Wireless Networks (2024) 30:7407-7421
https://doi.org/10.1007/s11276-024-03667-8

=

Check for
updates

Mitigating communications threats in decentralized federated learning
through moving target defense

Enrique Tomas Martinez Beltran' @ - Pedro Miguel Sanchez Sénchez' - Sergio Lépez Bernal’ -
Géroéme Bovet? - Manuel Gil Pérez' - Gregorio Martinez Pérez' - Alberto Huertas Celdran®

Accepted: 3 January 2024 /Published online: 28 January 2024
© The Author(s) 2024

Abstract

The rise of Decentralized Federated Learning (DFL) has enabled the training of machine learning models across federated
participants, fostering decentralized model aggregation and reducing dependence on a server. However, this approach
introduces unique communication security challenges that have yet to be thoroughly addressed in the literature. These
challenges primarily originate from the decentralized nature of the aggregation process, the varied roles and responsibilities
of the participants, and the absence of a central authority to oversee and mitigate threats. Addressing these challenges, this
paper first delineates a comprehensive threat model focused on DFL communications. In response to these identified risks,
this work introduces a security module to counter communication-based attacks for DFL platforms. The module combines
security techniques such as symmetric and asymmetric encryption with Moving Target Defense (MTD) techniques,
including random neighbor selection and IP/port switching. The security module is implemented in a DFL platform,
Fedstellar, allowing the deployment and monitoring of the federation. A DFL scenario with physical and virtual
deployments have been executed, encompassing three security configurations: (i) a baseline without security, (ii) an
encrypted configuration, and (iii) a configuration integrating both encryption and MTD techniques. The effectiveness of the
security module is validated through experiments with the MNIST dataset and eclipse attacks.The results showed an
average F1 score of 95%, with the most secure configuration resulting in CPU usage peaking at 68% (£ 9%) in virtual
deployments and network traffic reaching 480.8 MB (£ 18 MB), effectively mitigating risks associated with eavesdrop-
ping or eclipse attacks.
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1 Introduction

The rise of the Internet of Things (IoT) has significantly
reshaped the digital landscape, defining an era marked by
unprecedentedly interconnected devices. IoT devices pro-
duce vast volumes of data every second, spanning various
sectors, from healthcare and manufacturing to transporta-
tion and home automation. Traditionally, Machine Learn-
ing (ML) techniques have been employed to derive
meaningful insights from these large datasets. However,
these techniques often involve the centralized aggregation
of data, a process that raises serious concerns about data
privacy, data sovereignty, and overhead [1].

Extended author information available on the last page of the article

A novel ML approach, known as Federated Learning
(FL), has emerged in response to these challenges. FL. can
train models locally on multiple edge devices, each holding
local data samples. This eliminates the need to share raw
data, thereby preserving data privacy. Advancing this
concept, Decentralized Federated Learning (DFL) repre-
sents a paradigm shift within FL [2]. DFL strengthens
decentralization by enabling the aggregation of models
across multiple nodes, thereby substantially reducing reli-
ance on a centralized server. This advancement not only
preserves privacy but also enhances system scalability,
robustness, and efficiency, making it particularly suit-
able for distributed IoT applications. DFL integrates sev-
eral key processes: (1) participants train models on their
edge devices using local data, preserving data privacy; (2)
nodes then directly exchange the parameters of their
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models in pairs, which favors a decentralized network
structure; and (3) each node integrates these shared
parameters into their local models, resulting in an aggre-
gated and refined model that benefits from the diverse data
insights from across the network. This innovative approach
addresses single points of failures, trust dependencies, and
server node bottlenecks inherent in traditional FL. DFL
also eliminates the need for a central server by broadening
the model aggregation to multiple nodes. Additionally,
DFL employs asynchronous communications, a departure
from traditional FL. This feature enables individual nodes
to communicate their updates independently of others,
contributing to system resilience and ensuring the contin-
ued learning process even if some nodes encounter delays
or disconnections [3]. The application of DFL to wireless
networks has been motivated by the resilience offered by
its asynchronous communication, which is crucial in
environments with intermittent and unpredictable connec-
tivity [4]. Specifically, such traits make DFL highly
applicable for Unmanned Aerial Vehicle (UAV) networks,
where constant and reliable communication is often chal-
lenged by diverse factors such as terrain and weather
conditions, hence enhancing their cooperative missions [5].

Despite the substantial benefits of DFL, it also intro-
duces new challenges. This approach poses different types
of sensitive information necessary for the federation, such
as the network topology, the roles of the participants, and
communication patterns that can be exploited. Besides, in
DFL environments where all participants are connected,
the absence of a central authority to manage potential
threats raises significant security and privacy concerns [6].
With each participant sharing equal threat exposure,
adversarial and communication-based attacks become sig-
nificant concerns. Adversarial attacks can misguide the
learning process by manipulating training data or leverag-
ing the shared model updates to infer sensitive information
about the other participants. At the same time, communi-
cation-based threats can disrupt the model aggregation
process or lead to security breaches and privacy infringe-
ments [7]. Addressing these challenges could benefit from
adopting a dynamic approach like Moving Target Defense
(MTD) [8]. MTD is a security concept that continuously
alters attack surfaces to confuse and mislead adversaries,
making it difficult for them to launch successful attacks.
The potential integration of MTD with encryption in DFL
offers a novel approach to enhancing security, particularly
in the face of unique challenges in decentralized architec-
tures. This strategy is particularly relevant in DFL, where
the decentralized nature of data exchange and interaction
presents distinct challenges not adequately addressed by
traditional security methods. Combining dynamic MTD
techniques with strong encryption proposes an advanced
defense against vulnerabilities and threats unique to these
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systems. Moreover, the literature has not extensively
addressed specific attacks within DFL environments,
highlighting the need for this innovative integration. Such
an approach underscores the need for innovative solutions
tailored to environments with distributed architectures. In
recognition of the risks in DFL, and with a special
emphasis on communication-based attacks that leverage
the inherent decentralization of DFL, this paper presents
the following contributions:

e C(Create a threat model, identifying and understanding
the sensitive information vulnerable to threats affecting
the communications in DFL, such as eavesdropping,
Man in the Middle (MitM), and eclipse attacks.

e Develop an advanced security module for DFL plat-
forms providing secure data exchanges through encryp-
tion and dynamic proactive defense using MTD. This
module mitigates the threats identified in the compre-
hensive threat model of DFL, ensuring efficient system
operation despite the integrated security measures.

e Implement and deploy the security module within a
real-world DFL framework, Fedstellar, integrating it
into the frontend, controller, and core components of
the platform to enhance the overall security of the DFL
approach. Furthermore, this work implements a dual
DFL environment using the Fedstellar platform. The
initial deployment comprises a physical network of
eight heterogeneous devices. Additionally, a virtual
deployment with 50 participants facilitates a compre-
hensive and scalable evaluation of DFL performance.
Three security configurations are assessed in both
setups: a baseline with no security, a configuration
with encryption, and a configuration integrating both
encryption and MTD techniques.

e Conduct an in-depth experimental evaluation of the
proposed security module using a real-world topology
with diverse connections and participants, leveraging
the widely used MNIST dataset and a custom imple-
mentation of an eclipse attack. The evaluation across
both physical and virtual deployments reveals an
average F1 score of 95%, which ascends to 98.9% in
the absence of security measures. Implementing secure
configurations, particularly those utilizing encryption
and MTD, leads to an increase in CPU usage, reaching
up to 68% (£ 9%) in virtual environments. In addition,
the network traffic peaks at 480.8 MB (£ 18 MB),
while the RAM usage also experiences a moderate rise,
with a maximum of 35.9% (4 1.5%) noted in the
physical deployment under encryption and MTD
settings.

The remainder of this paper is organized as follows: Sect. 2
provides an in-depth overview of the literature on DFL and
its associated security challenges. Section 3 introduces the
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proposed threat model, highlighting the unique security
issues that DFL environments face. Section 4 presents a
detailed description of the proposed security module, elu-
cidating its key components and their functionality. Sec-
tion 5 outlines the experimental setup and evaluation
methodology, paving the way for a rigorous assessment of
the effectiveness of the security module. Section 6 presents
a comprehensive discussion of the results, and Sect. 7
concludes the paper with a summary of the key findings
and an exploration of potential avenues for future research.

2 Related work

This section gives the insights required to understand the
concepts used in the following sections and reviews the
main works in the literature associated with the present
one.

2.1 Privacy and security in DFL

The promise of DFL as a tool for collaborative learning in
heterogeneous and geographically distributed settings
continues to drive robust research into its inherent security
implications. A comprehensive understanding of its
potential threats and appropriate countermeasures enhances
cooperative learning practices. Several ground-breaking
research efforts have focused on integrating trust within a
DFL context. In this regard, Gholami et al. [9] proposed an
approach that integrates trust as a metric within a DFL
context. Their method used a comprehensive mathematical
framework to quantify and aggregate the trustworthiness of
individual agents. In parallel, Mothukuri et al. [10]
addressed anomaly detection in Internet of Things (IoT)
networks by leveraging the distributed nature of FL. They
proposed a FL methodology that optimized anomaly
detection by aggregating updates from diverse sources.
Their approach hinged on using gated recurrent units
(GRUs) in federated training rounds to maximize the
accuracy of the overall ML model. Complementing these
advancements, Li et al. [11] took an innovative leap by
proposing a Trustiness-based Hierarchical Decentralized
FL (TH-DFL) framework. It employs a Security Robust
Aggregation (SRA) rule to ensure privacy and robustness
even in the face of malicious nodes. The TH-DFL frame-
work strikes an optimal balance between privacy and
robustness, especially as the group size fluctuates, and
exhibits superior resilience against varying forms of
attacks.

Security concerns related to jamming attacks have also
been extensively studied, especially in wireless networks
implementing DFL. Shi et al. [3] shed light on the sus-
ceptibility of DFL to these attacks, proposing crucial

countermeasures. Their algorithms identify and target
pivotal network links for attack prevention and optimal
placement of jammers to disrupt the federation process.
Their findings point to the urgency for sophisticated
defense mechanisms in DFL architectures. Further con-
tributing to the body of knowledge on security threats in
DFL, Chen et al. [12] proposed a method called Decen-
tralized FL Historical Gradient (DFedHG). DFedHG uti-
lizes historical gradients to differentiate between regular,
untrusted, and malicious users in a DFL environment. This
unique solution strengthens the defense against potential
threats in DFL systems, accentuating the necessity for
sturdy security frameworks.

Securing wireless networks while implementing DFL is
a topic of intensive research. Wang et al. [13] introduced a
method to ensure the security and efficiency of FL in
Wireless Computing Power Networks (WCPNs). Their
research presents a secure and decentralized FL solution
based on blockchain for WCPN, which allows nodes to
freely participate or leave the WCPN federated training
without authorization and security threats. This approach
uses a blockchain with a proof-of-accuracy (PoAcc) con-
sensus scheme and an evolutionary game-based incentive
scheme to ensure the consistency and security of FL in
WCPN. On the other hand, Salama et al. [4] proposed a
method for Decentralized FL over Slotted ALOHA Wire-
less Mesh Networking. The approach offers an efficient
solution for ML model training without a central server,
reducing communication costs and increasing convergence
speed. This paper demonstrates how network topologies
can impact the performance of ML models, and their
results indicate significant promise for DFL in Internet of
Things (IoT) systems.

2.2 Security-based DFL solutions

Innovative approaches toward enhancing data protection
and secure communication within DFL environments have
also seen considerable development. For instance, the
FusionFedBlock solution, proposed by Singh et al. [14],
merges the strengths of blockchain and DFL to ensure
privacy in Industry 5.0. A distributed hash table (DHT)
guarantees secure decentralized storage at the cloud layer,
while blockchain miners facilitate data verification. FL-
SEC, introduced by Qu et al. [15], stands as a breakthrough
framework that addresses potential information leakage
due to inference attacks, threats of poisoning attacks via
falsified data, and high consumption of communication
resources. This model uses a custom incentive mechanism
and an enhanced sign gradient descent method to protect
the privacy of model parameters and significantly reduce
communication resource consumption. Contributing fur-
ther to privacy preservation and trustworthiness in DFL,
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Wang et al. [16] proposed PTDFL, an efficient and novel
DFL scheme. This scheme integrates a gradient encryption
algorithm to protect data privacy, employs concise proof
for the correctness of the gradients, and uses a local
aggregation strategy to ensure that the aggregated result is
trustworthy. The unique feature of PTDFL is its support for
data owners joining in and dropping out during the entire
DFL task.

In the enterprise domain, Arakapis et al. [17] introduced
P4L, a private peer-to-peer learning system. As an asyn-
chronous collaborative learning scheme, PAL allows users
to participate in the learning process without depending on
a centralized infrastructure. It ensures the confidentiality
and utility of shared gradients employing strong crypto-
graphic primitives. Also, it maintains resilience to user
dropout and fault tolerance, highlighting the practical
applicability and effectiveness of decentralized learning
solutions in real-world settings. Finally, on the frontier of
sixth-generation (6 G) networks, Ridhawi et al. [18] pro-
posed a decentralized zero-trust framework for digital
twins. By integrating the zero-trust architecture into digital
twin-enabled networks with DFL, they ensured the secu-
rity, privacy, and authenticity of physical and digital
devices. Their approach addresses the challenges of
cooperation between devices and network components in a
6 G environment, demonstrating the pivotal role of DFL in
next-generation networks.

3 Communications threat model in DFL

The threat model primarily focuses on the communication
aspects of DFL, presuming the co-existence of trusted
participants who abide by network protocols and malicious
participants who pose multilayered threats. The threat
landscape in the communication channels of a DFL envi-
ronment is complex, with malicious entities potentially
playing passive or active roles. Passive malicious entities
might eavesdrop on network communications, surrepti-
tiously gaining access to sensitive information such as
model parameters, aggregated gradients, or participants’
metadata. In contrast, active malicious entities could
actively interfere with network operations, manipulate
data, introduce false information, or disrupt communica-
tion channels. These threats can originate from internal and
external sources, with internal threats emerging from
compromised or malicious network participants and
external threats from entities outside the DFL topology.
As detailed in Table 1, a malicious participant in a DFL
environment can extract a wide range of sensitive infor-
mation, each bearing unique implications implications. A
notable example is the extraction of model parameters,
such as weights and biases from each neural network layer,
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which encapsulate the learned knowledge of the model.
Although methods like Homomorphic Encryption or Dif-
ferential Privacy may impede or obscure this extraction,
the underlying threat parallels that in FL. Unauthorized
access to these parameters could allow a malicious entity to
reconstruct the learning model, leading to significant data
privacy violations and potentially exposing critical
insights. Additionally, the network’s topology provides
valuable information about its structure and interactions,
offering adversaries insights that could facilitate more
targeted attacks.

Additionally, the assigned roles within a DFL network
can provide an adversary with a detailed understanding of
the functional distribution and control mechanisms. Unlike
in FL vanilla, where all clients primarily hold the same
role, this aspect of DFL architecture can aid an attacker in
identifying which nodes to target for maximum disruption.
Moreover, performance metrics and resource usage data
could expose system vulnerabilities regarding performance
and resource allocation strategies. An attacker might infer
these metrics from the patterns and volume of network
communications [19]. Information about participant activ-
ity periods and the underlying model architecture could
prove invaluable for an attacker. By analyzing communi-
cation timings and frequencies, an attacker might discern
when specific nodes are most active, providing insights into
the operational rhythms of the network. A deep under-
standing of the model architecture, obtained through
careful observation of network interactions and data
exchanges, might expose the structure and operational
logic of the model, thereby revealing potential weaknesses
for exploitation. Finally, understanding communication
patterns could prove beneficial for a malicious entity. By
examining the frequency and nature of participant inter-
actions, an attacker could identify critical patterns, antici-
pate behaviors, and potentially impersonate trusted nodes
to gain unauthorized access or disrupt the network.

Numerous potential security threats can compromise the
confidentiality, integrity, and availability of federated data
and models. These threats primarily arise from the inherent
vulnerabilities presented by the decentralization of learning
processes and model sharing without the control of a
central authority. The following communications threats
have been identified (see Table 2):

e THI. Eavesdropping In a DFL setting, an adversary
could covertly monitor network communications or
infiltrate a participant node to gain unauthorized access
to sensitive data. This data could include model
parameters, network topology, and participant roles.
The adversary could then leverage this information to
disrupt the federated process or impersonate a legiti-
mate participant. This threat often persists undetected
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Table 1 Information accessible to a malicious participant in DFL

Information

Description

Model parameters

Topology
Roles

Metrics

Activity periods

Model architecture

Communication
patterns

Each layer /; in a model M with n layers has weight w; € R%*4-1 and bias b; € R%, where d; is the number of neurons in
layer i. The parameters of M are the collection {w;, b;};_,

The graph of the network G(V, E), where V is the set of vertices (participants) and E is the set of edges (connections). If
V ={vi,v2,...,v,} and E = {(v;,vj)|vi,v; € V,i # j}, the topology is fully connected

Each participant p; € V has a role r; € {idle, trainer, aggregator, proxy }. This can be mathematically represented by a
function R : V — {idle, trainer, aggregator, proxy}, where R(p;) = r;

Performance of the model (e.g., accuracy, precision, recall, F1 score) and resource usage (CPU, RAM, network) of the
nodes. For resources, let R be the resource, Uy the usage, and Cy the capacity. The usage rate is R,y = g—ﬁ

If T ={t;,tp,...,1, } represent the set of all time intervals and A = {a;,as,...,a;} C T the active intervals, then the

k

activity ratio is A,gip = Z’,? -

=11

a,
i

A feedforward neural network with n layers can be represented as a sequence of function compositions
Fx) =fulfam1 (2 (f1(x)))), where fi(x) = a(w; - x + b;) is the operation for layer i, and o is the activation function
If M = {my;} is the set of all messages sent from participant i to participant j, the frequency of communication between

these participants can be quantified as Fj; = %, where |my;j| is the number of messages exchanged
ij i ’

Table 2 Attacks, goals, and information at risk in DFL

Attack Goal Information at risk
Eavesdropping Extract sensitive information to undermine integrity and security of the federated participants® e Model parameters
e Topology
e Roles
MitM Manipulate information or insert malicious data to disrupt federation operations® e Communication patterns
e Roles
Network mapping Know the network structure to launch more targeted future attacks on the federation® e Topology

Eclipse attacks

e Model architecture

Isolate a node or group of nodes to extract information or disrupt DFL communications® o Activity periods

e Topology
e Roles

e Communication patterns

2 High importance
bCritical

‘Low importance

due to its covert nature, leading to prolonged periods of
sensitive data leakage.

TH2. MitM It involves an attacker intercepting and
potentially manipulating the communication between
two participant nodes. This enables the attacker to alter
exchanged model parameters, introduce spurious data,
or eavesdrop on the exchanged information, posing
significant challenges to the integrity of the federated
process.

TH3. Network mapping It aims to understand the
structure of the federated network and the roles of
participant nodes. By gaining this knowledge, attackers
can predict and interfere with network operations,

facilitating more targeted and potentially detrimental
exploits.

e TH4. Eclipse This attack in DFL seeks to isolate a
specific node or a group of nodes from the rest of the
network. This isolation distorts the affected nodes’
perception of the network state, causing them to act
based on inaccurate information and potentially paving
the way for additional security breaches.

In light of the identified threats, a comprehensive
security module for DFL must account for these potential
attack vectors and implement countermeasures to ensure
robust operation and resilience against attacks. Crucially,
achieving this goal involves striking a careful balance

@ Springer
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between enhancing security and managing the additional
computational and network overhead that security mea-
sures may introduce.

4 Security module

This section details the proposed security module, partic-
ularly examining its integration within a novel DFL plat-
form and how it fortifies the network against a broad
spectrum of cyber threats.

4.1 Overview

The security module comprises a set of cybersecurity
strategies designed to safeguard the complex exchange of
data and models in DFL. The distinctive features of DFL,
such as decentralized aggregation, asynchronous commu-
nication, limited visibility to near neighbors, and partici-
pant independence, necessitate nuanced and versatile
security measures. The limited visibility of DFL nodes,
usually only to immediate neighbors, restricts the broader
network anomaly detection. Participant independence
complicates maintaining a secure environment as nodes
decide when to commence model training or aggregation.
This proposal responds to the growing need for advanced
security mechanisms within the field of DFL, considering
the diversity and sensitivity of data involved in these sys-
tems. This module employs sophisticated encryption
methods and MTD techniques, making it highly adapt-
able to various DFL platforms:

e FEncryption Using a combination of symmetric and
asymmetric encryption, the module ensures secure
model exchanges and efficient key management. This
strategy guarantees data confidentiality and provides
robust protection against potential breaches.

e MTD techniques These techniques, which include
Neighbor Selection and IP/port switching, create a
dynamic and unpredictable defensive layer within the
system. By continuously changing communication
pathways and nodes, these techniques make it increas-
ingly difficult for potential attackers to gain a foothold
in the system.

4.2 Security components

The components of the security module comprise encryp-
tion techniques and MTD strategies. The encryption tech-
niques, designed to ensure data confidentiality during the
model exchange, combine the efficiency of symmetric
encryption for data protection with the secure key man-
agement of asymmetric encryption. MTD techniques, such
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as Neighbor Selection and IP/port switching strategies, add
a dynamic and shifting defensive layer to the system. These
techniques introduce unpredictability and fluidity by con-
tinuously altering network communication pathways,
making the system difficult for potential attackers to
decipher due to the increased complexity and resource
requirements for successful attacks. The integration of
these components in a federated participant cycle within a
DFL environment is depicted in Algorithm 1. This algo-
rithm combines the elements of encryption and MTD,
effectively creating a robust security layer within the DFL
infrastructure.

Algorithm 1: Federated participant cycle with Encryption and MTD
Techniques in DFL

Require: R: local round, a: learning rate, A\: regularization
parameter, S;: socket to neighbor j, D: local dataset,
Esym / Easym: symmetric/asymmetric encryption func-
tion, Dgym / Dasym: symmetric/asymmetric decryption
function, MT Dip: IP /port MTD function, MT Dy: neigh-
bor selection MTD function

end while

return N

10: end procedure

11: procedure MT Dip(config)

1: procedure MT Dy(Nai,n) > Neighbor Selection
2: Initialize an empty list N

3: while |N| < n do

4: Select a neighbor i from N,j; uniformly at random
5: if i ¢ N then

6: Add i to N

7: end if

8:

9:

> IP /Port Switch

12: Fetch a list of available IP and ports: I Payail, Pavail

13: Select a new IP and port from I P,yail, Pavail uniformly
at random

14: Update con fig with the new IP address and port

15: return config

16: end procedure
17: Dryain; Drest < split(D)
18: for r in R do

19: 0 < Initialize() > Initialize Local Model
20: for each (z,y) in Dryain do

21: 0« 60— a(VeJ(0,z,y) + A\0) > Train
22: end for

23: N + MTDN(Nau)

24: for j in N do > Send
25: een(‘, <~ Esyn\ (‘9~ Ksyn\)

26: Ksy!n,enc <~ Easym(KSym7 ijub)

27: Send fenc, Ksym_enc to j via S;

28: end for

29: while not Timeout do

30: for j in N do > Receive
31: RPjoncs Kjsym_enc < Receive from j via S

32: Kjsym ¢ Dasym(Kjsym_enc: Kpriv)

33: RPJ — Dsyxn(RPanC ’ K]‘sym)

34: end for

35: end while
36: 9<—ﬁ(0+zjeNRPj)
37: Update Local Model with 6

> Aggregate (FedAvg)

38: end for

39: for each (z,y) in Drest do

40: Ypred < Predict(0, x) > Test
D

41: L + ‘D;est‘ ZL:lTEStI U(Yi, Ypred;) > Compute Loss

42: end for

43: Send metrics to controller
44: MT Dyp(config) — config

> Report Metrics
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Table 3 Potential mitigations - ] -
for attacks in DFL Security components Attacks
Eavesdropping MitM Network mapping Eclipse
Encryption I I X 17
MTD X I I I

4.2.1 Communications encryption

The integrity and confidentiality of the information
exchanged among participants during the federation is a
fundamental requirement in secure DFL systems. This
security is achieved by combining symmetric and asym-
metric encryption techniques, forming a comprehensive,
multi-layered security infrastructure.

The first layer of this security architecture employs
symmetric encryption. This method is computationally
efficient and uses a single key for data encryption and
decryption. The Advanced Encryption Standard (AES)
algorithm, provided by the pycryptodome library, is uti-
lized for this layer. Known for its robust security and broad
acceptance, the AES algorithm is an ideal choice, espe-
cially considering the resource constraints often present in
many devices.

The second layer of the security architecture employs
asymmetric encryption. This technique provides an addi-
tional layer of security by using a pair of keys: a public key
for encryption and a private key for decryption. The RSA
algorithm, also provided by the pycryptodome library, is
used for this layer. RSA eliminates risks associated with
key sharing in symmetric encryption and ensures a secure
channel for key exchange, protecting the symmetric keys
used in the AES algorithm. Key distribution and manage-
ment are central to this interconnected system, facilitated
by the controller, which acts as a secure Key Distribution
Center (KDC). Upon deployment, each node is authenti-
cated by the controller (see Sect. 4.3) and issued digital
certificates. This process underpins the trust and integrity
of the public keys disseminated within the network.
Moreover, the controller dynamically manages public key
updates, scheduling regular key renewals in line with
security  protocols to swiftly address potential
vulnerabilities.

4.2.2 MTD techniques
The MTD techniques serve to obfuscate and alter the attack

surface dynamically, posing a significant challenge for
attackers attempting to exploit system vulnerabilities. The

proposed security module incorporates two MTD tech-
niques: Neighbor Selection and IP/port switching.

The Neighbor Selection MTD technique minimizes
network topology exposure to potential attackers. This
technique can protect the nodes from targeted attacks by
dynamically altering their communication partners in each
learning cycle. By continually shifting the communication
patterns in the network, the likelihood of an attacker suc-
cessfully predicting or manipulating these patterns is sig-
nificantly reduced. The random selection of neighbors is
implemented using Python’s built-in random library,
ensuring unbiased and unpredictable selections for each
cycle. The process for the Neighbor Selection MTD is
fairly straightforward. In each federated round, a node
randomly selects a subset of neighbors from all available
participants (see Algorithm 1). This selection scheme is
implemented using the socket library of Python, which
provides low-level networking capabilities suitable for
various network protocols, including TCP/IP, common in
wired and wireless communications. The socket-based
communication scheme offers reliability and flexibility,
which are vital in a dynamic DFL environment.

The second technique is IP/port switching MTD, adding
another layer of security. This method involves routinely
changing the IP addresses and ports used by the federated
nodes, further complicating the predictability of the attack
surface. An attacker finds it difficult to sustain a prolonged
attack on a specific node. In the proposed security module,
IP/port switching is implemented by regularly selecting a
new IP address and port from a pool of available ones. This
selection is automated and randomized using the built-in
capabilities of Python for network configuration. By
dynamically altering the IP addresses and ports, the tech-
nique disrupts potential attackers’ ability to predict the
communication structure or execute targeted attacks.

Both techniques need to ensure uninterrupted and secure
communication amid IP and port changes employing a
rendezvous mechanism. To achieve this, the system
implements a predictive notification mechanism. Before a
node switches its network configuration, it broadcasts its
neighbors an encrypted notification containing the new
connection details. This notification, encrypted with the
network’s standard encryption protocols, allows each
recipient node to update its records before the change. This
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decentralized approach eliminates the need for a real-time
directory service and instead relies on the timely dissemi-
nation of IP/port updates directly between nodes. As a
result, even when an IP address or port changes, the
communicating nodes can independently reconcile the new
configurations, thereby maintaining uninterrupted and
secure connections. This method adheres to the principles
of a decentralized network and reinforces the security
infrastructure, ensuring the network resolution process
remains robust against potential vulnerabilities.

Building on the elaboration of the implemented security
techniques, it is essential to understand their effectiveness,
as depicted in Table 3. Encryption protects against eaves-
dropping, MitM, and eclipse attacks by protecting data
during transmission. As a complement, MTD offers robust
defenses against attacks such as Network Mapping or
eclipse attacks.

4.3 Fedstellar platform

Fedstellar is an innovative platform that facilitates the
training of FL. models across a wide array of physical and
virtual devices [19]. The platform is a hub for developing,
deploying, and managing federated applications and pro-
vides a standardized approach for executing these pro-
cesses. The architecture of Fedstellar is composed of three
fundamental elements:

e Frontend A user-centric interface that offers easy
experiment setup and real-time monitoring, thus ensur-
ing an intuitive user experience.

Fedstellar puamrory

e Controller A central command unit orchestrates oper-
ations across the platform, ensuring seamless inter-
module communication and efficient task execution.

e (Core This critical component, deployed on each
participating device, is responsible for vital functions
such as model training and communication.

These components establish a robust and resilient archi-
tecture that provides sophisticated tools and metrics for
federation management. This enables high transparency
and efficiency in monitoring the learning process. More-
over, the platform contains extensible modules offering
data storage, asynchronous -capabilities, and effective
model training and communication mechanisms.

The security module is integrated into the Fedstellar
platform to demonstrate the proposed effectiveness and
compatibility of the module. As depicted in Fig. 1, the
security module is a pivotal functionality of the core
component responsible for managing secure communica-
tions across the platform. Its integration into the core
ensures robust protection for the vast and complex com-
munication exchanges characteristic of DFL. To support
the overall security structure, enhancements have also been
made to the frontend and the controller components of the
Fedstellar platform.

In this sense, the frontend encompasses the security
definition feature, enabling users to set and manage their
security parameters conveniently. Conversely, the con-
troller implements security measures, a provision that
efficiently manages and enforces the established security
settings in real time. Also, it incorporates a participant

(4
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CONTROLLER

- FEDSTELLAR SECURITY
| SCENARIO DEFINITION l | DEPLOYMENT || RESOURCE PROVISION | PLATFORM MODULE
| REAL-TIME MONITORING l | FEDERATION ARCHITECTURE | NETWORK
| GEOLOCATION l | FEDERATED FUNCTIONALITY | JBHOLUCK
| SECURITY DEFINITION I | SECURITY MEASURES |

/ ,@ SECURITY MODULE

/ =
"fﬁi /] / P ENCRYPTION TECHNIQUES
/ CORE ¢
| KEY EXCHANGE ” KEY RENEWAL
| MONITORING /] |

|
|
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|
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Fig. 1 Overall architecture of Fedstellar and the security module
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authentication process based on JSON Web Tokens (JWT)
during network deployment, conducted under encrypted
communication (see Sect. 4.2.1). Upon joining the net-
work, each node requests a token from the controller by
providing its credentials. The controller validates these
credentials and issues a JWT, which the node then uses for
all subsequent communications within the network. This
token, containing encrypted identity and permission
information, ensures that only authenticated nodes partic-
ipate in the network, enhancing security and preventing
unauthorized access. The tokens have a limited lifespan,
requiring nodes to periodically re-authenticate, thus main-
taining ongoing network integrity.

The integration of the security module maintains com-
patibility through its design, which leverages threaded
processing for non-blocking operations and event passing
between modules for effective communication. These
provisions ensure that the addition of the module does not
disrupt the existing functionalities of the platform but
rather harmonizes with them, augmenting the capability of
Fedstellar to efficiently manage diverse federations com-
prising various devices, network topologies, and
algorithms.

5 Validation scenario

The validation scenario of this study emulates an edge
computing setting, which evaluates the performance of the
proposed security module in a DFL environment.The val-
idation was conducted in two distinct deployments: phys-
ical and virtual. The physical deployment, as detailed in
Table 4, encompasses a federation of eight physical devi-
ces: five Raspberry Pi 4 units and three Rock64 units.
These devices are interconnected via a random network
topology within the private local network. This topology is
designed to mimic dynamic real-world environments,
where connections between devices vary, offering insights
into the federated process under fluctuating network con-
ditions. The Raspberry Pi 4 units, armed with a 1.5 GHz
quad-core 64-bit ARM Cortex-A72 CPU and 2GB of
RAM, present a delicate balance between size, cost-effec-
tiveness, and computational prowess, thereby rendering
them a suitable choice for simulating edge nodes. The
remaining three devices, Rock64 boards, enhance the sys-
tem’s heterogeneity by contributing slightly lower pro-
cessing capabilities, characterized by a 64-bit ARM
Cortex-AS53 with a 1.5 GHz clock speed and up to 2GB
RAM. To showcase the scalability of the solution, the
experiment incorporates a virtual deployment comprising
50 Docker containers. Each container is configured to
replicate the processing power and memory capacity of the
physical devices. This expanded configuration offers a

Table 4 Validation scenario using physical and virtual deployment

Characteristic

Description

Participants

DFL platform
Federation architecture
Network topology
Federated model
Dataset

Security configuration

@ Physical deployment
e 5 Raspberry Pi 4
e 3 Rock64

@ Virtual deployment
e 50 Docker containers

Fedstellar [19]

DFL

Random

LeNet5

MNIST [20]

@ Baseline

@ Encryption

@ Encryption and MTD
Attack Eclipse attack:

e One external attacker

e One target participant

comprehensive testbed for evaluating the scalability and
security module in a more complex DFL network. The
physical and virtual deployment is conducted on the Fed-
stellar platform, specifically designed to facilitate FL
experiments. Within this platform, each participating node
employs the LeNet5 neural network architecture. The
choice of LeNet5 is strategic, given its relatively simple
structure that allows for quick training and inference, thus
suitable for DFL across devices with varying computa-
tional capabilities. The MNIST dataset is utilized to train
and validate the federated models. Comprising 70,000
handwritten digits, MNIST provides a balanced and com-
prehensive dataset for benchmarking classification models.

The security of the federation is assessed under three
different configurations, providing an expansive view of its
security posture under varied conditions. Initially, the
federation functions with @ a baseline with no security
measures and no malicious attack for subsequent security
comparisons. Following this, the federation incorporates @
encryption techniques, forming its primary line of defense.
Finally, the system operates with ® both encryption and
MTD techniques, following the design of the proposed
security module. To assess the resiliency of the security
configuration against cybersecurity threats, the validation
scenario simulates an eclipse attack, a significant threat in
decentralized networks [21, 22]. The choice of this attack is
motivated by the number of security measures it requires,
as shown in Table 3. The successful mitigation of this
multifaceted attack in the validation scenario implies a
high probability of successful defense against other
potential attacks, as enumerated in Table 2. Figure 2 shows
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ol ATTACKER

LEGITIMATE TARGET COMPROMISE
. O . PARTICIPANT ==

PARTICIPANT PARTICIPANT

TARGET NODE
@)

® ATTACK NEIGHBORS
IDENTIFICATION

® ISOLATE TARGET
OF THE TARGET

AND EXTRACT DATA

Fig. 2 Shematic representation of eclipse attack deployed in the
validation

the steps of the eclipse attack deployed: (i) involves iso-
lating a chosen node, (ii) seizing control over its commu-
nications, and (iii) extracting valuable information. The
implementation of the eclipse attack, as detailed in Algo-
rithm 2, involved several technical considerations, partic-
ularly in network communication and manipulation.
Initially, it required configuring two nodes to act as com-
promise participants. These nodes were set up using
advanced socket programming techniques, allowing them
to establish and hijack communication channels with the
target node. By manipulating the routing tables and uti-
lizing custom-built scripts, the attacking nodes were able to
redirect traffic, effectively isolating the target node from
the rest of the network. Following the steps outlined in
Fig. 2, these nodes then took over the communication
channels of the isolated node, using packet-sniffing tools
and protocol spoofing to simulate data extraction processes.

Algorithm 2: Implementation of eclipse attack in DFL

Require: N: Set of all nodes in the network, T: Target node,
A: Attacker nodes
Ensure: Isolation and control over the target node T’

1: Initialize the network with nodes in N

2: Select target node T from N

3: Initialize attackers in A

4: for each node n in N do

5 if n € A then > Node Identification

6: Begin monitoring communications of T'

7 end if

8: end for

9: for each communication link of T" do > Node Isolation

10: Attacker nodes in A intercept and block communica-
tions

11: end for

12: for each outbound communication from T do

13: Redirect to attacker nodes in A > Seizing Control

14: end for

15: while T is isolated do > Information Extraction

16: Extract and analyze data from communications in T

17: Attacker nodes mimic the legitimate network behavior

18: end while
19: return Success if T remains isolated and controlled

@ Springer

6 Results

This section assesses the security module performance
focused on performance indicators such as the F score for
federated models, the percentage of CPU and RAM usage,
network traffic quantified in megabytes (MB), and model
convergence time. Figs. 3 and 4 show the performance
indicators in the physical and virtual deployment,
respectively.

The diagram depicted in Fig. 3a demonstrates the
average F score for the federated models in a physical
deployment, under three separate security configurations:
baseline without security techniques and malicious attacks
on the network, encryption, and encryption combined with
MTD techniques to deal with attacks. All three configu-
rations exhibit a consistent growth pattern in the early
stages of the federation process (=10 min). The baseline
configuration continues upward, achieving an F score of
97%. This indicates the potential for high performance
when security overheads are absent. However, when
examining the configurations that include security mea-
sures, there is a slight decline in the F; score. In the
encryption configuration, the F; score peaks at 94%, while
in the combined encryption and MTD setting, the F; score
fluctuates between 92.5%. Similarly, Fig. 4a shows the
results in a virtual deployment. In this case, the growth is
rapid in the first 6 min, with the baseline configuration
reaching 98.9%. The encryption configuration achieves an
F1 score of 95.5%, while the encryption with MTD con-
figuration attains 93.8%. The variations observed
throughout the federation process are likely due to the
occasional computational overhead of the security mech-
anisms during the processing and transmission of data.

A more granular view of the performance in terms of
CPU usage is provided by Figs. 3b and 4b for physical and
virtual deployments, respectively. In the physical deploy-
ment, the baseline CPU usage is 54.6% on average,
reflecting the computational load of the training process.
With the introduction of encryption, there is an increase in
CPU usage to 60.9% due to the additional tasks of
encrypting and decrypting data. These requirements further
escalate when encryption is combined with MTD, leading
to an average CPU usage of 63.2%, attributed to managing
dynamic communication routes. In contrast, the virtual
deployment exhibits a different pattern, as shown in
Fig. 4b. The baseline configuration uses about 62.4% of the
CPU, which increases to 66.1% with encryption, reflecting
the computational overhead in a virtualized environment.
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Fig. 4 Performance of Fedstellar in a virtual deployment with 50 participants using MNIST during 60 min

Incorporating both encryption and MTD causes a CPU
usage rise up to 68%. These figures highlight the increased
resource demands in the virtual deployment, particularly
when the number of participants increased.

For RAM usage in both physical and virtual deploy-
ments, a discernible trend is evident, as highlighted in
Figs. 3c and 4c. In the physical deployment, the baseline
configuration exhibits a lower average of 31.9%, reflecting
the lower computational footprint when security measures
are absent. However, including encryption mechanisms
results in a slight increase in RAM usage due to the
additional memory demands of the encryption process.
Specifically, the encryption configuration averages 33.8%,
and when the MTD technique is added alongside encryp-
tion, the average RAM usage augments to 35.9%. In con-
trast, the virtual deployment shows a different usage
pattern. The baseline configuration in the virtual environ-
ment uses 27% of the RAM, which is lower than in the
physical deployment. This increases to 29.5% with
encryption and further to 31% when both encryption and
MTD are implemented. This is attributable to the addi-
tional memory required for managing dynamic communi-
cation routes under MTD. Despite the marginal increase, it
underscores the added resource requirements induced by
security features.

Furthermore, network traffic, as depicted in Fig. 3d for
the physical deployment and Fig. 4d for the virtual
deployment, provides critical insights into the performance
impacts of different security configurations. In the physical
setup, the baseline configuration remains modest, averag-
ing around 110.2 MB. However, the integration of security
mechanisms leads to an increase in network usage. The
encryption configuration generates an average of 185.2 MB
of network traffic, while the encryption with MTD con-
figuration pushes the average even higher, reaching 226
MB. In contrast, the virtual deployment, which involves a
larger number of participants, exhibits higher network
usage across all configurations. The baseline configuration
shows an average network traffic of 429.9 MB, which rises
to 448.4 MB with the implementation of encryption and
further to 480.8 MB when encryption is combined with
MTD techniques.

Moreover, the detailed network metrics, as outlined in
Table 5, further elucidate the impacts of these security
configurations on network performance. These metrics
include (i) throughput, measuring data transmission effi-
ciency; (ii) latency, indicating the communication speed;
(iii) packet loss, reflecting data transmission reliability; and
(iv) control overhead, representing the network cost due to
security management. In physical deployments, the results
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Table 5 Network metrics under different security settings in DFL

Deployment Security setting Throughput (Mbps) Latency (ms) Packet loss (%) Control overhead (%)
Physical Baseline 92 61 0.2 35

Encryption 87 63 0.5 4.7

Encryption and MTD 85 64 1.1 5.9
Virtual Baseline 85 52 0.6 4.3

Encryption 81 52 0.6 7.1

Encryption and MTD 81 53 1.3 7.8

show a slight decrease in throughput from 92 Mbps in the
baseline to 85 Mbps with encryption and MTD, coupled
with a gradual increase in latency and packet loss. Con-
versely, in virtual deployments, the throughput remains
consistent across security settings, although lower than in
physical setups, indicating a potential bottleneck in virtual
environments. Interestingly, latency remains lower in vir-
tual deployments compared to physical ones, possibly due
to optimized routing in virtualized networks. However,
packet loss and control overhead show a marked increase
with more complex security configurations, emphasizing
the additional network strain introduced by these security
measures.

As evidenced by Table 6, these results underscore an
inherent tension in securing DFL. While deploying security
protocols such as encryption and MTD is indispensable for
safeguarding various aspects of the federated learning pro-
cess, these measures invariably come with additional com-
putational and network overheads. These escalated resource

requirements, although a trade-off, provide a safeguard
against the pervasive risk of data breaches and cyberattacks.
This study thus offers an empirical guide, presenting the
performance implications of various security configurations
in real-world DFL scenarios. It showcases the balance
between achieving high predictive accuracy and maintaining
stringent security standards.As illustrated by Table 6,
securing DFL systems with encryption and MTD techniques
introduces notable computational and network overheads,
evident in physical and virtual deployments. While these
security measures increase CPU, RAM, and network usage,
with virtual deployments showing higher resource utilization
due to a larger number of participants, they are essential for
protecting against data breaches and cyberattacks. This
study highlights the critical balance in DFL between
ensuring high predictive accuracy and adhering to rigorous
security protocols, offering a comprehensive view of the
performance trade-offs inherent in implementing robust
security configurations in real-world scenarios.

Table 6 Security settings, information protection, and performance in DFL

Security settings Information protected

Performance metrics*

F1 score (%) CPU (%) RAM (%) Network (MB)
Baseline N/A PD: 97 £+ 0.02 PD: 544 £ 8 PD: 32 +23 PD: 110.1 £ 12
VD: 98.9 £ 0.01 VD: 62.4 £+ 12 VD: 27 £ 1.2 VD: 4299 £ 8
Encryption Model parameters PD: 94 £ 0.9 PD: 60.7 £ 7 PD: 339 £+ 241 PD: 185.1 £+ 21
Roles
Communication patterns
VD: 95.5 £ 0.8 VD: 66.1 £ 9 VD:29.5 £ 1.8 VD: 448.4 £ 20
Encryption and MTD Model parameters PD: 925 £ 1.1 PD: 63 £ 7 PD:359 £ 1.5 PD: 226 + 15
Roles
Communication patterns
Topology
Activity periods
VD: 93.8 £ 0.7 VD: 68 £ 9 VD: 31 £ 1.7 VD: 480.8 + 18

*Average values for each participant

PD Physical deployment, VD virtual deployment
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7 Conclusion

This work formulated a threat model for DFL communi-
cations, providing a detailed understanding of potential
security vulnerabilities and sensitive information that could
be exposed during interactions between participating
nodes. In response to these challenges, an innovative
security module was developed for DFL communications.
It incorporates robust defensive mechanisms, including
symmetric and asymmetric encryption methods and MTD
techniques, tailored to the unique structure and require-
ments of DFL. This security module was deployed within a
real-world DFL framework called Fedstellar to evaluate its
efficacy and practicality. The validation scenario was
conducted through two distinct deployments. The first
involved a random topology of eight physical devices
engaged in solving an ML task using the MNIST dataset
and facing a custom implementation of eclipse attacks.
Complementing this, a second deployment was executed in
a virtual environment with 50 participants, expanding the
scope and scale of the validation to a more extensive net-
work scenario. Both deployments allowed the module to be
rigorously evaluated under three security configurations:
baseline without security and malicious attacks, encryp-
tion, and a composite of encryption and MTD. The
assessments validated the performance of the proposed
module across both physical and virtual deployments,
demonstrating an average F1 score of approximately 93%
with an acceptable increase in system overhead. The peak
values observed in the physical deployment for CPU usage,
network traffic, and RAM usage were 63% (£ 7%), 226
MB (£ 15 MB), and 35.9% (£ 1.5%), respectively. In the
virtual deployment, these metrics slightly increased due to
the larger scale of operation, reaching 68% (& 9%) for
CPU usage, 480.8 MB (£ 18 MB) for network traffic, and
31% (£ 1.7%) for RAM usage. These results demonstrate
the efficiency and practicality of the security module in
diverse DFL applications, accommodating various
deployment scales and complexities.

Future research could consider developing and integrating
new security techniques into the current security module to
enhance the resilience of DFL environments further.
Researchers might assess these enhancements across dynamic
network topologies and more participant devices to better
understand their efficacy in real-world, large-scale applica-
tions. Additionally, simulations with a wider variety of
potential attacks would provide valuable insights into the
robustness of these defensive methods under diverse threat
scenarios. These advancements could significantly contribute
to achieving secure, efficient, and scalable deployment of DFL.
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