
Reputation System based on Distributed Ledge to
Secure DecentralizedFederated Learning
Jan von der Assen

University of Zurich
Sandrin Raphael Hunkeler

University of Zurich
Alberto Huertas Celdran

University of Zurich
Enrique Tomas Martinez Beltran

University of Murcia
Gérôme Bovet

Federal Department of Defence, Civil Protection and Sports
Burkhard Stiller

University of Zurich

Research Article

Keywords: Decentralized Federated Learning, Reputation, Secure Aggregation, Distributed Ledger

Posted Date: October 4th, 2024

DOI: https://doi.org/10.21203/rs.3.rs-4997851/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-4997851/v1
https://doi.org/10.21203/rs.3.rs-4997851/v1
https://doi.org/10.21203/rs.3.rs-4997851/v1
https://creativecommons.org/licenses/by/4.0/

Eur. Phys. J. C manuscript No.
(will be inserted by the editor)

Reputation System based on Distributed Ledger to Secure Decentralized
Federated Learning

Jan von der Assena,1, Sandrin Raphael Hunkelerb,1, Alberto Huertas Celdránc,1,

Enrique Tomás Martı́nez Beltránd,2, Gérôme Bovete,3, Burkhard Stillerf,1

1Communication Systems Group CSG, Department of Informatics IfI, University of Zurich UZH, 8050 Zürich, Switzerland
2Department of Information and Communications Engineering, University of Murcia, 30100 Murcia, Spain
3Cyber-Defence Campus within Armasuisse Science & Technology, 3602 Thun, Switzerland

Received: date / Accepted: date

Abstract Machine Learning (ML) faces several challenges,

including susceptibility to data leakage and the overhead as-

sociated with data storage. Decentralized Federated Learn-

ing (DFL) offers a robust solution to these issues by elimi-

nating the need for centralized data collection, thereby en-

hancing data privacy. In DFL, distributed nodes collabora-

tively train an ML model by sharing model parameters rather

than sensitive data. However, DFL systems are vulnerable

to poisoning attacks, where malicious participants manipu-

late their local models or training data to compromise the

overall model. Existing robust aggregation methods attempt

to mitigate these threats by evaluating the quality of mod-

els based on specific criteria before and during aggregation.

However, these methods rely solely on the local perspectives

of individual DFL participants, limiting their effectiveness

in identifying malicious actors. More specifically, the role

of Distributed Ledger technology in providing a reputation-

based aggregation approach for decentralized learning has

not been explored. Moreover, experiments with reputation-

based attacks have not been performed. Thus, this work in-

troduces a ledger-based reputation system that enables par-

ticipants to share their local reputation assessments, which

are then combined into a reputation score. This score in-

forms a robust aggregation algorithm, facilitating weighted

aggregation. Experimental results demonstrate that the pro-

posed system effectively mitigates model poisoning attacks

and defenses against attacks targeting the reputation system

itself. Additionally, resource utilization metrics reveal trade-

offs and scalability limitations, with the reputation system

ae-mail: vonderassen@ifi.uzh.ch (corresponding author)
be-mail: sandrinraphael.hunkeler@uzh.ch
ce-mail: huertas@ifi.uzh.ch
de-mail: enriquetomas@um.es
ee-mail: gerome.bovet@armasuisse.ch
fe-mail: stiller@ifi.uzh.ch

providing valuable information to participants while main-

taining competitive latency levels.

Keywords Decentralized Federated Learning · Reputation ·

Secure Aggregation · Distributed Ledger

1 Introduction

The usage of Machine Learning (ML) in Artificial Intelli-

gence (AI) has spurred innovations in several domains, lead-

ing to rapid adoption of AI. As such, AI has been deployed

to solve complex problems in health care, insurance, retail,

and the automotive industry [1]. The advent of off-premise,

service-based access models, such as the ones offered by

Large Language Models (LLM), has accelerated the adop-

tion rate even further. For example, ChatGPT, one service

relying on LLMs, has gained 100 million active monthly

users in a record-breaking time of two months after its re-

lease to the public [2].

Traditional ML techniques, including novel forms such

as LLMs, present a common characteristic: data is needed

both for training and inference. Thus, these systems are built

and operated on the premise that users agree on having their

data used and transmitted to a central location. Hence, data

privacy is not ensured at development and runtime, mak-

ing these approaches unsuitable for privacy-preserving sce-

narios. Federated Learning was proposed in 2016 as an ap-

proach to deal with this situation and comply with data pri-

vacy regulations that forbid the collection of certain data in

the first place. In federated learning, training data is not held

in a central location. Instead, a distributed system is formed

by several nodes operating on local data to achieve a com-

mon goal: training a global model that comprises the char-

acteristics of the training data without actually revealing that

data. This can be achieved in two variants: sharing the model

2

parameters with a central orchestrator or sharing them with

a set of nodes in a decentralized manner [3,4].

Decentralized federated learning (DFL) successfully elim-

inates the necessity of a central coordinator constituting a

single point of failure [5]. In the past, many decentralized

systems have emerged for various areas, such as finance and

energy. The proliferation of these systems has led to analy-

ses and discussions of them as not just technical machines

but rather as socio-technical machines. Applying the same

reasoning to DFL raises several concerns, including security

risks such as model poisoning or inference attacks [6].

The literature has proposed several approaches to secure

DFL against these attacks [7]. In this sense, robust aggre-

gation, where the exchanged models are analyzed based on

certain criteria, is a common approach. However, when com-

bining reputation-based approaches that model the opinions

of the participants in the network, a more complex view of

the participants and their behavior is needed. For example,

even though a node may not interact with a malicious one,

it could still form an opinion about its behavior from other

nodes that have been assessed as trustworthy based on pre-

vious model exchanges. Through this, a node could learn

about the trustworthiness of nodes without analyzing their

models. Depending on the federation topology, this could

influence the performance of the system as a whole since a

full mesh topology – where everyone could analyze every

other node’s models – may unlikely scale for larger DFL

networks.

In such a reputation system, new threats arise since the

reputation system constitutes an increase in the attack sur-

face. For example, malicious nodes can execute Denial of

Service (DoS) or reputation-based attacks. Hence, this pa-

per analyzes how distributed ledger (DL) technology can be

integrated into a DFL network to enable nodes to securely

share opinions, gather a global view of each node (i.e., a trust

representation), and then adapt the model aggregation pro-

cess to accommodate for trust. In the current state-of-the-art,

two key limitations exist. Firstly, no studies have explored

how DLs can be applied when employing Federated Learn-

ing in a decentralized setting. Secondly, reputation-based FL

approaches have not investigated the effectiveness of their

systems against reputation-based attacks. Thus, this article

presents the following contributions:

– A reputation-based framework that comprises a DFL net-

work with several aggregators and a DL network involv-

ing an Oracle to deploy smart contracts and the reputa-

tion system smart contract.

– The prototypical implementation of the framework’s key

components and their integration into FedStellar, a plat-

form for research on DFL. In this context, a Flask web

app implements cross-cutting concerns of the DL Ora-

cle. Furthermore, the reputation system is implemented

in Solidity, comprising an adjacency matrix to store opin-

ions and an EVM-compliant implementation to compute

the overall reputation values.

– A set of experiments considering the framework in a sce-

nario with several DFL nodes collaboratively training a

multi layer perception (MLP) model using the MNIST

dataset with Non-IID distribution. More in detail, the

following four experiments were executed: (i) an anal-

ysis of the relative and absolute computational resources

required by the DFL nodes, DL validators, non-validators,

front-end, boot nodes, and Oracles; ii) an evaluation of

the aggregation time delays and financial costs incurred

by adopting DL technology within the DFL scenario; iii)

the execution of several attacks to establish the defense

effectiveness of the reputation system against model poi-

soning attacks; and iv) the execution of badmouthing at-

tacks poisoning the reputation system itself to assess the

defense robustness of the reputation algorithm.

The remainder of this article is structured as follows.

Section 2 introduces key concepts and reviews related stud-

ies. Section 3 presents the framework architecture and pro-

totypical implementation. The efficiency and effectiveness

of the approach are evaluated in Section 4; leading up to

concluding considerations in Section 5.

2 Background and Related Work

This section starts introducing the main aspects of Federated

Learning and Distributed Ledgers to later review the litera-

ture done combining these fields.

2.1 Federated Learning

To collaboratively refine the Google Keyboard while main-

taining user privacy, Google proposed FL in 2016. At the

core, FL involves that instead of sharing raw or pre-processed

training data, only the model weights are exchanged. Sev-

eral roles are typically observed in a federation: Clients use

the resulting models in the federation and, optionally, use

them as a base for retraining, using locally accessible train-

ing data. Aggregators receive the updated models from one

or more clients and aggregate them into a new global model.

In turn, they select clients to broadcast the new model [8].

When analyzing the roles and responsibilities of the nodes

in a given federation, the overall scenario can be classified:

centralized federated learning involves a single, often pre-

determined aggregator at a central position. DFL, on the

other hand, does not exhibit a pre-determined or centralized

entity, paving the way for different topologies [3]. In addi-

tion, a federation can be characterized by its training data

distribution (i.e., yielding vertical or horizontal learning ap-

proaches) [5].

3

Various application areas are said to benefit from DFL

such as industrial engineering, health care, or mobile com-

puting. Similarly, the research community has described sev-

eral threats during the training, intercommunication, and in-

ference. Due to the lack of a centralized controller, any en-

tity can perform model poisoning attacks, where the model’s

parameters are adapted during training using different meth-

ods. As in any FL architecture, DFL is susceptible to data

poisoning attacks since data is held at the client’s side. Thus,

different strategies, such as label flipping or backdoor at-

tacks, exist. Although privacy is a key concern in FL, in-

ference attacks target the confidentiality of the data that was

used to train. More specifically, the literature describes strate-

gies such as membership inference and reconstruction at-

tacks [7].

Although all attacks are relevant in DFL, this work fo-

cuses on attacks targeting the integrity, correctness, and avail-

ability of the federation’s model. As such, inference attacks

are out of the scope of the work at hand. Both IID and non-

IID scenarios are considered to defend against the attacks.

It is expected that a minority subset (i.e., less than 50%) of

nodes participating in the federation are malicious and the

remaining ones are honest. Furthermore, a realistic threat

model of a secure DFL scenario must address threats relat-

ing to any additional defense mechanism – in this scenario,

the reputation system. For example, Denial-of-service (DoS)

attacks may temporarily hinder the availability of the reputa-

tion system. Badmouthing attacks aim to decrease the repu-

tation of honest nodes or increase the reputation of malicious

ones. Finally, attacks on the underlying communication sys-

tem are not the focus of the current research.

2.2 Distributed Ledgers

Distributed ledger technology (DLT) is a decentralized ap-

plication that enables secure, transparent, and trustworthy

transactions in an environment where honesty can’t be as-

sumed [9]. The concept of DLT was first introduced in 2008

by Satoshi Nakamoto through the Bitcoin white paper, aim-

ing to resolve the Byzantine generals’ problem [10]. This

issue describes the challenge faced by multiple honest lead-

ers attempting to reach a consensus while being disrupted

by dishonest ones [11].

To address this problem, DLT relies on a consensus pro-

tocol rather than a trusted third party to establish trust among

participants. Consensus protocols govern how nodes vali-

date transactions, ensuring that all nodes agree on the same

information and maintain a synchronized ledger [12,9,13].

DLT operates within a peer-to-peer (P2P) network, form-

ing an append-only database (ledger) that is simultaneously

maintained and stored by distributed nodes. This design re-

moves single points of failure, making the ledger resilient to

node breakdowns [9,12].

Within DL technology, a blockchain is considered a de-

centralized ledger where all transactions are recorded per-

manently and cannot be altered [14]. The first decentralized

ledger, Bitcoin (BTC), was built on top of a blockchain [10].

This distributed ledger consists of batches of valid transac-

tions, known as blocks, which contain metadata such as the

Merkle tree root, the hash of the prior block, and consen-

sus protocol parameters [15]. The linked block hashes give

the blockchain its name and serve as a unique identifier for

each block while ensuring their integrity [12]. If a transac-

tion were modified, the hash of its corresponding block, as

well as those of all subsequent blocks, would change [16].

Combining this with the highly duplicated and distributed

ledger makes blockchain technology highly resistant to tam-

pering and thus perceived as immutable.

One technology enabled by DLs is smart contracts, which

are self-executing programs that run on a blockchain, ensur-

ing their correct execution through the underlying consensus

protocol [17,12]. These contracts are duplicated and stored

across all participating blockchain nodes [18], making them

nearly immutable against tampering. Ethereum was a pi-

oneer in introducing the development and deployment of

smart contracts [19]. Each interaction with a smart contract

that modifies the ledger is recorded as a transaction and stored

permanently on the blockchain [14]. Smart contracts are used

to build distributed applications (dApps), which host parts

of their back-end and database on a blockchain [13]. Ide-

ally, dApps should not rely on human interaction and have

all policies encoded in their smart contracts [16]. Central-

ized applications use login credentials for authorization at a

server, whereas dApps utilize wallet addresses and private

keys of blockchains for authentication. While dApps pro-

vide more transparency and improved identity verification,

they also introduce challenges such as execution efficiency

and the irreversibility of exploited vulnerabilities [18].

2.3 Literature Review

Based on the literature review, eleven relevant studies have

been analyzed, as outlined in Table 1. Four aspects have

been elicited to contrast the approaches. First, the usage of

the distributed ledger within the Federated Learning context.

Secondly, the security function achieved by the integration is

analyzed (e.g., whether the DL is used to filter a model or a

node). Thirdly, it was assessed whether approaches focus on

DFL, or on its centralized counterpart. Finally, it was sought

whether a prototypical implementation of the approach ex-

ists.

With respect to DL usage, the examined frameworks uti-

lized different tools within the distributed ledger to leverage

its trusted, secure, and tamper-resistant characteristics. Inte-

grating CFL aggregation into a smart contract or embedding

the process within the consensus mechanism [20,21,27,28,

4

Table 1: Literature Review of Distributed Ledger Technology in Federated Learning

Work DL Usage Security Architecture Implementation

[20] 2023 Consensus Con-dBFT Decoupled, CFL HLF

[21] 2021 Consensus PoW Coupled, CFL Public Ledger

[22] 2020 Reputation Node Filtering Decoupled, CFL HLF

[23] 2019 Reputation Node Filtering Decoupled, CFL BC, IPFS

[24] 2024 Aggregation Partitioned Model Decoupled, CFL HLF

[25] 2021 Analytics Anomaly Detection Decoupled, CFL Private BC

[26] 2023 Incentivization Model Filtering Decoupled, CFL HLF

[27] 2023 Consensus dBFT Decoupled, CFL Exonum

[28] 2019 Aggregation PoW or pBFT Decoupled, CFL HLF

[29] 2023 Reputation Aggregation Node and Model filtering Decoupled, CFL Simulation

[30] 2022 Aggregation Multi-Layer BC Semi-decoupled, DFL Flask and ETH

This article Reputation Weighted Aggregation Decoupled, DFL Private PoA ETH, FedStellar

ETH=Ethereum, HLF=Hyperledger Fabric, BFT=Byzantine Fault Tolerance,
IPFS=InterPlanetary File System, PoW=Proof of Work, PoA=Proof of Authority

30] closely links the architectures of FL and blockchain,

causing changes in one to affect the other directly. Con-

versely, more loosely connected methods, like incentive sys-

tems [26], reputation systems [22,23,29], and analytic sys-

tems [25], are less reliant on the FL process. Here, the actual

training is decoupled from the DL, which can provide op-

tional benefits, such as increased participation or improved

insight into the network. Thus, the DL also does not pose as

a critical dependency for the overall system.

The Security column outlines each framework’s primary

technological or logical approach to minimizing its attack

surface. The reviewed frameworks generally employ four

key strategies to mitigate threats such as poisoning attacks or

reduce the likelihood of successful attacks overall: consen-

sus protocols, filtering, anomaly detection, and weighted ag-

gregation. Integrating aggregation into consensus algorithms

[20,21,28,27] hinges on nodes’ ability to verify the validity

of transactions. However, this method still relies on com-

puting a trust metric to assess the quality of contributions.

Additionally, the effectiveness and applicability of Proof-

of-Work-based protocols (PoW) in mitigating attacks raises

questions, particularly in small FL networks and on low-

power devices. Opposedly, information from the DL could

be used for network censorship: filtering out models or par-

ticipants [22,23,26,29], has been shown to improve model

quality and training performance. However, this approach

assumes uniform data distribution and is vulnerable to fil-

tering out false positives. Both strict filtering and weighted

aggregation are highly dependent on evaluating the quality

and performance of individual models. These methods could

be enhanced by incorporating reputation metrics to increase

the robustness and fairness of the aggregation algorithms.

With respect to the architecture followed by the approaches,

varying degrees of coupling between worker- and blockchain

nodes are observed. Coupled nodes are streamlined but chal-

lenging to extend, while decoupled nodes are easier to mod-

ify but more resource-intensive. Semi-coupled architectures

combine these approaches. Coupled nodes are suitable for

productive environments prioritizing persistence and resources,

while decoupled nodes are better suited for development and

research settings where experimentation and adaptability are

key. Aside from [30] and [21] studies follow a decoupled ar-

chitecture. Moreover, a clear lack of approaches focusing on

DFL is apparent. Aside from [30], no approaches investigate

the suitability of DL technology outside of CFL.

The implementation of these approaches refers to their

underlying technological basis. Two popular open-source dis-

tributed ledger frameworks, Ethereum and Hyperledger Fab-

ric (HLF), were observed. HLF offers full configurability

but requires extensive knowledge of encryption methods and

blockchain protocols, making it suitable for research frame-

works focusing on consensus protocols. In contrast, Ethereum’s

open-source implementations are easier to use and deploy

but may lack extensibility and modularity.

In summary, previous research has focused on decentral-

izing central aggregating entities in CFL using DL technol-

ogy and employing trust/reputation metrics. However, these

studies did not explore the effectiveness of computing and

storing reputation values in DFL. Additionally, existing frame-

works primarily addressed poisoning attacks excluding at-

tacks on the reputation system itself. Thus, this work aims

to fill these gaps by developing a ledger-based reputation

system for DFL, implementing a reputation-based weighted

aggregation algorithm, and evaluating the robustness of the

reputation system against adversarial attacks and reputation

attacks.

3 Architecture

This section presents the overall architecture of the proposed

reputation system and its integration into FedStellar [31], an

5

Legend

Boot Node

ORCHESTRATION

FEDERATED LEARNING NETWORK DISTRIBUTED LEDGER NETWORK

User Interface

Ledger Configuration

Controller

Ledger Deployer

Federated Learning Node Core

Distributed Ledger Aggregation

Distributed Ledger Handler

Oracle

Smart Contract Deployment

Credential Vault

On-Chain Code

Scenario Administration

Scenario Administration

Scenario Administration

Reputation System

Oracel API

Ledger API

 configure ledger1

 deploy learning

3

 deploy ledger

2

 obtain credentials

5

 configure, deploy reputation system4

 r/w reputations

6

N

B

V

V

V

B

V Validator Node

 Non-ValidatorN

Software Component

Interface Component

Control Flow

Fig. 1: High-level View on the Distributed Ledger-based Architecture

existing DFL platform. Specifically, the design and imple-

mentation of two key reputation components are introduced:

the DL-based aggregation algorithm and the reputation sys-

tem, which is its on-chain counterpart.

As highlighted in Fig. 1, the components of the proposed

framework are introduced in six steps. Since Fedstellar al-

ready provides a front- and back-end to manage, configure,

and execute DFL scenarios, its components are extended to

provide the desired functionality. First, in the User Interface,

the dashboard is extended to configure the DL and its reputa-

tion system. For example, it enables the configuration of the

aggregation algorithm. The User Interface sends all config-

uration aspects to the Controller (step 1 in Fig. 1). Here, an

additional component is needed to act as a Ledger Deployer.

This component must execute two tasks: provisioning the

DL infrastructure (step 2) and deploying the necessary in-

frastructure for the DFL scenarios (step 3).

3.1 Distributed Ledger Network

The proposed DL infrastructure consists of four components

running on a generic DL network. As it is common in DL

networks, they may require several different nodes to op-

erate. Herein, three DL network nodes are assumed. Boot

nodes do not actively engage in the DL’s consensus mech-

anism – they enable node discovery in a Peer-to-peer (P2P)

setting. Thus, the validator and non-validator nodes can dis-

cover and interact with each other. Validator nodes provide

key aspects, such as immutable data storage and the oper-

ation of the consensus algorithm, which ultimately enables

write operations through transactions. Only the non-validator

nodes present an API for clients that do not implement a DL

node. Nevertheless, they still fully engage in the synchro-

nization of state within the DL. Thus, they act as a gate-

way to the DL. To present a single access point deploying

the reputation system, an Oracle is proposed. Indeed, for a

public, permission-less Blockchain, the Oracle would repre-

sent a centralized component. Thus, it must be assumed that

there is a centralized entity that is considered trustworthy,

at least for the deployment of the system – after provision-

ing, it does not actively engage in the operation. The Oracle

compiles and deploys the reputation system chaincode and

provides funding for the DFL nodes (step 4 in Fig. 1). In a

public permission-less scenario, nodes could provide their

own funding and cryptographic material. Thus, any creden-

tial management applies only to experimental settings.

Algorithm 1: get reputations(list<node> names)

filter out unknown nodes(names) reputations←
list<reputation> foreach target ∈ names do

sum reputation← 0 n reputation← 0 foreach node ∈

registered nodes do

if confirmed neighbors(node, target) then
sum reputation← sum reputation +

avg opinion(of=node, about=target)
n reputation← n reputation + 1

end

end

reputations.push(node=target, value=sum reputation /
n reputation);

end

median← median(reputations) stddev← stddev(reputations)
if stddev > constant a then

foreach reputation ∈ reputations do
n stddev← abs(median - reputation.value) / stddev

if n stddev > const b then
reputation.value← reputation.value / (n stddev

* constant c)
end

end

end

return reputations;

6

The on-chain code notarizes the configuration of the fed-

eration and provides the reputation system. This is achieved

by implementing a decentralized application to record opin-

ions and synthesizing a global reputation of those values.

The first functionality is achieved by allowing each node

to store opinions in an adjacency matrix. More complex is

the formation of a reputation from those opinions: In Al-

gorithm 1, the key steps of the reputation system are rep-

resented. Nodes may receive models from a sub-set of di-

rectly connected nodes (i.e., neighbors). The algorithm re-

ceives the addresses of those nodes as only input – for each

of those nodes (referred to as target node), the reputation is

calculated as follows. First, unregistered node names are re-

moved. Then, for those nodes from whom a model exchange

with the target node actually occurred (i.e., the confirmed

nodes), the average pushed opinion of the target node is

computed. This average represents an initial reputation value,

which is now established for each of the nodes. Hence, a

global view of the reputations of the nodes exists. Based on

these average opinions, the median and standard deviation

of the global reputation distribution are obtained. Since high

deviations in opinions might indicate an active poisoning

attack, such nodes are actively punished: if the number of

standard deviations it differs from the median reputation is

above a certain threshold, the final reputation value is scaled

by dividing it by the number of standard deviations multi-

plied by a constant penalty factor.

3.2 Federated Learning Network

These DL-based components (e.g., the blockchain network

and the on-chain reputation system) form a distributed back-

end for secure DFL. Thus, the DFL components must be

able to interact with the DL backend. To do so, the DFL

components can be bootstrapped through the Oracle, en-

abling them to obtain the credentials to participate in the rep-

utation system (step 5 in Fig. 1). During the training phase,

the DFL nodes interact with the DL through the Distributed

Ledger Handler. Essentially, this algorithm acts as a drop-in

replacement for other secure aggregation mechanisms im-

plemented in [31], such as FedAvg or Krum. Algorithm 2 de-

tails how the model aggregation is weighted according to the

reputation system’s state using the set of received models as

input. First, for each sender, the model is evaluated using a

trustworthiness opinion metric. As a reference, cosine simi-

larity is used to compare models, assuming poisoned models

exhibit high dissimilarity, as shown in Equation 1.

cos sim(A,B) =
a1 ·b1 +a2 ·b2

√

a2
1 +a2

2×

√

b2
1 +b2

2

(1)

Based on this metric, a convex transformation is applied

by exponentiating with a constant value – effectively mag-

nifying differences for higher dissimilarity while smooth-

ing small differences. These values are then written to the

on-chain reputation system by accessing the Smart Contract

through the API provided by the non-validator nodes (step 6

in Fig. 1). Opposed to the reading of the opinions, this rep-

resents a write operation to a distributed system, which can

lead to delays since the system must achieve a consensus

state. In the experiments, the effect of introducing this op-

eration is assessed. Subsequently, the new global reputation

values of the current training phase must be obtained. The

remaining steps of the algorithm then apply a weighted ag-

gregation, contrasting other approaches that use such a value

to filter nodes or models.

Algorithm 2: aggregate(list<model> models)

local model← models[self];
metrics← {};
foreach model ∈ models do

if model ̸= local model then
metrics[model.sender]←

cosine similarity(local model, model);

end

end

local opinion← {};
foreach (sender, similarity) ∈ metrics do

local opinion[sender]← transform(similarity);
end

blockchain handler.push opinion(local opinion);
senders← {};
foreach model ∈ models do

senders← senders ∪ {model.sender};
end

reputations← blockchain handler.get reputations(senders);
sum reputations← 0;
foreach reputation ∈ reputations do

sum reputations← sum reputations + reputation;
end

normalized reputations← {};
foreach reputation ∈ reputations do

normalized reputations[reputation.name]← reputation /
sum reputations;

end

final model← zero copy(local model);
foreach layer ∈ final model do

foreach model ∈ models do
final model[layer]← final model[layer] +

model[layer] *
normalized reputations[model.sender];

end

end

return final model;

3.3 Prototypical Implementation

To implement a prototype of the previously described archi-

tecture, the Fedstellar platform [31] was employed, inherit-

ing several implementation decisions. As such, most com-

7

ponents followed the respective Python-based implementa-

tions and related libraries. The Ledger Deployer was im-

plemented as a Python-based RESTful API. Similarly, the

User Interface was extended, integrating the necessary con-

figuration steps into the Flask-based frontend [31]. To in-

tegrate the DL infrastructure, the go-ethereum (geth) client

of the Ethereum project was leveraged [32]. For the initial

experimentation, a setup was implemented using the Proof-

of-Authority consensus mechanism. Here, it was needed to

implement the DL infrastructure and the controller to eas-

ily deploy the nodes, as well as fund addresses, compile and

deploy the smart contract. These aspects are made available

through a modular prototype in [33], while the overall archi-

tecture is available in [31].

Two implementation details are essential; the threshold

to consider a node as potentially malicious was implemented

in a dynamic manner, as shown in Listing 1. Furthermore, in

the Distributed Ledger Aggregation, an exponent of n = 3

was used to apply the convex transformation.

i f (s t d d e v >= 5 * MULTIPLIER &&
s t d d e v c o u n t >= 1 * MULTIPLIER &&
r e p u t a t i o n s [i] . r e p u t a t i o n > 0) {

u i n t 6 4 d i v i s o r = (2 * s t d d e v c o u n t) **2
/ MULTIPLIER ;

r e p u t a t i o n s [i] . r e p u t a t i o n =
((r e p u t a t i o n s [i] . r e p u t a t i o n

* MULTIPLIER) / d i v i s o r) ;
}

Listing 1: Reduction of Highly Deviating Reputation Values

4 Evaluations

This section first evaluates the Blockchain Network’s perfor-

mance and resource utilization. Then, it measures the Rep-

utation System’s ability to detect and mitigate poisoning at-

tacks.

All experiments measuring resource utilization have been

conducted under the same hardware and settings of FedStel-

lar. For running FedStellar, a virtual machine with 62 GiB

of memory and an AMD-EPYC 32-core processor was as-

signed. The underlying scenario consists of ten participat-

ing DFL nodes arranged in a full mesh topology, and they

train a multi-layer perceptron model (MLP) on the MNIST

dataset with IID and Non-IID distributions (the later imple-

mented using Dirichlet with an alpha value set to α = 0.5).

The training considers ten rounds with one epoch each and a

batch size of 32. The Blockchain Network consists of three

Validator Nodes with a block time of one second. Using less

than three Validator Nodes drastically reduces the stability

of the PoA consensus algorithm, which was the reason for

omitting those configurations. Further, the Blockchain Net-

work contains an Oracle, a Non-Validator Node, and a Boot

Node. Other than the number of participants or nodes, the

chosen settings reflect FedStellar’s current default parame-

ters.

4.1 Attacks

This section evaluates the Reputation System’s effectiveness

while detecting and mitigating the impact of model poison-

ing and badmouthing attacks. To achieve this, the scenario

involving ten federated nodes, as described at the beginning

of the section, was used.

4.1.1 Model Poisoning

A model poisoning attack on FedStellar was executed us-

ing the existing Noise Injection Attack in FedStellar. This

implementation designates malicious nodes in the federa-

tion, which are responsible for aggregating all received mod-

els using a benign aggregation algorithm before poisoning

the newly aggregated model. After poisoning the model lo-

cally, the malicious nodes continue training the model hon-

estly. The model poisoning attack is carried out by adding

Gaussian-distributed noise. Specifically, a random Gaussian

distribution with the same dimensions as the model is gener-

ated and scaled by a static factor before being summed with

the model to introduce the poisoning. The Gaussian distribu-

tion is generated with a mean of zero and a variance of one.

Then, this normal distribution is scaled up by a factor of ten,

preserving the mean but increasing the variance to 100.

For the Non-IID scenario (Dirichlet with an alpha value

set to α = 0.5), Fig. 2 shows the change in accuracy with

the individual aggregation algorithms by increased number

of malicious nodes. As can be seen, the Blockchain Reputa-

tion (DL-DFL) accuracy remained stable and high with in-

creased percentage of malicious nodes. FedStellar’s imple-

mentation of the Krum aggregation algorithm shows a sim-

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of Malicious Nodes [%]

A
cc

u
ra

cy

DL-DFL

Krum

FedAvg

Fig. 2: Performance Comparison during Noise Injection

(Non-IID)

8

ilar resilience against model poisoning but is outperformed

by the Blockchain Aggregator. In addition, the FedAvg ag-

gregation algorithm does not offer a robust poisoning de-

fense. Therefore, its accuracy rapidly declines with nodes

injecting noise. Furthermore, the accuracy of the final model

with the Blockchain Aggregator outperformed both Krum

and FedAvg without active poisoning.

In order to understand better how DL-DFL works, Fig. 4

(b) shows a heatmap of the average reported opinion by node

about each other node in the previously used Non-IID sce-

nario with four model poisoning nodes over ten rounds. The

axes represent the malicious and benign nodes, which are ar-

ranged in alphabetical order according to their identification

index. Since the local opinion is computed using similarity

metrics, the values are also an indicator of similarities of

the node’s models. The heatmap shows two rather consis-

tent groups reporting high opinion values for nodes of their

group while reporting low opinion values about the other

group’s nodes. This indicates that models actively poisoned

by malicious nodes are more similar to each other than to the

benign nodes’ models and vice versa. Surprisingly, the re-

ported opinions of the malicious nodes about each other are

considerably higher than the opinions of the benign nodes

about each other. More in detail, two nodes, Benign 1 and

Malicious 4, deviate from their individual group. Both are

evaluated as semi-honest by their individual group as well as

by the other group. This shows a partial success of node Ma-

licious 4 in maintaining a constant rate of poisoning while

being partially accepted by the benign nodes for aggrega-

tion. At the same time, node Benign 1 was successfully poi-

soned by deviating from its group and sharing similarities

with actively poisoned nodes’ models.

The proposed solution computes a subjective reputation

score for each individual node. Therefore, in scenarios with

active poisoning, it creates encapsulated groups which highly

agree on their quality of contribution. The groups mainly ag-

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of Malicious Nodes [%]

A
cc

u
ra

cy

DL-DFL

Krum

FedAvg

Fig. 3: Performance Comparison during Noise Injection

(IID)

gregate with other nodes of their group while decreasing the

aggregation weights for nodes of the other group. This re-

duces the necessity of classifying the individual groups as

benign or malicious in the Reputation System.

Regarding the IID scenario, Fig. 3 shows the change

in accuracy with the individual aggregation algorithms by

an increased number of malicious participants or nodes. In

this case, the Blockchain Reputation (DL-DFL) accuracy

remained stable and high with an increased percentage of

malicious participants. Similarly to the Non-IID scenario in

Fig. 2, the Krum aggregation algorithm achieves a similarly

high accuracy. Overall, the accuracy of the final model with

DL-DFL outperformed both Krum and FedAvg without ac-

tive poisoning in both Non-IID and IID scenarios.

4.1.2 Reputation Attacks

Despite the advantages reported in the previous experiment,

it is important to mention that the Reputation System intro-

duces new vulnerabilities by depending on the honest partic-

ipation of the nodes. High deviations in the reputation values

reduce the Reputation System’s ability to detect and miti-

gate model or data poisoning attacks. Consequently, multi-

ple malicious attackers flooding the Reputation System with

randomly generated opinion values could make the Reputa-

tion System unusable. To evaluate this aspect, ten participat-

ing nodes were set to train a multi-layer perceptron model

(MLP) on the MNIST dataset with a non-IID distribution.

As in the previous experiment, the training consisted of ten

rounds with one epoch each and a batch size of 32.

Fig. 4 shows the average computed reputation for both

the reputation poisoning nodes in red and the benign nodes

in blue. The box plots visualize the distribution of the com-

puted reputation for all nodes in each round. Rounds not

affected by reputation poisoning show a stable and uniform

average reputation for all nodes. As of round five, the ran-

domly generated opinion values start disturbing the reputa-

tion of all participating nodes. It means that the Reputation

System was able to automatically recognize the anomaly,

reducing the reputation of the malicious nodes to zero. This

results in the malicious node’s models being excluded from

all further aggregations performed by honest nodes.

4.2 Distributed Ledger Overhead

The previous experiments established the effectiveness of

the system as a defense system. However, since this is achieved

by integrating elements of DL technology, the newly intro-

duced overhead must be assessed – this section presents the

resource and time delay overhead of the overall system. For

these experiments, the same setup has been used.

9

(a) Global Reputation

(b) Reputation Scores

Fig. 4: Reputation Attack Effects

4.3 Computational Resources

Fig. 5 highlights the amount of CPU and memory used by

the different types of nodes to provide infrastructure, model

training, and validation. As indicated, the large majority (be-

tween 99.8% and 97.2% for CPU time and 95.0% and 85.5%

for memory) of resources are spent on model training (i.e.,

on the DFL Cores). As such, the DL-related aspects may

not introduce a bottleneck, especially since such a DFL sce-

nario must likely already consider computationally capable

devices to engage in model training. Excluding the resource-

intensive model training components reveals that the valida-

tor nodes require the largest amount of CPU and memory. In

absolute numbers, 31.68 MiB of memory and 9.19 seconds

of CPU time are consumed for the set-up described at the

beginning of this section.

4.4 Aggregation Delay

Since the DL does not represent a resource bottleneck, the

effect of the system on the aggregation time is analyzed

since the aggregation algorithm comprises synchronous read

and write operations to the reputation system. Two opera-

tions are needed to interact with the reputation system: new

opinions are written to the contract, while the new global

reputation values are requested to weigh the model updates.

The finality of block synchronization in the DL network in-

troduces varying degrees of delay. For example, if an opin-

ion value is written shortly before a new block is created

(i.e., at the upper bound of the block time), the incurred de-

lay is low. Thus, the block time (i.e., the configuration of the

DL with respect to its synchronization interval) influences

the aggregation time, leading to a positive correlation.

0 1 2 3 4 5 6 7 8 9 10 11 12
0
1
2
3
4
5
6
7
8
9

10

Block Time [s]

A
g

g
re

g
at

io
n

T
im

e
[s

]

Fig. 6: Influence of Block Time to Aggregation Time

Fig. 6 plots the relation between block and aggregation

time. If the block time is set to zero, any transaction sent to

the DL is immediately validated and a new consensus must

be achieved based on it. As such, it represents the lower

bound at which a DL might act as a reputation system. How-

ever, such a low block time would likely introduce vulner-

abilities in the DL infrastructure. Nevertheless, it sheds on

a potential lower bound of 0.47 seconds. Furthermore, these

data enable a comparison with public, permissionless DLs

(i.e., Blockchains). For example, the block time of 12 sec-

onds, which represents the upper bound that was established,

resembles the one used in the Ethereum main network (ex-

cluding network delays). As established by the values ob-

tained from these averages of ten experiments, a block time

of 12 seconds led to an aggregation time of 9.08 seconds.

As will be compared hereinafter, this presents a large over-

head to existing aggregation algorithms. Thus, the tolerance

of such a delay - and thereby the applicability of a public,

permissionless DL - must be evaluated for a particular DFL

scenario. For example, a scenario with long-running itera-

tions may be able to accommodate this delay. Table 2 com-

pares two prominent aggregation algorithms and the DL-

10

0 1 2 3 4 5 6 7 8 9 10
0

50

100

Number of Validator Nodes

C
P

U
T

im
e

[%
]

Boot Nodes

Validator Nodes

Oracle

Frontend

Validators

Cores

(a) Relative CPU Consumption

0 1 2 3 4 5 6 7 8 9 10
0

50

100

Number of Validator Nodes

M
em

o
ry

C
o

n
su

m
p

ti
o

n
[%

]

(b) Relative Memory Consumption

Fig. 5: Relative Resource Consumption for Various DL Configurations

based one against FedAvg. All algorithms that aim to im-

prove the resilience of the DFL network lead to a stark in-

crease in aggregation time. However, even when the block

time is set to its lower bound (i.e., zero seconds), the re-

sulting aggregation time of 0.47 seconds represents a 42%

increase over Krum.

4.5 Gas Cost

Since the DL infrastructure must be operated without the

direct involvement of a trusted third party, the computation

within this network must be remunerated. Using the tech-

nologies involved in the system’s development, the com-

plexity of executions is measured in gas. Thus, in addition

to the computational resources and time delays, this finan-

cial aspect must be established. To provide a more meaning-

ful discussion, the gas costs of the Ethereum mainchain are

leveraged. However, it must be emphasized again that other

DL networks (e.g., private permissioned ones) could serve

as an alternative. In that sense, the cost approximations may

present an upper-bound estimate. To quantify the gas costs,

the conversion price of Ethereum to USD and the gas cost

of 27.3 Gwei per gas were collected on April 8, 2024.

As shown in Fig. 7, the gas cost increases with the num-

ber of nodes participating in the federation. As defined in

Section 3, opinions are stored in a matrix. In that sense, ev-

ery node can publish an opinion about any other valid node

in the federation. Thus, a quadratic relationship arises since

the number of possible opinions (i.e., node pairs) increases

Aggregation Time FedAvg TrimMedian Krum DL+DFL

Absolute 0.03s 0.10s 0.33s 0.47s

Relative +0% +233% +1000% +1466%

Table 2: Comparing Aggregation Algorithms with FedAvg

with each new node. In addition, each scenario comprises

static cost to setup the federated and deploy the reputation

system. As demonstrated in Fig. 7, the cheapest setup, com-

prising merely three training nodes, led to costs of 13 USD

to execute one scenario. When increasing the number of

nodes to ten, the cost increases to 79 USD. As such, orga-

nizations aiming to integrate DL technology to secure their

DFL network must be aware of both factors: the absolute

cost of maintaining one node and the increasing nature of

the cost with a growing network. The applicability of DL

technology in DFL must thereby be assessed for the partic-

ular scenario at hand.

3 4 5 6 7 8 9 10

20

40

60

80

100

Number of Nodes

T
o

ta
l

C
o

st
s

p
er

S
ce

n
ar

io
(U

S
D

)

Fig. 7: Effect of Federation Size on Gas Cost

5 Conclusions and Future Work

This article introduced a framework for computing the repu-

tation of trainers participating in DFL scenarios by using DL

technology. The framework comprises three modules: (1) a

blockchain scenario controller, (2) a DL network compris-

ing an oracle and a reputation system, and (3) a reputation-

based aggregation mechanism that uses the global reputation

values to weigh model updates. To evaluate the efficacy of

DL in providing a backbone for reputation-based DFL, the

11

framework was implemented into the FedStellar DFL plat-

form.

Based on the fully functional prototype implementation,

several experiments were performed. First, it was demon-

strated that the DL-based system outperforms other aggre-

gation approaches such as Krum or FedAvg. Furthermore,

reputation attacks were executed, highlighting that the plat-

form is robust even in the presence of such attacks. In con-

trast, the effectiveness of the platform was analyzed. This

revealed that although the platform can indeed present more

resilient learning, a considerable overhead in terms of ag-

gregation time is introduced. Furthermore, a cost analysis

revealed that the applicability of a system must be closely

analyzed with respect to the socio-economic factors where it

would be deployed. Here, both security aspects and financial

requirements would need to be considered to assess whether

it can be deployed in public, permission-less blockchains or

in private, permissioned DL networks. Finally, it was found

that the overhead in terms of resource consumption may be

negligible compared to the model training activities.

In the future, further research directions exist: cost opti-

mizations can investigate whether interaction with the repu-

tation system could be executed in an asynchronous manner.

While this would compromise accuracy in the short term, it

might yield considerable performance improvements. Fur-

thermore, the applicability of the platform for larger net-

works and different DL deployments will be analyzed.

Compliance with ethical standards

Conflict of interest The authors declare that they have no

conflict of interest.

Ethical approval This article does not contain any studies

with human participants or animals.

Acknowledgements This work has been partially supported by (a)

the Swiss Federal Office for Defense Procurement (armasuisse) with
the CyberMind project (CYD-C-2020003) and (b) the University of
Zürich UZH.

References

1. Shilpa Kapse. Ethics in ai in machine learning. In Handbook

of Research on Machine Learning, pages 3–24. Apple Academic
Press, 2022.

2. K. Hu, Reuters. ChatGPT sets record for fastest-growing user base
- analyst note, February 2023. https://www.reuters.com/technolo
gy/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2
023-02-01/, last accessed September 2, 2024.

3. Enrique Tomás Martı́nez Beltrán, Mario Quiles Pérez, Pedro
Miguel Sánchez Sánchez, Sergio López Bernal, Gérôme Bovet,
Manuel Gil Pérez, Gregorio Martı́nez Pérez, and Alberto Huertas
Celdrán. Decentralized federated learning: Fundamentals, state of

the art, frameworks, trends, and challenges. IEEE Communica-

tions Surveys & Tutorials, 2023.

4. Sawsan AbdulRahman, Hanine Tout, Hakima Ould-Slimane, Az-
zam Mourad, Chamseddine Talhi, and Mohsen Guizani. A survey
on federated learning: The journey from centralized to distributed
on-site learning and beyond. IEEE Internet of Things Journal,
8(7):5476–5497, 2020.

5. Li Li, Yuxi Fan, Mike Tse, and Kuo-Yi Lin. A review of applica-
tions in federated learning. Computers & Industrial Engineering,
149:106854, 2020.

6. Chao Feng, Alberto Huertas Celdrán, Jan von der Assen, Enrique
Tomás Martı́nez Beltrán, Gérôme Bovet, and Burkhard Stiller.
DART: A Solution for Decentralized Federated Learning Model
Robustness Analysis. Array, 2024 (To appear).

7. Suzan Almutairi and Ahmed Barnawi. Federated learning vul-
nerabilities, threats and defenses: A systematic review and future
directions. Internet of Things, 24:100947, 2023.

8. Priyanka Mary Mammen. Federated learning: Opportunities and
challenges, 2021. https://arxiv.org/abs/2101.05428.

9. Bokolo Anthony Jr. Deployment of distributed ledger and decen-
tralized technology for transition to smart industries. Environment

Systems and Decisions, 43(2):298–319, 2023.

10. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash sys-
tem. http://www.bitcoin.org/bitcoin.pdf, May 2009.

11. Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzan-

tine generals problem, page 203–226. Association for Computing
Machinery, New York, NY, USA, 2019.

12. Svein Ølnes, Jolien Ubacht, and Marijn Janssen. Blockchain in
government: Benefits and implications of distributed ledger tech-
nology for information sharing. Government Information Quar-

terly, 34(3):355–364, 2017.

13. Tian Min and Wei Cai. Portrait of decentralized application users:
an overview based on large-scale ethereum data. CCF Trans-

actions on Pervasive Computing and Interaction, 4(2):124–141,
2022.

14. Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Weili Chen, Xiangping
Chen, Jian Weng, and Muhammad Imran. An overview on smart
contracts: Challenges, advances and platforms. Future Generation

Computer Systems, 105:475–491, 2020.

15. Sarah Bouraga. A taxonomy of blockchain consensus protocols:
A survey and classification framework. Expert Systems with Ap-

plications, 168:114384, 2021.

16. Wei Cai, Zehua Wang, Jason B Ernst, Zhen Hong, Chen Feng, and
Victor CM Leung. Decentralized applications: The blockchain-
empowered software system. IEEE access, 6:53019–53033, 2018.

17. Ahmed S Almasoud, Farookh Khadeer Hussain, and Omar K Hus-
sain. Smart contracts for blockchain-based reputation systems: A
systematic literature review. Journal of Network and Computer

Applications, 170:102814, 2020.

18. Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Weili Chen, Xiangping
Chen, Jian Weng, and Muhammad Imran. An overview on smart
contracts: Challenges, advances and platforms. Future Generation

Computer Systems, 105:475–491, 2020.

19. Vitalik Buterin et al. A next-generation smart contract and decen-
tralized application platform. white paper, 3(37):2–1, 2014.

20. Yanru Chen, Jingpeng Li, Fan Wang, Kaifeng Yue, Yang Li, Bin
Xing, Lei Zhang, and Liangyin Chen. Ds2pm: A data sharing pri-
vacy protection model based on blockchain and federated learn-
ing. IEEE Internet of Things Journal, 2021.

21. Youyang Qu, Shiva Raj Pokhrel, Sahil Garg, Longxiang Gao, and
Yong Xiang. A blockchained federated learning framework for
cognitive computing in industry 4.0 networks. IEEE Transactions

on Industrial Informatics, 17(4):2964–2973, 2020.

22. Jiawen Kang, Zehui Xiong, Dusit Niyato, Yuze Zou, Yang Zhang,
and Mohsen Guizani. Reliable federated learning for mobile net-
works. IEEE Wireless Communications, 27(2):72–80, 2020.

https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/
https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/
https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/
https://arxiv.org/abs/2101.05428
http://www.bitcoin.org/bitcoin.pdf

12

23. Yang Zhao, Jun Zhao, Linshan Jiang, Rui Tan, and Dusit Niy-
ato. Mobile edge computing, blockchain and reputation-based
crowdsourcing iot federated learning: A secure, decentralized and
privacy-preserving system. arXiv preprint arXiv:1906.10893,
pages 2327–4662, 2019.

24. Harsh Kasyap and Somanath Tripathy. Privacy-preserving
and byzantine-robust federated learning framework using per-
missioned blockchain. Expert Systems with Applications,
238:122210, 2024.

25. Devrim Unal, Mohammad Hammoudeh, Muhammad Asif Khan,
Abdelrahman Abuarqoub, Gregory Epiphaniou, and Ridha
Hamila. Integration of federated machine learning and blockchain
for the provision of secure big data analytics for internet of things.
Computers & Security, 109:102393, 2021.

26. Jorge Castillo, Phillip Rieger, Hossein Fereidooni, Qian Chen, and
Ahmad Sadeghi. Fledge: Ledger-based federated learning resilient
to inference and backdoor attacks. In Proceedings of the 39th

Annual Computer Security Applications Conference, pages 647–
661, 2023.

27. Youssif Abuzied, Mohamed Ghanem, Fadi Dawoud, Habiba
Gamal, Eslam Soliman, Hossam Sharara, and Tamer Elbatt. A
privacy-preserving federated learning framework for blockchain
networks. Cluster Computing, 27(4), 2023.

28. Umer Majeed and Choong Seon Hong. Flchain: Federated learn-
ing via mec-enabled blockchain network. in 2019 20th asia-pacific
network operations and management symposium (apnoms). IEEE,

1ś4, 2019.
29. Harsh Kasyap, Arpan Manna, and Somanath Tripathy. An effi-

cient blockchain assisted reputation aware decentralized federated
learning framework. IEEE Transactions on Network and Service

Management, 2022.
30. Ronghua Xu and Yu Chen. µdfl: A secure microchained decen-

tralized federated learning fabric atop iot networks. IEEE Trans-

actions on Network and Service Management, 19(3):2677–2688,
2022.

31. Enrique Tomás Martı́nez Beltrán, Ángel Luis Perales Gómez,
Chao Feng, Pedro Miguel Sánchez Sánchez, Sergio López Bernal,
Gérôme Bovet, Manuel Gil Pérez, Gregorio Martı́nez Pérez, and
Alberto Huertas Celdrán. Fedstellar: A platform for decentralized
federated learning. arXiv e-prints, pages arXiv–2306, 2023.

32. go-ethereum Authors. go-ethereum, 2024. https://geth.ethereum.
org/ last accessed September 2, 2024.

33. enriquetomasmb. Nebula: A platform for decentralized federated
learning, 2024. https://github.com/enriquetomasmb/nebula, last
accessed September 2, 2024.

https://geth.ethereum.org/
https://geth.ethereum.org/
https://github.com/enriquetomasmb/nebula

	Introduction
	Background and Related Work
	Architecture
	Evaluations
	Conclusions and Future Work

