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Abstract
The rise of Decentralized Federated Learning (DFL) has enabled the training of machine learning models across federated

participants, fostering decentralized model aggregation and reducing dependence on a server. However, this approach

introduces unique communication security challenges that have yet to be thoroughly addressed in the literature. These

challenges primarily originate from the decentralized nature of the aggregation process, the varied roles and responsibilities

of the participants, and the absence of a central authority to oversee and mitigate threats. Addressing these challenges, this

paper first delineates a comprehensive threat model focused on DFL communications. In response to these identified risks,

this work introduces a security module to counter communication-based attacks for DFL platforms. The module combines

security techniques such as symmetric and asymmetric encryption with Moving Target Defense (MTD) techniques,

including random neighbor selection and IP/port switching. The security module is implemented in a DFL platform,

Fedstellar, allowing the deployment and monitoring of the federation. A DFL scenario with physical and virtual

deployments have been executed, encompassing three security configurations: (i) a baseline without security, (ii) an

encrypted configuration, and (iii) a configuration integrating both encryption and MTD techniques. The effectiveness of the

security module is validated through experiments with the MNIST dataset and eclipse attacks.The results showed an

average F1 score of 95%, with the most secure configuration resulting in CPU usage peaking at 68% (± 9%) in virtual

deployments and network traffic reaching 480.8 MB (± 18 MB), effectively mitigating risks associated with eavesdrop-

ping or eclipse attacks.
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1 Introduction

The rise of the Internet of Things (IoT) has significantly

reshaped the digital landscape, defining an era marked by

unprecedentedly interconnected devices. IoT devices pro-

duce vast volumes of data every second, spanning various

sectors, from healthcare and manufacturing to transporta-

tion and home automation. Traditionally, Machine Learn-

ing (ML) techniques have been employed to derive

meaningful insights from these large datasets. However,

these techniques often involve the centralized aggregation

of data, a process that raises serious concerns about data

privacy, data sovereignty, and overhead [1].

A novel ML approach, known as Federated Learning

(FL), has emerged in response to these challenges. FL can

train models locally on multiple edge devices, each holding

local data samples. This eliminates the need to share raw

data, thereby preserving data privacy. Advancing this

concept, Decentralized Federated Learning (DFL) repre-

sents a paradigm shift within FL [2]. DFL strengthens

decentralization by enabling the aggregation of models

across multiple nodes, thereby substantially reducing reli-

ance on a centralized server. This advancement not only

preserves privacy but also enhances system scalability,

robustness, and efficiency, making it particularly suit-

able for distributed IoT applications. DFL integrates sev-

eral key processes: (1) participants train models on their

edge devices using local data, preserving data privacy; (2)

nodes then directly exchange the parameters of their
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models in pairs, which favors a decentralized network

structure; and (3) each node integrates these shared

parameters into their local models, resulting in an aggre-

gated and refined model that benefits from the diverse data

insights from across the network. This innovative approach

addresses single points of failures, trust dependencies, and

server node bottlenecks inherent in traditional FL. DFL

also eliminates the need for a central server by broadening

the model aggregation to multiple nodes. Additionally,

DFL employs asynchronous communications, a departure

from traditional FL. This feature enables individual nodes

to communicate their updates independently of others,

contributing to system resilience and ensuring the contin-

ued learning process even if some nodes encounter delays

or disconnections [3]. The application of DFL to wireless

networks has been motivated by the resilience offered by

its asynchronous communication, which is crucial in

environments with intermittent and unpredictable connec-

tivity [4]. Specifically, such traits make DFL highly

applicable for Unmanned Aerial Vehicle (UAV) networks,

where constant and reliable communication is often chal-

lenged by diverse factors such as terrain and weather

conditions, hence enhancing their cooperative missions [5].

Despite the substantial benefits of DFL, it also intro-

duces new challenges. This approach poses different types

of sensitive information necessary for the federation, such

as the network topology, the roles of the participants, and

communication patterns that can be exploited. Besides, in

DFL environments where all participants are connected,

the absence of a central authority to manage potential

threats raises significant security and privacy concerns [6].

With each participant sharing equal threat exposure,

adversarial and communication-based attacks become sig-

nificant concerns. Adversarial attacks can misguide the

learning process by manipulating training data or leverag-

ing the shared model updates to infer sensitive information

about the other participants. At the same time, communi-

cation-based threats can disrupt the model aggregation

process or lead to security breaches and privacy infringe-

ments [7]. Addressing these challenges could benefit from

adopting a dynamic approach like Moving Target Defense

(MTD) [8]. MTD is a security concept that continuously

alters attack surfaces to confuse and mislead adversaries,

making it difficult for them to launch successful attacks.

The potential integration of MTD with encryption in DFL

offers a novel approach to enhancing security, particularly

in the face of unique challenges in decentralized architec-

tures. This strategy is particularly relevant in DFL, where

the decentralized nature of data exchange and interaction

presents distinct challenges not adequately addressed by

traditional security methods. Combining dynamic MTD

techniques with strong encryption proposes an advanced

defense against vulnerabilities and threats unique to these

systems. Moreover, the literature has not extensively

addressed specific attacks within DFL environments,

highlighting the need for this innovative integration. Such

an approach underscores the need for innovative solutions

tailored to environments with distributed architectures. In

recognition of the risks in DFL, and with a special

emphasis on communication-based attacks that leverage

the inherent decentralization of DFL, this paper presents

the following contributions:

• Create a threat model, identifying and understanding

the sensitive information vulnerable to threats affecting

the communications in DFL, such as eavesdropping,

Man in the Middle (MitM), and eclipse attacks.

• Develop an advanced security module for DFL plat-

forms providing secure data exchanges through encryp-

tion and dynamic proactive defense using MTD. This

module mitigates the threats identified in the compre-

hensive threat model of DFL, ensuring efficient system

operation despite the integrated security measures.

• Implement and deploy the security module within a

real-world DFL framework, Fedstellar, integrating it

into the frontend, controller, and core components of

the platform to enhance the overall security of the DFL

approach. Furthermore, this work implements a dual

DFL environment using the Fedstellar platform. The

initial deployment comprises a physical network of

eight heterogeneous devices. Additionally, a virtual

deployment with 50 participants facilitates a compre-

hensive and scalable evaluation of DFL performance.

Three security configurations are assessed in both

setups: a baseline with no security, a configuration

with encryption, and a configuration integrating both

encryption and MTD techniques.

• Conduct an in-depth experimental evaluation of the

proposed security module using a real-world topology

with diverse connections and participants, leveraging

the widely used MNIST dataset and a custom imple-

mentation of an eclipse attack. The evaluation across

both physical and virtual deployments reveals an

average F1 score of 95%, which ascends to 98.9% in

the absence of security measures. Implementing secure

configurations, particularly those utilizing encryption

and MTD, leads to an increase in CPU usage, reaching

up to 68% (± 9%) in virtual environments. In addition,

the network traffic peaks at 480.8 MB (± 18 MB),

while the RAM usage also experiences a moderate rise,

with a maximum of 35.9% (± 1.5%) noted in the

physical deployment under encryption and MTD

settings.

The remainder of this paper is organized as follows: Sect. 2

provides an in-depth overview of the literature on DFL and

its associated security challenges. Section 3 introduces the
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proposed threat model, highlighting the unique security

issues that DFL environments face. Section 4 presents a

detailed description of the proposed security module, elu-

cidating its key components and their functionality. Sec-

tion 5 outlines the experimental setup and evaluation

methodology, paving the way for a rigorous assessment of

the effectiveness of the security module. Section 6 presents

a comprehensive discussion of the results, and Sect. 7

concludes the paper with a summary of the key findings

and an exploration of potential avenues for future research.

2 Related work

This section gives the insights required to understand the

concepts used in the following sections and reviews the

main works in the literature associated with the present

one.

2.1 Privacy and security in DFL

The promise of DFL as a tool for collaborative learning in

heterogeneous and geographically distributed settings

continues to drive robust research into its inherent security

implications. A comprehensive understanding of its

potential threats and appropriate countermeasures enhances

cooperative learning practices. Several ground-breaking

research efforts have focused on integrating trust within a

DFL context. In this regard, Gholami et al. [9] proposed an

approach that integrates trust as a metric within a DFL

context. Their method used a comprehensive mathematical

framework to quantify and aggregate the trustworthiness of

individual agents. In parallel, Mothukuri et al. [10]

addressed anomaly detection in Internet of Things (IoT)

networks by leveraging the distributed nature of FL. They

proposed a FL methodology that optimized anomaly

detection by aggregating updates from diverse sources.

Their approach hinged on using gated recurrent units

(GRUs) in federated training rounds to maximize the

accuracy of the overall ML model. Complementing these

advancements, Li et al. [11] took an innovative leap by

proposing a Trustiness-based Hierarchical Decentralized

FL (TH-DFL) framework. It employs a Security Robust

Aggregation (SRA) rule to ensure privacy and robustness

even in the face of malicious nodes. The TH-DFL frame-

work strikes an optimal balance between privacy and

robustness, especially as the group size fluctuates, and

exhibits superior resilience against varying forms of

attacks.

Security concerns related to jamming attacks have also

been extensively studied, especially in wireless networks

implementing DFL. Shi et al. [3] shed light on the sus-

ceptibility of DFL to these attacks, proposing crucial

countermeasures. Their algorithms identify and target

pivotal network links for attack prevention and optimal

placement of jammers to disrupt the federation process.

Their findings point to the urgency for sophisticated

defense mechanisms in DFL architectures. Further con-

tributing to the body of knowledge on security threats in

DFL, Chen et al. [12] proposed a method called Decen-

tralized FL Historical Gradient (DFedHG). DFedHG uti-

lizes historical gradients to differentiate between regular,

untrusted, and malicious users in a DFL environment. This

unique solution strengthens the defense against potential

threats in DFL systems, accentuating the necessity for

sturdy security frameworks.

Securing wireless networks while implementing DFL is

a topic of intensive research. Wang et al. [13] introduced a

method to ensure the security and efficiency of FL in

Wireless Computing Power Networks (WCPNs). Their

research presents a secure and decentralized FL solution

based on blockchain for WCPN, which allows nodes to

freely participate or leave the WCPN federated training

without authorization and security threats. This approach

uses a blockchain with a proof-of-accuracy (PoAcc) con-

sensus scheme and an evolutionary game-based incentive

scheme to ensure the consistency and security of FL in

WCPN. On the other hand, Salama et al. [4] proposed a

method for Decentralized FL over Slotted ALOHA Wire-

less Mesh Networking. The approach offers an efficient

solution for ML model training without a central server,

reducing communication costs and increasing convergence

speed. This paper demonstrates how network topologies

can impact the performance of ML models, and their

results indicate significant promise for DFL in Internet of

Things (IoT) systems.

2.2 Security-based DFL solutions

Innovative approaches toward enhancing data protection

and secure communication within DFL environments have

also seen considerable development. For instance, the

FusionFedBlock solution, proposed by Singh et al. [14],

merges the strengths of blockchain and DFL to ensure

privacy in Industry 5.0. A distributed hash table (DHT)

guarantees secure decentralized storage at the cloud layer,

while blockchain miners facilitate data verification. FL-

SEC, introduced by Qu et al. [15], stands as a breakthrough

framework that addresses potential information leakage

due to inference attacks, threats of poisoning attacks via

falsified data, and high consumption of communication

resources. This model uses a custom incentive mechanism

and an enhanced sign gradient descent method to protect

the privacy of model parameters and significantly reduce

communication resource consumption. Contributing fur-

ther to privacy preservation and trustworthiness in DFL,
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Wang et al. [16] proposed PTDFL, an efficient and novel

DFL scheme. This scheme integrates a gradient encryption

algorithm to protect data privacy, employs concise proof

for the correctness of the gradients, and uses a local

aggregation strategy to ensure that the aggregated result is

trustworthy. The unique feature of PTDFL is its support for

data owners joining in and dropping out during the entire

DFL task.

In the enterprise domain, Arakapis et al. [17] introduced

P4L, a private peer-to-peer learning system. As an asyn-

chronous collaborative learning scheme, P4L allows users

to participate in the learning process without depending on

a centralized infrastructure. It ensures the confidentiality

and utility of shared gradients employing strong crypto-

graphic primitives. Also, it maintains resilience to user

dropout and fault tolerance, highlighting the practical

applicability and effectiveness of decentralized learning

solutions in real-world settings. Finally, on the frontier of

sixth-generation (6 G) networks, Ridhawi et al. [18] pro-

posed a decentralized zero-trust framework for digital

twins. By integrating the zero-trust architecture into digital

twin-enabled networks with DFL, they ensured the secu-

rity, privacy, and authenticity of physical and digital

devices. Their approach addresses the challenges of

cooperation between devices and network components in a

6 G environment, demonstrating the pivotal role of DFL in

next-generation networks.

3 Communications threat model in DFL

The threat model primarily focuses on the communication

aspects of DFL, presuming the co-existence of trusted

participants who abide by network protocols and malicious

participants who pose multilayered threats. The threat

landscape in the communication channels of a DFL envi-

ronment is complex, with malicious entities potentially

playing passive or active roles. Passive malicious entities

might eavesdrop on network communications, surrepti-

tiously gaining access to sensitive information such as

model parameters, aggregated gradients, or participants’

metadata. In contrast, active malicious entities could

actively interfere with network operations, manipulate

data, introduce false information, or disrupt communica-

tion channels. These threats can originate from internal and

external sources, with internal threats emerging from

compromised or malicious network participants and

external threats from entities outside the DFL topology.

As detailed in Table 1, a malicious participant in a DFL

environment can extract a wide range of sensitive infor-

mation, each bearing unique implications implications. A

notable example is the extraction of model parameters,

such as weights and biases from each neural network layer,

which encapsulate the learned knowledge of the model.

Although methods like Homomorphic Encryption or Dif-

ferential Privacy may impede or obscure this extraction,

the underlying threat parallels that in FL. Unauthorized

access to these parameters could allow a malicious entity to

reconstruct the learning model, leading to significant data

privacy violations and potentially exposing critical

insights. Additionally, the network’s topology provides

valuable information about its structure and interactions,

offering adversaries insights that could facilitate more

targeted attacks.

Additionally, the assigned roles within a DFL network

can provide an adversary with a detailed understanding of

the functional distribution and control mechanisms. Unlike

in FL vanilla, where all clients primarily hold the same

role, this aspect of DFL architecture can aid an attacker in

identifying which nodes to target for maximum disruption.

Moreover, performance metrics and resource usage data

could expose system vulnerabilities regarding performance

and resource allocation strategies. An attacker might infer

these metrics from the patterns and volume of network

communications [19]. Information about participant activ-

ity periods and the underlying model architecture could

prove invaluable for an attacker. By analyzing communi-

cation timings and frequencies, an attacker might discern

when specific nodes are most active, providing insights into

the operational rhythms of the network. A deep under-

standing of the model architecture, obtained through

careful observation of network interactions and data

exchanges, might expose the structure and operational

logic of the model, thereby revealing potential weaknesses

for exploitation. Finally, understanding communication

patterns could prove beneficial for a malicious entity. By

examining the frequency and nature of participant inter-

actions, an attacker could identify critical patterns, antici-

pate behaviors, and potentially impersonate trusted nodes

to gain unauthorized access or disrupt the network.

Numerous potential security threats can compromise the

confidentiality, integrity, and availability of federated data

and models. These threats primarily arise from the inherent

vulnerabilities presented by the decentralization of learning

processes and model sharing without the control of a

central authority. The following communications threats

have been identified (see Table 2):

• TH1. Eavesdropping In a DFL setting, an adversary

could covertly monitor network communications or

infiltrate a participant node to gain unauthorized access

to sensitive data. This data could include model

parameters, network topology, and participant roles.

The adversary could then leverage this information to

disrupt the federated process or impersonate a legiti-

mate participant. This threat often persists undetected
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due to its covert nature, leading to prolonged periods of

sensitive data leakage.

• TH2. MitM It involves an attacker intercepting and

potentially manipulating the communication between

two participant nodes. This enables the attacker to alter

exchanged model parameters, introduce spurious data,

or eavesdrop on the exchanged information, posing

significant challenges to the integrity of the federated

process.

• TH3. Network mapping It aims to understand the

structure of the federated network and the roles of

participant nodes. By gaining this knowledge, attackers

can predict and interfere with network operations,

facilitating more targeted and potentially detrimental

exploits.

• TH4. Eclipse This attack in DFL seeks to isolate a

specific node or a group of nodes from the rest of the

network. This isolation distorts the affected nodes’

perception of the network state, causing them to act

based on inaccurate information and potentially paving

the way for additional security breaches.

In light of the identified threats, a comprehensive

security module for DFL must account for these potential

attack vectors and implement countermeasures to ensure

robust operation and resilience against attacks. Crucially,

achieving this goal involves striking a careful balance

Table 1 Information accessible to a malicious participant in DFL

Information Description

Model parameters Each layer li in a model M with n layers has weight wi 2 Rdi�di�1 and bias bi 2 Rdi , where di is the number of neurons in

layer i. The parameters of M are the collection fwi; bigni¼1

Topology The graph of the network G(V, E), where V is the set of vertices (participants) and E is the set of edges (connections). If

V ¼ fv1; v2; :::; vng and E ¼ fðvi; vjÞjvi; vj 2 V ; i 6¼ jg, the topology is fully connected

Roles Each participant pi 2 V has a role ri 2 fidle, trainer, aggregator, proxyg. This can be mathematically represented by a

function R : V ! fidle, trainer, aggregator, proxyg, where RðpiÞ ¼ ri

Metrics Performance of the model (e.g., accuracy, precision, recall, F1 score) and resource usage (CPU, RAM, network) of the

nodes. For resources, let R be the resource, UR the usage, and CR the capacity. The usage rate is Rrate ¼ UR

CR

Activity periods If T ¼ ft1; t2; :::; tng represent the set of all time intervals and A ¼ fa1; a2; :::; akg � T the active intervals, then the

activity ratio is Aratio ¼
Pk

i¼1
aiPn

i¼1
ti

Model architecture A feedforward neural network with n layers can be represented as a sequence of function compositions

f ðxÞ ¼ fnðfn�1ð:::f2ðf1ðxÞÞÞÞ, where fiðxÞ ¼ rðwi � xþ biÞ is the operation for layer i, and r is the activation function

Communication

patterns

If M ¼ fmijg is the set of all messages sent from participant i to participant j, the frequency of communication between

these participants can be quantified as Fij ¼ jmij jP
i;j
jmijj

, where jmijj is the number of messages exchanged

Table 2 Attacks, goals, and information at risk in DFL

Attack Goal Information at risk

Eavesdropping Extract sensitive information to undermine integrity and security of the federated participantsa � Model parameters

� Topology

� Roles

MitM Manipulate information or insert malicious data to disrupt federation operationsb � Communication patterns

� Roles

Network mapping Know the network structure to launch more targeted future attacks on the federationc � Topology

� Model architecture

Eclipse attacks Isolate a node or group of nodes to extract information or disrupt DFL communicationsb � Activity periods

� Topology

� Roles

� Communication patterns

a High importance

bCritical
cLow importance
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between enhancing security and managing the additional

computational and network overhead that security mea-

sures may introduce.

4 Security module

This section details the proposed security module, partic-

ularly examining its integration within a novel DFL plat-

form and how it fortifies the network against a broad

spectrum of cyber threats.

4.1 Overview

The security module comprises a set of cybersecurity

strategies designed to safeguard the complex exchange of

data and models in DFL. The distinctive features of DFL,

such as decentralized aggregation, asynchronous commu-

nication, limited visibility to near neighbors, and partici-

pant independence, necessitate nuanced and versatile

security measures. The limited visibility of DFL nodes,

usually only to immediate neighbors, restricts the broader

network anomaly detection. Participant independence

complicates maintaining a secure environment as nodes

decide when to commence model training or aggregation.

This proposal responds to the growing need for advanced

security mechanisms within the field of DFL, considering

the diversity and sensitivity of data involved in these sys-

tems. This module employs sophisticated encryption

methods and MTD techniques, making it highly adapt-

able to various DFL platforms:

• Encryption Using a combination of symmetric and

asymmetric encryption, the module ensures secure

model exchanges and efficient key management. This

strategy guarantees data confidentiality and provides

robust protection against potential breaches.

• MTD techniques These techniques, which include

Neighbor Selection and IP/port switching, create a

dynamic and unpredictable defensive layer within the

system. By continuously changing communication

pathways and nodes, these techniques make it increas-

ingly difficult for potential attackers to gain a foothold

in the system.

4.2 Security components

The components of the security module comprise encryp-

tion techniques and MTD strategies. The encryption tech-

niques, designed to ensure data confidentiality during the

model exchange, combine the efficiency of symmetric

encryption for data protection with the secure key man-

agement of asymmetric encryption. MTD techniques, such

as Neighbor Selection and IP/port switching strategies, add

a dynamic and shifting defensive layer to the system. These

techniques introduce unpredictability and fluidity by con-

tinuously altering network communication pathways,

making the system difficult for potential attackers to

decipher due to the increased complexity and resource

requirements for successful attacks. The integration of

these components in a federated participant cycle within a

DFL environment is depicted in Algorithm 1. This algo-

rithm combines the elements of encryption and MTD,

effectively creating a robust security layer within the DFL

infrastructure.

Algorithm 1: Federated participant cycle with Encryption and MTD

Techniques in DFL
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4.2.1 Communications encryption

The integrity and confidentiality of the information

exchanged among participants during the federation is a

fundamental requirement in secure DFL systems. This

security is achieved by combining symmetric and asym-

metric encryption techniques, forming a comprehensive,

multi-layered security infrastructure.

The first layer of this security architecture employs

symmetric encryption. This method is computationally

efficient and uses a single key for data encryption and

decryption. The Advanced Encryption Standard (AES)

algorithm, provided by the pycryptodome library, is uti-

lized for this layer. Known for its robust security and broad

acceptance, the AES algorithm is an ideal choice, espe-

cially considering the resource constraints often present in

many devices.

The second layer of the security architecture employs

asymmetric encryption. This technique provides an addi-

tional layer of security by using a pair of keys: a public key

for encryption and a private key for decryption. The RSA

algorithm, also provided by the pycryptodome library, is

used for this layer. RSA eliminates risks associated with

key sharing in symmetric encryption and ensures a secure

channel for key exchange, protecting the symmetric keys

used in the AES algorithm. Key distribution and manage-

ment are central to this interconnected system, facilitated

by the controller, which acts as a secure Key Distribution

Center (KDC). Upon deployment, each node is authenti-

cated by the controller (see Sect. 4.3) and issued digital

certificates. This process underpins the trust and integrity

of the public keys disseminated within the network.

Moreover, the controller dynamically manages public key

updates, scheduling regular key renewals in line with

security protocols to swiftly address potential

vulnerabilities.

4.2.2 MTD techniques

The MTD techniques serve to obfuscate and alter the attack

surface dynamically, posing a significant challenge for

attackers attempting to exploit system vulnerabilities. The

proposed security module incorporates two MTD tech-

niques: Neighbor Selection and IP/port switching.

The Neighbor Selection MTD technique minimizes

network topology exposure to potential attackers. This

technique can protect the nodes from targeted attacks by

dynamically altering their communication partners in each

learning cycle. By continually shifting the communication

patterns in the network, the likelihood of an attacker suc-

cessfully predicting or manipulating these patterns is sig-

nificantly reduced. The random selection of neighbors is

implemented using Python’s built-in random library,

ensuring unbiased and unpredictable selections for each

cycle. The process for the Neighbor Selection MTD is

fairly straightforward. In each federated round, a node

randomly selects a subset of neighbors from all available

participants (see Algorithm 1). This selection scheme is

implemented using the socket library of Python, which

provides low-level networking capabilities suitable for

various network protocols, including TCP/IP, common in

wired and wireless communications. The socket-based

communication scheme offers reliability and flexibility,

which are vital in a dynamic DFL environment.

The second technique is IP/port switching MTD, adding

another layer of security. This method involves routinely

changing the IP addresses and ports used by the federated

nodes, further complicating the predictability of the attack

surface. An attacker finds it difficult to sustain a prolonged

attack on a specific node. In the proposed security module,

IP/port switching is implemented by regularly selecting a

new IP address and port from a pool of available ones. This

selection is automated and randomized using the built-in

capabilities of Python for network configuration. By

dynamically altering the IP addresses and ports, the tech-

nique disrupts potential attackers’ ability to predict the

communication structure or execute targeted attacks.

Both techniques need to ensure uninterrupted and secure

communication amid IP and port changes employing a

rendezvous mechanism. To achieve this, the system

implements a predictive notification mechanism. Before a

node switches its network configuration, it broadcasts its

neighbors an encrypted notification containing the new

connection details. This notification, encrypted with the

network’s standard encryption protocols, allows each

recipient node to update its records before the change. This

Table 3 Potential mitigations

for attacks in DFL
Security components Attacks

Eavesdropping MitM Network mapping Eclipse

Encryption U U � U

MTD � U U U

Wireless Networks (2024) 30:7407–7421 7413

123



decentralized approach eliminates the need for a real-time

directory service and instead relies on the timely dissemi-

nation of IP/port updates directly between nodes. As a

result, even when an IP address or port changes, the

communicating nodes can independently reconcile the new

configurations, thereby maintaining uninterrupted and

secure connections. This method adheres to the principles

of a decentralized network and reinforces the security

infrastructure, ensuring the network resolution process

remains robust against potential vulnerabilities.

Building on the elaboration of the implemented security

techniques, it is essential to understand their effectiveness,

as depicted in Table 3. Encryption protects against eaves-

dropping, MitM, and eclipse attacks by protecting data

during transmission. As a complement, MTD offers robust

defenses against attacks such as Network Mapping or

eclipse attacks.

4.3 Fedstellar platform

Fedstellar is an innovative platform that facilitates the

training of FL models across a wide array of physical and

virtual devices [19]. The platform is a hub for developing,

deploying, and managing federated applications and pro-

vides a standardized approach for executing these pro-

cesses. The architecture of Fedstellar is composed of three

fundamental elements:

• Frontend A user-centric interface that offers easy

experiment setup and real-time monitoring, thus ensur-

ing an intuitive user experience.

• Controller A central command unit orchestrates oper-

ations across the platform, ensuring seamless inter-

module communication and efficient task execution.

• Core This critical component, deployed on each

participating device, is responsible for vital functions

such as model training and communication.

These components establish a robust and resilient archi-

tecture that provides sophisticated tools and metrics for

federation management. This enables high transparency

and efficiency in monitoring the learning process. More-

over, the platform contains extensible modules offering

data storage, asynchronous capabilities, and effective

model training and communication mechanisms.

The security module is integrated into the Fedstellar

platform to demonstrate the proposed effectiveness and

compatibility of the module. As depicted in Fig. 1, the

security module is a pivotal functionality of the core

component responsible for managing secure communica-

tions across the platform. Its integration into the core

ensures robust protection for the vast and complex com-

munication exchanges characteristic of DFL. To support

the overall security structure, enhancements have also been

made to the frontend and the controller components of the

Fedstellar platform.

In this sense, the frontend encompasses the security

definition feature, enabling users to set and manage their

security parameters conveniently. Conversely, the con-

troller implements security measures, a provision that

efficiently manages and enforces the established security

settings in real time. Also, it incorporates a participant

Fig. 1 Overall architecture of Fedstellar and the security module
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authentication process based on JSON Web Tokens (JWT)

during network deployment, conducted under encrypted

communication (see Sect. 4.2.1). Upon joining the net-

work, each node requests a token from the controller by

providing its credentials. The controller validates these

credentials and issues a JWT, which the node then uses for

all subsequent communications within the network. This

token, containing encrypted identity and permission

information, ensures that only authenticated nodes partic-

ipate in the network, enhancing security and preventing

unauthorized access. The tokens have a limited lifespan,

requiring nodes to periodically re-authenticate, thus main-

taining ongoing network integrity.

The integration of the security module maintains com-

patibility through its design, which leverages threaded

processing for non-blocking operations and event passing

between modules for effective communication. These

provisions ensure that the addition of the module does not

disrupt the existing functionalities of the platform but

rather harmonizes with them, augmenting the capability of

Fedstellar to efficiently manage diverse federations com-

prising various devices, network topologies, and

algorithms.

5 Validation scenario

The validation scenario of this study emulates an edge

computing setting, which evaluates the performance of the

proposed security module in a DFL environment.The val-

idation was conducted in two distinct deployments: phys-

ical and virtual. The physical deployment, as detailed in

Table 4, encompasses a federation of eight physical devi-

ces: five Raspberry Pi 4 units and three Rock64 units.

These devices are interconnected via a random network

topology within the private local network. This topology is

designed to mimic dynamic real-world environments,

where connections between devices vary, offering insights

into the federated process under fluctuating network con-

ditions. The Raspberry Pi 4 units, armed with a 1.5 GHz

quad-core 64-bit ARM Cortex-A72 CPU and 2GB of

RAM, present a delicate balance between size, cost-effec-

tiveness, and computational prowess, thereby rendering

them a suitable choice for simulating edge nodes. The

remaining three devices, Rock64 boards, enhance the sys-

tem’s heterogeneity by contributing slightly lower pro-

cessing capabilities, characterized by a 64-bit ARM

Cortex-A53 with a 1.5 GHz clock speed and up to 2GB

RAM. To showcase the scalability of the solution, the

experiment incorporates a virtual deployment comprising

50 Docker containers. Each container is configured to

replicate the processing power and memory capacity of the

physical devices. This expanded configuration offers a

comprehensive testbed for evaluating the scalability and

security module in a more complex DFL network. The

physical and virtual deployment is conducted on the Fed-

stellar platform, specifically designed to facilitate FL

experiments. Within this platform, each participating node

employs the LeNet5 neural network architecture. The

choice of LeNet5 is strategic, given its relatively simple

structure that allows for quick training and inference, thus

suitable for DFL across devices with varying computa-

tional capabilities. The MNIST dataset is utilized to train

and validate the federated models. Comprising 70,000

handwritten digits, MNIST provides a balanced and com-

prehensive dataset for benchmarking classification models.

The security of the federation is assessed under three

different configurations, providing an expansive view of its

security posture under varied conditions. Initially, the

federation functions with � a baseline with no security

measures and no malicious attack for subsequent security

comparisons. Following this, the federation incorporates `

encryption techniques, forming its primary line of defense.

Finally, the system operates with ´ both encryption and

MTD techniques, following the design of the proposed

security module. To assess the resiliency of the security

configuration against cybersecurity threats, the validation

scenario simulates an eclipse attack, a significant threat in

decentralized networks [21, 22]. The choice of this attack is

motivated by the number of security measures it requires,

as shown in Table 3. The successful mitigation of this

multifaceted attack in the validation scenario implies a

high probability of successful defense against other

potential attacks, as enumerated in Table 2. Figure 2 shows

Table 4 Validation scenario using physical and virtual deployment

Characteristic Description

Participants � Physical deployment

� 5 Raspberry Pi 4

� 3 Rock64

` Virtual deployment

� 50 Docker containers

DFL platform Fedstellar [19]

Federation architecture DFL

Network topology Random

Federated model LeNet5

Dataset MNIST [20]

Security configuration � Baseline

` Encryption

´ Encryption and MTD

Attack Eclipse attack:

� One external attacker

� One target participant
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the steps of the eclipse attack deployed: (i) involves iso-

lating a chosen node, (ii) seizing control over its commu-

nications, and (iii) extracting valuable information. The

implementation of the eclipse attack, as detailed in Algo-

rithm 2, involved several technical considerations, partic-

ularly in network communication and manipulation.

Initially, it required configuring two nodes to act as com-

promise participants. These nodes were set up using

advanced socket programming techniques, allowing them

to establish and hijack communication channels with the

target node. By manipulating the routing tables and uti-

lizing custom-built scripts, the attacking nodes were able to

redirect traffic, effectively isolating the target node from

the rest of the network. Following the steps outlined in

Fig. 2, these nodes then took over the communication

channels of the isolated node, using packet-sniffing tools

and protocol spoofing to simulate data extraction processes.

Algorithm 2: Implementation of eclipse attack in DFL

6 Results

This section assesses the security module performance

focused on performance indicators such as the F1 score for

federated models, the percentage of CPU and RAM usage,

network traffic quantified in megabytes ðMBÞ, and model

convergence time. Figs. 3 and 4 show the performance

indicators in the physical and virtual deployment,

respectively.

The diagram depicted in Fig. 3a demonstrates the

average F1 score for the federated models in a physical

deployment, under three separate security configurations:

baseline without security techniques and malicious attacks

on the network, encryption, and encryption combined with

MTD techniques to deal with attacks. All three configu-

rations exhibit a consistent growth pattern in the early

stages of the federation process (�10 min). The baseline

configuration continues upward, achieving an F1 score of

97%. This indicates the potential for high performance

when security overheads are absent. However, when

examining the configurations that include security mea-

sures, there is a slight decline in the F1 score. In the

encryption configuration, the F1 score peaks at 94%, while

in the combined encryption and MTD setting, the F1 score

fluctuates between 92.5%. Similarly, Fig. 4a shows the

results in a virtual deployment. In this case, the growth is

rapid in the first 6 min, with the baseline configuration

reaching 98.9%. The encryption configuration achieves an

F1 score of 95.5%, while the encryption with MTD con-

figuration attains 93.8%. The variations observed

throughout the federation process are likely due to the

occasional computational overhead of the security mech-

anisms during the processing and transmission of data.

A more granular view of the performance in terms of

CPU usage is provided by Figs. 3b and 4b for physical and

virtual deployments, respectively. In the physical deploy-

ment, the baseline CPU usage is 54.6% on average,

reflecting the computational load of the training process.

With the introduction of encryption, there is an increase in

CPU usage to 60.9% due to the additional tasks of

encrypting and decrypting data. These requirements further

escalate when encryption is combined with MTD, leading

to an average CPU usage of 63.2%, attributed to managing

dynamic communication routes. In contrast, the virtual

deployment exhibits a different pattern, as shown in

Fig. 4b. The baseline configuration uses about 62.4% of the

CPU, which increases to 66.1% with encryption, reflecting

the computational overhead in a virtualized environment.

Fig. 2 Shematic representation of eclipse attack deployed in the

validation

7416 Wireless Networks (2024) 30:7407–7421

123



Incorporating both encryption and MTD causes a CPU

usage rise up to 68%. These figures highlight the increased

resource demands in the virtual deployment, particularly

when the number of participants increased.

For RAM usage in both physical and virtual deploy-

ments, a discernible trend is evident, as highlighted in

Figs. 3c and 4c. In the physical deployment, the baseline

configuration exhibits a lower average of 31.9%, reflecting

the lower computational footprint when security measures

are absent. However, including encryption mechanisms

results in a slight increase in RAM usage due to the

additional memory demands of the encryption process.

Specifically, the encryption configuration averages 33.8%,

and when the MTD technique is added alongside encryp-

tion, the average RAM usage augments to 35.9%. In con-

trast, the virtual deployment shows a different usage

pattern. The baseline configuration in the virtual environ-

ment uses 27% of the RAM, which is lower than in the

physical deployment. This increases to 29.5% with

encryption and further to 31% when both encryption and

MTD are implemented. This is attributable to the addi-

tional memory required for managing dynamic communi-

cation routes under MTD. Despite the marginal increase, it

underscores the added resource requirements induced by

security features.

Furthermore, network traffic, as depicted in Fig. 3d for

the physical deployment and Fig. 4d for the virtual

deployment, provides critical insights into the performance

impacts of different security configurations. In the physical

setup, the baseline configuration remains modest, averag-

ing around 110.2 MB. However, the integration of security

mechanisms leads to an increase in network usage. The

encryption configuration generates an average of 185.2 MB

of network traffic, while the encryption with MTD con-

figuration pushes the average even higher, reaching 226

MB. In contrast, the virtual deployment, which involves a

larger number of participants, exhibits higher network

usage across all configurations. The baseline configuration

shows an average network traffic of 429.9 MB, which rises

to 448.4 MB with the implementation of encryption and

further to 480.8 MB when encryption is combined with

MTD techniques.

Moreover, the detailed network metrics, as outlined in

Table 5, further elucidate the impacts of these security

configurations on network performance. These metrics

include (i) throughput, measuring data transmission effi-

ciency; (ii) latency, indicating the communication speed;

(iii) packet loss, reflecting data transmission reliability; and

(iv) control overhead, representing the network cost due to

security management. In physical deployments, the results

(a) Model (F1 score) (b) CPU usage (%) (c) RAM usage (%) (d) Network usage (MB)

Fig. 3 Performance of Fedstellar in a physical deployment with eight participants using MNIST during 60 min

(a) Model (F1 score) (b) CPU usage (%) (c) RAM usage (%) (d) Network usage (MB)

Fig. 4 Performance of Fedstellar in a virtual deployment with 50 participants using MNIST during 60 min
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show a slight decrease in throughput from 92 Mbps in the

baseline to 85 Mbps with encryption and MTD, coupled

with a gradual increase in latency and packet loss. Con-

versely, in virtual deployments, the throughput remains

consistent across security settings, although lower than in

physical setups, indicating a potential bottleneck in virtual

environments. Interestingly, latency remains lower in vir-

tual deployments compared to physical ones, possibly due

to optimized routing in virtualized networks. However,

packet loss and control overhead show a marked increase

with more complex security configurations, emphasizing

the additional network strain introduced by these security

measures.

As evidenced by Table 6, these results underscore an

inherent tension in securing DFL. While deploying security

protocols such as encryption and MTD is indispensable for

safeguarding various aspects of the federated learning pro-

cess, these measures invariably come with additional com-

putational and network overheads. These escalated resource

requirements, although a trade-off, provide a safeguard

against the pervasive risk of data breaches and cyberattacks.

This study thus offers an empirical guide, presenting the

performance implications of various security configurations

in real-world DFL scenarios. It showcases the balance

between achieving high predictive accuracy and maintaining

stringent security standards.As illustrated by Table 6,

securing DFL systems with encryption and MTD techniques

introduces notable computational and network overheads,

evident in physical and virtual deployments. While these

security measures increase CPU, RAM, and network usage,

with virtual deployments showing higher resource utilization

due to a larger number of participants, they are essential for

protecting against data breaches and cyberattacks. This

study highlights the critical balance in DFL between

ensuring high predictive accuracy and adhering to rigorous

security protocols, offering a comprehensive view of the

performance trade-offs inherent in implementing robust

security configurations in real-world scenarios.

Table 5 Network metrics under different security settings in DFL

Deployment Security setting Throughput (Mbps) Latency (ms) Packet loss (%) Control overhead (%)

Physical Baseline 92 61 0.2 3.5

Encryption 87 63 0.5 4.7

Encryption and MTD 85 64 1.1 5.9

Virtual Baseline 85 52 0.6 4.3

Encryption 81 52 0.6 7.1

Encryption and MTD 81 53 1.3 7.8

Table 6 Security settings, information protection, and performance in DFL

Security settings Information protected Performance metrics*

F1 score (%) CPU (%) RAM (%) Network (MB)

Baseline N/A PD: 97 ± 0.02 PD: 54.4 ± 8 PD: 32 ± 2.3 PD: 110.1 ± 12

VD: 98.9 ± 0.01 VD: 62.4 ± 12 VD: 27 ± 1.2 VD: 429.9 ± 8

Encryption Model parameters

Roles

Communication patterns

PD: 94 ± 0.9 PD: 60.7 ± 7 PD: 33.9 ± 2.41 PD: 185.1 ± 21

VD: 95.5 ± 0.8 VD: 66.1 ± 9 VD: 29.5 ± 1.8 VD: 448.4 ± 20

Encryption and MTD Model parameters

Roles

Communication patterns

Topology

Activity periods

PD: 92.5 ± 1.1 PD: 63 ± 7 PD: 35.9 ± 1.5 PD: 226 ± 15

VD: 93.8 ± 0.7 VD: 68 ± 9 VD: 31 ± 1.7 VD: 480.8 ± 18

*Average values for each participant

PD Physical deployment, VD virtual deployment
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7 Conclusion

This work formulated a threat model for DFL communi-

cations, providing a detailed understanding of potential

security vulnerabilities and sensitive information that could

be exposed during interactions between participating

nodes. In response to these challenges, an innovative

security module was developed for DFL communications.

It incorporates robust defensive mechanisms, including

symmetric and asymmetric encryption methods and MTD

techniques, tailored to the unique structure and require-

ments of DFL. This security module was deployed within a

real-world DFL framework called Fedstellar to evaluate its

efficacy and practicality. The validation scenario was

conducted through two distinct deployments. The first

involved a random topology of eight physical devices

engaged in solving an ML task using the MNIST dataset

and facing a custom implementation of eclipse attacks.

Complementing this, a second deployment was executed in

a virtual environment with 50 participants, expanding the

scope and scale of the validation to a more extensive net-

work scenario. Both deployments allowed the module to be

rigorously evaluated under three security configurations:

baseline without security and malicious attacks, encryp-

tion, and a composite of encryption and MTD. The

assessments validated the performance of the proposed

module across both physical and virtual deployments,

demonstrating an average F1 score of approximately 93%

with an acceptable increase in system overhead. The peak

values observed in the physical deployment for CPU usage,

network traffic, and RAM usage were 63% (± 7%), 226

MB (± 15 MB), and 35.9% (± 1.5%), respectively. In the

virtual deployment, these metrics slightly increased due to

the larger scale of operation, reaching 68% (± 9%) for

CPU usage, 480.8 MB (± 18 MB) for network traffic, and

31% (± 1.7%) for RAM usage. These results demonstrate

the efficiency and practicality of the security module in

diverse DFL applications, accommodating various

deployment scales and complexities.

Future research could consider developing and integrating

new security techniques into the current security module to

enhance the resilience of DFL environments further.

Researchers might assess these enhancements across dynamic

network topologies and more participant devices to better

understand their efficacy in real-world, large-scale applica-

tions. Additionally, simulations with a wider variety of

potential attacks would provide valuable insights into the

robustness of these defensive methods under diverse threat

scenarios. These advancements could significantly contribute

to achieving secure, efficient, and scalable deployment of DFL.
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