 8 s 19 s 44 s 3 files – 2.1 kB  

80% train and 20% test datasets, the respective models were trained. 
Both logistic regression and random forest classifier have shown high 
accuracy — close to 100%, as shown in Table  4.

In summary, the Random Forest (RF) Classifier for a window size of 
10 s presents the best results. For practical reasons, the 5-s variant may 
provide comparable performance while providing faster detection. This 
model is used for the subsequent experiments involving the execution 
of ransomware. To contextualize the model’s performance, where false 
positives and false negatives both influence data loss, the confusion 
matrix is illustrated in Table  5. Specifically, the true positive rate (TPR), 
false negative rate (FNR), false positive rate (FPR), and true negative 
rate (TNR) are presented and the 𝐹1 score is computed.

7.2. Evaluating after deployment

To understand how effective and efficient the detection plane can 
be when running in a real device, the Single-Board Computing (see 
Section 6) scenario was instantiated. The detection system and the FTP 
workload run in parallel for each sample. Then, the delay between 
malware deployment and detection is measured. Furthermore, it is 
computed how many files were successfully encrypted by the sample 
in that time. This contrast is especially important in light of stealthy 
malware samples, such as roar, that decrease the encryption speed 
in favor of appearing less aggressive. The results, shown in Table  6, 
reflect that intelligent ransomware such as roar is, in fact, able to evade 
detection better than other strains. Overall, the maximum detection 
delay observed across ten iterations of the experiment was 44 s, while 
the minimum was 4 s. However, putting this into the perspective of 
the encryption speed, stealthy ransomware such as roar cannot encrypt 
as many files as the other samples since it uses periodic phases of 
hibernation, which explains the variations of detection delay.

Most samples can be detected based on a few seconds of active
encryption. While the number of files lost appears daunting, it has to be 
emphasized that in this scenario, no defense mechanism is present. As 
will be shown by the subsequent experiments, the file system defense 
can save some of the data that the ransomware is encrypting until the 
classification is positive.

7.3. End-to-end experiment

So far, the detection plane was developed using a small number of 
ransomware samples, leveraging strains that differ in implementation 
and purpose. As such, the previous experiments demonstrated detection 
performance in offline and online settings. However, measuring the 
usefulness of an AI-based detection system for mitigating cyberattacks 
must include the complexities of the defense behavior. For example, ac-
tive mitigation advertently changes the device’s behavior and, ideally, 
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Table 7
Data lost (in kilobytes) per configuration and Ransomware.
 Scenario Delay Babuk Blackbasta Cl0p conti GoCry javaRansomware lollocker Monti Average

 NO DEFENSE 0 10,655,744 10,655,744 10,655,744 561,152 10,655,744 2,634,752 2,926,592 10,655,744 7,425,152
 PKILL 0 107,752 9,168 668,159 49,255 0 39,762 620,125 28,889 190,388
 OBF 0 77,172 9168 70,644 96,371 0 48,500 137,304 88,259 65,931
 DEL+OBF 1 s 1,286 8,266 19,598 69 0 0 1,692 69 3873
 DEL+OBF 5 s 1,289 4,313 0 0 0 0 19 0 703
 DEL+OBF 10 s 1,286 4,313 387 19 0 0 19 10 754
 TRACK+OBF <5 s 27,025 8,781 0 42,427 0 12,149 29,777 19,489 17,456
even the malicious behavior, as the goal is to interrupt, diminish, or 
prevent the behavior. Thus, if such a system considers only detection 
without mitigation, the actual performance can only be approximated.

Thus, a series of experiments are executed using the virtualized 
testbed presented in Section 6.2, spanning all malware samples from 
Section 6.3. Concerning the detection plane, the same Random Forest-
based model from the online test is deployed in the testbed. Then, in 
each round, one workload is considered to assess (i) the defense effec-
tiveness as established by the number of bytes lost when ransomware 
is deployed, (ii) the resources consumed by the ransomware and the 
defense platform, and (iii) the impact of the defense platform on benign 
workloads.

7.3.1. Defense effectiveness
One experiment per defense configuration and ransomware sample 

have been performed. To compare the performance of the malware, 
each sample is also deployed against a baseline strategy, where no de-
fense is active. At the beginning of each experiment, the detection plane 
is executed, which monitors access to the file system in the background. 
If a process is classified as ransomware, the defense strategy, which is 
the subject of the experiment, is deployed. The ransomware is given 
enough privileges to directly execute any operations on the files in the 
home directory. All files are available through the overlay file system 
to account for any encrypted files in the experiments.
Algorithm 1 Pessimistic Computation of Data Loss
Require: baseline_files ≠ 𝑛𝑖𝑙
Require: snapshot_files ≠ 𝑛𝑖𝑙
snapshot_checksums ← []
files_modified ← []
bytes_lost ← 0
ptr ← 0
while ptr < snapshot_files.length() do
 f ← snapshot_files[ptr]
 snapshot_checksum +← sha256sum(f)
 ptr ← ptr+1
end while
while ptr ≤ baseline_files.length() do
 f ← baseline_files[ptr]
 checksum ← sha256sum(f)
 if checksum is not in snapshot_checksums then
 files_modified +← f
 bytes_lost ← bytes_lost + lookup_size(f)
 end if
 ptr ← ptr+1
end while
After a maximum of five minutes after the sample has entered the 

encryption phase, the experiment is concluded, and the snapshot of 
the underlay is created. To assess the damage done by the sample, 
Algorithm 1 computes the number of bytes lost. First, a list of check-
sums is computed based on the file contents in the snapshot after the 
experiment. Then, the same is done for the files in the initial dataset. 
Finally, for each file in the initial dataset, it is checked whether the 
checksum is contained in the post-experiment checksums. If not, the 
file size of the original file is assessed and added to the final result 
number.
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In that sense, the amount of data loss is computed on a pessimistic 
approach. For example, if only a single bit of the file is modified, 
the whole file is considered lost since no assumptions on the type 
of data are made. This also presents the danger that some malware 
samples may appear stronger than they realistically are. For example, 
some samples could delete many files without encrypting them, which 
would be computationally cheap. Nevertheless, it is assumed that this 
computation of the file modifications presents a fair approximation of 
data loss. It is key to highlight that only data loss is quantified — other 
impacts, such as loss of confidentiality from data access, are out of 
scope.

As evident from the first row in Table  7 where no security mecha-
nisms are present, most samples achieve full encryption of the ≈10 GB 
of data in the system. Still, there are differences in terms of data 
loss since certain samples focus on a dedicated set of file types. On 
average, 7.43 GB of data is encrypted or lost when the samples are not 
interrupted. The second baseline measurement (i.e., a defense strategy 
that has already been explored in research and thus implemented for 
comparative purposes) is the PKILL defense, which enacts process ter-
mination upon detection. The first observation for this defense strategy 
is that even without a novel defense mechanism, reactive detection 
can lead to the large majority of data being protected, as 97% of data 
remains unmodified compared to the uninterrupted case. Nevertheless, 
some malware samples can still destroy multiple hundred Megabytes of 
data until the process is positively classified and terminated. For exam-
ple, Blackbasta encrypts roughly 9 KB of data until mitigation. In these 
cases, it is likely that this defense approach can be truly autonomous, 
and some degree of administrative intervention (e.g., decommissioning 
the device, restoring backups) is needed. This shows that by itself, the 
delay for detection should be further optimized to save more data. 
Furthermore, there is a clear termination signal that the ransomware 
could leverage for self-adaptation, motivating the need for additional 
measures.

Next, OBF presents a different mitigation approach, which also 
operates in a non-blocking manner (i.e., the behavior until the first 
monitoring cycle does not face interference). Nevertheless, this defense 
configuration can reduce the data loss by ≈65% compared to PKILL. 
This may indicate that the obfuscating defense is more suppressive 
against the malicious sample. Furthermore, looking into the modifica-
tion times in the snapshot, it is revealed that after the detection of the 
ransomware, the ransomware continues to execute without any data 
loss. This indicates that the defense is indeed stealthy (i.e., the attacker 
does not receive an immediate signal that it is being mitigated), which 
could prevent sophisticated ransomware such as roar from improving.

To improve the damage dealt until the detection system raises the 
alarm and deploys the defense, the three variants of DEL+OBF (i.e.,
ones blocking for 1, 5, and 10 s) all show another strong improvement 
compared to either killing the process or just obfuscating file system 
responses. First, based on a 1-s timer, only 3.87 MB of data is lost 
on average for the whole experiment – ≈98% less than in the PKILL
defense. The main reason this residual data is lost is that the initial 
delay is not long enough for the detection system. This also explains 
why the 5 and 10-s timers can save an additional ≈81.85% of data, 
comparing the average data loss to the 1-s timer. Naturally, some data is 
lost, as the detection system does not perform perfectly for all samples. 
Furthermore, the encryption windows may not be perfectly aligned 
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Fig. 7. Performance analysis of different defense methods and configurations against javaRansomware.
with the monitoring windows (e.g., the first 5-s window may contain 
the first 100 ms of encryption towards the end). Interestingly, using a 
larger time window does not improve the defense.

Although the strategies that incorporate both obfuscation after an 
initial delay clearly present the most robust defense guarantees, they do 
so at the cost of an increased delay. Thus, application scenarios where 
persistence delay is critical would suffer from this strategy. To present 
a hybrid solution, TRACK+OBF applies only an initial delay for new 
processes. Thus, delayed critical applications would only suffer from 
a single performance hit, and subsequent operations can be services 
like benign applications. Of course, this comes at the cost that the 
defense is weakened. If ransomware first exhibits a benign behavior 
and then turns to encryption, this behavior is only detected with the 
delay of the monitoring and detection cycle. As shown in the last 
row, this is the case, as ≈17.46 MB of data are lost on average. Thus, 
it outperforms the remaining non-blocking defense mechanisms while 
underperforming against the ones delaying the execution for improved 
detection. Furthermore, it does so at the cost of increased complexity 
since the state must be maintained longer than the monitoring cycle.

In summary, the proposed defense methods provide an improved de-
fense system. For workloads that require high-security guarantees while 
being able to sacrifice delay requirements, the DEL+OBF defense for a 
5-s timer is the best choice. If the application should still perform with 
low delay, the TRACK+OBF and OBF strategies could be considered, as 
indicated in Table  7. The former presents stronger security guarantees 
but at increased complexity for managing the state and thus increased 
resource requirements.

7.3.2. Resource efficiency
Although all defense mechanisms present a certain improvement 

in resilience against ransomware attacks, they lead to different be-
haviors from the offensive (i.e., blocking or non-blocking encryption) 
and defensive (i.e., stateless or stateful) perspective. In Fig.  7, the 
analysis of executing the javaRansomware sample against the different 
defense configurations regarding resource consumption is visualized. 
For each experiment, the relative CPU consumption and the reserved 
system memory are visualized. These two metrics are assessed for the 
process (and subprocesses) spawned by the ransomware and for the file 
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system, which includes the defense and detection planes running in the 
background.

The first observation is that, due to the delaying aspect of the
DEL+OBF defense family, the overall resource consumption is
smoothed, resulting in less bursty resource consumption. However, 
it is important not to confuse ‘‘less bursty’’ with ‘‘fewer resources 
consumed’’ – overall, the same resources are consumed since the same 
workload is performed. Still, the ransomware iterates through all the 
buffers representing the protected files, encrypts them, and attempts 
to write them to disk. In that sense, delaying and obfuscating the 
modifying operations (i.e., rename, delete, write), not only mitigates 
the modifications but also slows down the ransomware.

Since the OBF and TRACK+OBF defenses do not extensively delay 
the ransomware execution but instead try to mimic the file system in 
its normal state, there is substantially bursty resource consumption. 
Here, it can be seen that keeping up with computationally intensive ran-
somware leads to significant resource consumption by the file system, 
too. However, assuming that ransomware attacks are still rare, it could 
be argued that this resource consumption can be afforded. Interestingly, 
the execution of the ransomware does not change once the file system 
mitigation goes into action, emphasizing that the ransomware may not 
detect the mitigation. This is magnified by the fact that the ransomware 
stops the encryption process by itself once the target data is consumed, 
encrypted, and disk persistence is attempted.

If the DEL+OBF strategies are compared to the PKILL defense, it 
is clear that these novel defense mechanisms are not more resource-
effective. Indeed, PKILL is the most resource-effective approach since 
only a few monitoring cycles exhibit ransomware behavior. However, 
this comes at a cost, where it is assumed that (i) the ransomware 
does not alter its behavior based on the KILL signal and (ii) that it 
is actually possible to prevent further execution of the sample. Here, 
the defense methods introduced in this paper present the advantage of 
being stealthy while avoiding the damage function of the ransomware, 
even if the sample may not be removable.

In summary, the PKILL defense is the most resource-effective one, 
although at the expense of weak security (i.e., assuming killing the 
process mitigates the malware). The other strategies require roughly the 
same amount of resources, although the ones involving a delay com-
ponent smooth the consumption over time while providing a slightly 
stronger defense.
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Table 8
Overhead on Benign workloads.
 Scenario Time [s] CPU [%] RAM [MB]
 System GuardFS System GuardFS 
 WL1 3 19.7 – 2.6 –  
 WL1+TRACK+OBF 8 13.4 56.5 1.8 10.8  
 WL2 4 1 – 4.8 –  
 WL2+TRACK+OBF 6 1 1 4.9 14.1  
 WL3 16 51.1 – 13.43 –  
 WL3+TRACK+OBF 20 33.33 1 1.9 12.1  
 WL4 23 9.8 – 10.5 –  
 WL4+TRACK+OBF 24 2.24 50.1 2.25 7.28  

7.3.3. Usability in benign workloads
Although efficient resource usage when mitigating ransomware is 

important, efficient operation in benign settings is also critical since 
devices likely spend much more time in a non-infected state. Thus, 
efficiency optimizations when running benign workloads are an im-
portant pillar to ensure the overall efficiency of the solution. Previ-
ous experiments demonstrated that the TRACK+OBF defense presents 
strong defense effectiveness. Due to its design optimizations concern-
ing efficiency, this defense mechanism is deployed in this scenario 
while confronting it against several additional workloads. The follow-
ing workloads are then measured concerning their execution time and 
the resources required by the workload and the defense system. For 
each workload, these values are established when running them in the 
overlay system without any monitoring, detection, or mitigation system 
running and when deploying them with the aforementioned defense 
strategy (see Table  8):

• In the first workload WL1, the effect of the system on system 
administration is considered. Thus, the packages for apache2,
BIND9, and MariaDB servers are downloaded and subsequently 
installed into the overlay file system. This task involves many 
(concurrent) read and write operations involving high entropy 
data.

• For WL2, a reading from a real air quality sensor is retrieved 
and stored on the disk. Thus, this workload shows low read 
operations, a single longrunning write operation with low delay 
requirements.

• The third workload WL3, involves the creation of a backup — 
here, an archive of 977 files, protected by the file system, is 
created. The resulting archive is stored as a GZIP-compressed 
tarball on the same file system.

• In WL4, a long-running, write-intensive task is carried out, which 
involves continuous download of the libreoffice suite into the 
file system. Here, it is also investigated how the system per-
forms when there are no other bottlenecks, leading to highly 
asynchronous operation. Thus, the data is downloaded over a 
local network link provisioned at 1 Gbit/s. In that sense, writing 
network data at such a high throughput also resembles a stress 
test for the file system.

Looking at the Time column, it can be seen that the defense and 
monitoring system does lead to a delay in execution time. This comes 
as expected, as this defense configuration involves an initial delay 
for each process (and any spawned child processes) to classify the 
first interaction with the file system. This efficiency is least optimal 
for short-running processes that involve the creation of many files by 
numerous parallel processes, as represented by WL1 in the first row. 
This effect becomes less prominent for workloads like WL4 that are 
long-running and involve continuous write operations. Furthermore, for 
workloads such as WL2, that are not delay-critical and operating in a 
highly asynchronous manner (i.e., spending a lot of time waiting for 
other I/O tasks such as network requests), this constraint may likely not 
12 
play a difference. In such cases, the added defense effectiveness could 
provide a credible tradeoff between usability and security. Another ob-
servation is that even for creating high entropy data, such as in WL3, no 
false alerts (and thus mitigation) were raised during regular operation. 
Regarding resource consumption, it can be seen that for short-running, 
bursty workloads involving many system calls, the file system requires 
substantial compute resources and static memory consumption in the 
magnitude of roughly 10 MB.

7.4. Comparison with related work

In the proactive approach proposed in [22], a file-system-based 
ransomware mitigation is described, enabling a comparison of reactive 
and proactive paradigms in autonomous ransomware defense. As high-
lighted by the experiments that assess the overhead in benign settings, 
the reactive approach shown in this paper does present one issue. To 
be able to react to attacks, data must be monitored continuously. In 
this paper, file system-related system call parameters were considered. 
This makes detection robust. However, processing system calls becomes 
more expensive as more system calls are created. In that sense, the 
higher the load on a system, the more resources are required to assess 
the system calls. This monitoring cost is avoided in a proactive defense 
since the defense techniques are deployed beforehand.

To make proactive defense viable, deploying such a defense strategy 
imposes constraints on how the defense can be designed. After all, 
the defense strategy is constantly executing, which leads to overhead 
created by the mitigation. In [9], the proactive defense was found too 
expensive, especially for ransomware, since deception was achieved 
by creating a set of actual files to trap the ransomware encryption. 
Thus, only a lightweight defense mechanism was considered suitable 
for proactive deployment. In that sense, [22] presents a lightweight de-
fense mechanism that can be deployed without intelligence. However, 
implementing it relies on specific assumptions of adversarial behavior, 
thus weakening the defense’s effectiveness. For example, one of the 
techniques relies on the ransomware performing a full traversal of the 
target file system before attempting any encryption. Although this was 
demonstrated to be effective, it could potentially be circumvented by 
changing the traversal strategy or by performing traversal in parallel 
to the encryption. Indeed, the defense mechanisms presented here 
also rely on the attacker performing encryption (and thus creating 
a specific pattern of read and write operation, as well as creating 
high entropy data as output). However, as discussed in the history of 
ransomware, crypto-ransomware is still a highly relevant threat vector 
and has been so for a long time. This is backed by the results on the 
defense effectiveness, which show that the proactive approach led to 
≈300 MB being lost, while the experiments on this reactive deployment 
showed losses between ≈66 MB for the worst case and ≈0.7 MB for the 
best strategy. In summary, reactive mitigation can provide optimized 
defense, although resources for continuous monitoring, processing, and 
classification are needed.

7.4.1. Limitations
Based on the results obtained using the methodology of this study, 

the following limitations of the work are explicitly discussed. First, it 
must be acknowledged that the assumption of the threat model is that 
an attack only has black-box access to the system. It is assumed that the 
attack can only learn from the actions taken on-device, i.e., interpret the 
obfuscated answers. Nevertheless, other channels could be leveraged by 
malware to understand the success of their actions.

Secondly, a productive implementation would need to continuously 
recreate datasets to account for the influence of the defense systems. 
As part of this, special considerations would need to be given to the 
case where a long-running malicious process is misclassified, leading 
to successful attack execution. Similarly, a misclassified benign process 
would be blocked from writing benign data. In the current manuscript, 
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these cases are only investigated experimentally (i.e., assessing over-
head on benign workloads and measuring data loss from ransomware 
execution). Further studies could address this by collecting additional 
data (e.g., combining configurations of benign and malicious executions 
and evaluating model performance regarding misclassification).

8. Conclusion

This work presented the design and prototypical implementation of 
an integrated defense platform that leverages the file system to pro-
vide autonomous and fully automated mitigation against ransomware, 
assuming that a detection system is in place. The detection plane relies 
on system call data that can be intercepted on the file system level of 
the operating system. With this data, an ML-based binary classifier can 
deploy different strategies in the defense plane. Then, multiple novel 
mechanisms involving stealthy defense have been proposed. Finally, 
a set of experiments has shown the performance of the detection 
plane in offline and online tests, while the detection and mitigation 
capabilities were assessed against several ransomware samples in a real 
scenario and using a virtualized testbed. Here, the defense effective-
ness, resource consumption, and side effects on benign workloads were 
studied, leading to a comparison of proactive defense solutions with a 
data-driven, reactive defense.

In conclusion, this work demonstrated that ML-based reactivity can 
optimize the defense capabilities of a defense system. Depending on the 
security requirements, the defense strategy with the highest robustness 
could provide an almost completely automated defense system, with 
no manual intervention required after successful detection. It is critical 
to select the appropriate defense configuration depending on the type 
of workload to be performed in the benign setting. For highly delay-
critical, and short-lived processes, the most complex defense method
TRACK+OBF is suitable. In contrast, ones that can sacrifice delay for 
improved security benefit from the DEL+OBF mechanisms. These two 
also show different effects on resource consumption, with the second 
one being less bursty. Finally, from the detection plane, it can be 
concluded that the ML-based classifier presents robust detection for a 
myriad of different ransomware samples, even when behavioral data 
was gathered for different (and thus unseen) samples. Still, monitoring 
system-call data comes at a cost, especially at high load, where the 
number of system calls to be processed increases.

Based on the experiences drawn, multiple avenues for further re-
search are identified. First, it will be investigated how the detection 
plane could be made more lightweight for scenarios where data pro-
cessing cannot be offloaded. Here, different data sources, such as 
performance metrics will be analyzed. Furthermore, the platform will 
be tested using other benign workloads (e.g., office usage, IoT sce-
narios) and additional ransomware samples, especially ones aiming to 
be stealthy. Here, the portability of the platform to other operating 
systems will be investigated.
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