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SpecForce: A Framework to Secure IoT Spectrum
Sensors in the Internet of Battlefield Things

Pedro Miguel Sanchez Sanchez!

Gregorio Martinez Pérez’

Abstract—The battlefield has evolved into a mobile and dynamic
scenario where soldiers and heterogeneous military equipment
exchange information in real-time and wirelessly. This fact
brings to reality the Internet of Battlefield Things (IoBT).
Wireless communications are key enablers for the IoBT, and
their management is critical due to the spectrum scarcity and the
increasing number of IoBT devices. In this sense, [oBT spectrum
sensors are deployed on the battlefield to monitor the frequency
spectrum, transmit over unoccupied bands, intercept enemy
transmissions, or decode valuable information. However, IoBT
spectrum sensors are vulnerable to heterogeneous cyber-attacks,
and their accurate detection is an open challenge in the literature.
Thus, this paper presents SpecForce, a security framework for
IoBT spectrum sensors based on device behavioral fingerprinting
and ML/DL techniques. SpecForce considers heterogeneous data
sources to detect the most dangerous and recent cyber-attacks
affecting IoBT spectrum sensors, such as impersonation, malware,
and spectrum sensing data falsification attacks. To evaluate the
SpecForce detection performance, it has been deployed on 25 real
spectrum sensors, and results show almost perfect detection for
the three cyber-attack families previously mentioned.

Index Terms—IoT, Battlefield, Spectrum Monitoring, Finger-
printing, Cybersecurity, Identification.

I. INTRODUCTION

ODAY’S battlefield and military operations are highly

dependent on wireless communication technologies. Air-
craft, warships, vehicles, weapons, and soldiers are equipped
with connectivity capabilities to send and receive confidential
information enabling successful offensive and defensive tactics.
These deployments make up the so-called Internet of Battlefield
Things (IoBT) [|/1]], which combines the Internet of Things
(IoT) characteristics with the requirements of military scenarios
where properties such as security, privacy, and availability are
even more critical than in civil scenarios. The dynamism of
the IoBT, where troops, vehicles, and military equipment are
constantly moving, requires wireless communications [2f]. Here,
Cognitive Radio Networks (CRN) [3]] play a key role, endowing
communications with programmability and high mobility in
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terms of used frequencies. Therefore, CRN should manage the
radio frequency (RF) spectrum securely and adequately to select
unoccupied frequency bands, establish secure transmissions,
intercept enemy messages, and decode valuable information.
In the IoBT, one of the most common approaches to enforce
the previous tasks is to deploy resource-constrained spectrum
sensors able to monitor and decode transmissions in different
radio bands [4]]. These sensors have numerous advantages, such
as portability, accuracy, simplicity, and reduced cost, but they
are vulnerable to cyber-attacks.

In the modern battlefield, cyberwar and cyber-attacks are
common hostile acts aiming to penetrate strategic targets such
as enemy communications, area defense, or critical infrastruc-
tures [5]. In this context, IoBT spectrum sensors are perfect
targets due to their computational and storage constraints to
maintain updated software and deploy cybersecurity mecha-
nisms. Looking at cyber-attacks affecting IoT spectrum sensors,
they can be categorized into three main families: (i) identity-
focused attacks, whose goal is to impersonate legitimate IoBT
spectrum sensors by deploying malicious ones with the same
hardware and software configuration to extract sensitive military
information and perform malicious activities; (ii) vulnerability-
based attacks, where typical threats such as malware are
encompassed to disrupt military services, steal battlefield
information, or initiate attacks to other military targets; and (iii)
Spectrum Sensing Data Falsification (SSDF) attacks, aiming
to modify spectrum data reported by sensors to hide illegal
transmissions, provoke interference and collisions, or create
fictitious transmissions persuading enemies communication.

In the [oBT, the detection of the previous cyber-attack
families has been tackled separately by the literature. Most
works analyze software operations to detect malware and
exploit vulnerabilities in generic IoT devices deployed in
military scenarios [6]. However, only a few solutions deal
with SSDF attacks detection in [oBT cognitive radio networks
[[7], and identification of IoBT devices [8]]. Besides, outside
the battlefield scenario, the previous three cyber-attack families
have been covered in a wider manner [9] since they also
affect other critical scenarios such as Industrial IoT or network
management. In summary, and as can be seen in TABLE [I} the
main limitation in the IoBT is that solutions detecting malware
are not able to detect SSDF and spoofing attacks, and solutions
detecting SSDF are useless for malware detection and identical
device identification. Therefore, the main focus of this work is
to explore novel approaches to detect all the previous attack
families when they occur in IoBT spectrum sensors. One of the
most promising and recent approaches to improve this situation
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is to combine device behavioral fingerprinting with Machine
and Deep Learning (ML/DL) techniques [10]. In this context,
different data sources, such as system calls, logs, hardware
events, or clock skew, can be leveraged to characterize the
normal behavior of spectrum sensors and detect anomalies or
classify the three main cyber-attack families detailed before.

TABLE I: Related Work Comparison.

‘Work Scenario Device Attack Approach
type
7l IoBT Spectrum g Blockchain
Sensors
[8]] IoBT Generic Generic secu- Blockchain
rity and trust
[9] Generic Computers  Identity HaIdW are finger-
printing
This IoBT Spectrum Identity, Mal- ~ Behavior analy-
work Sensors ware, SSDF sis + ML/DL

However, despite the achievements of existing work dealing
with cybersecurity in the IoBT, and more specifically in IoBT
spectrum sensors, there are still several open challenges that
require further research efforts. Among the main ones, the
following ones are highlighted: (i) there is no definition of
the threat model that IoBT spectrum sensors face, as previous
solutions have analyzed their threats in a separated manner;
(ii) data sources and events accurately detecting normal and
heterogeneous under-attack behaviors of [oBT spectrum sensors
have not been investigated; (iii) as TABLE [I| shows, there is
no global solution detecting both system- and data-oriented
cyber-attacks while evaluating the resource consumption in
IoBT spectrum sensors.

In order to improve the previous challenges, the main
contributions of this work include:

o The creation of a scenario where 25 real IoBT spectrum
sensors are employed for radio transmission monitoring
and decoding. In such a scenario, the threat model faced
by these sensors is defined, and 18 heterogeneous cyber-
attacks related to the thread model are considered to infect
the IoBT spectrum sensors.

o The design and implementation of SpecForce, a security
framework for IoBT spectrum sensors that combines
device behavioral fingerprinting and ML/DL techniques.
The implementation of SpecForce includes the analysis of
the most suitable behavioral data sources and the ML/DL
techniques for the defined threat model.

o The validation of SpecForce while detecting the cyber-
attacks considered in the proposed scenario for (i) identity-
based attacks, achieving an average 91.92% True Positive
Rate (TPR); (ii) heterogeneous malware detection, achiev-
ing ~90% TPR and 96% True Negative Rate (TNR); and
(iii) SSDF attack detection, achieving 96-99% TNR and
92-100% TPR, depending on the attack.

II. CYBERSECURITY THREATS OF IOBT SPECTRUM
SENSORS

This work presents a scenario composed of 25 IoBT spectrum
sensors based on Raspberry Pi (RPi) devices belonging to the
ElectroSense platform [11] and deployed in different locations

between Switzerland and Spain. The sensors are randomly
deployed in the field since their location does not affect the
framework performance (spectrum data is not leveraged for
cyber-attack detection). Ten of these sensors are Raspberry Pi
3 Model B+ and 15 are Raspberry Pi 4 Model B. Each sensor
is equipped with an RTL-SDR (RealTek Low cost - Software
Defined Radio) USB kit and proper software to scan the RF
spectrum (from 20 MHz to 1.6 GHz). Such functionality allows
these sensors to monitor and decode heterogeneous wireless
communications occurring between military equipment such as
base stations, convoys, aircraft, helicopters, or satellites. The
upper part of Fig. [I] gives a simplified representation of the
military equipment that can be found in the IoBT.

Despite the benefits of IoBT devices, they present some
cybersecurity issues and vulnerabilities that have been already
identified in [12]]. In addition, some other cybersecurity issues
related to spectrum sensing and hardware/software aspects of
IoBT spectrum sensors need to be analyzed more in detail. In
this sense, TABLE [II summarizes the main threats identified
after analyzing the vulnerabilities of the sensors considered in
the proposed scenario. This table also provides a description
and attack classification per threat.

Once the threats affecting IoBT spectrum sensors are
identified, several representative and recent attack vectors per
family are selected to infect the sensors. Details regarding each
attack vector behavior are provided below.

e Identity-focused. This type of cyber-attack impersonates le-
git IoT spectrum sensors to steal data or execute malicious
actions. For that, it utilizes identical hardware and software
configurations to legit IoBT spectrum sensors [[13]].

e Malware. This type of malicious software causes harm to
IoBT spectrum sensors by performing diverse malicious
actions. From each malware type, different vector samples
are executed in each sensor.

— Rootkit. Allow a malicious entity to gain remote
control over IoBT spectrum sensors while providing
self-hiding capabilities. The samples selected for
testing are Beurk, Diamorphine, and Bdvl.

— Botnet. Generate a network of infected IoBT spectrum
sensors to perform malicious activities, such as denial
of service, in a coordinated manner. The samples
selected are Bashlite and Mirai.

— Backdoor. Provide malicious actors with unintended
IoBT spectrum sensor access and control. The sam-
ples selected for the present work are HttpBackdoor,
Python Backdoor, and TheTick.

— Ransomware. Encrypt sensitive files and asks for eco-
nomical ransoms for data recovery. Ransomware_PoC
is the sample selected for this malware family.

o SSDF. This type of cyber-attack tampers the data scanned
by IoBT spectrum sensors to disrupt the spectrum
optimization, monitoring, and decoding services. The
following SSDF attacks are executed after manipulating
the ElectroSense source code [11]]. The implementation
details of each attack can be found in [[14].

— Noise. Add random noise to the spectrum data.
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TABLE II: IoBT Spectrum Sensor Threat Model
Attack
Threat Description Identity Malware SSDF
Data Publish or access sensitive information sensed or maintained by IoBT spectrum X v v
Disclosure SCNSOors.
Spoofin Replace legitimate spectrum sensors with malicious devices using the same identity. v X X
P & Usually, it is the starting point for further cyber-attacks like data injection.
Svbil Send a lot of fake data with many different IoBT sensors identities to alter the v X X
y decisions generated by the IoBT platform.
Jammin Generate fake or repeated wireless signals to interrupt ongoing communications X X v
g between legitimate sensors and the IoBT platform or disturb the collected data.
. Exhaust or degrade resources of the IoBT platform or spectrum sensors. It can affect
Denial of - S - . v v
Service (DoS) gt network lgvel or directly at appllcatlpn lgvel. Mal}y devices can be coordinated to X
increase the impact of the attack, resulting in a Distributed DoS (DDoS).
Advanced Persistent ~ Launch sophisticated, continuous, and targeted attacks over the IoBT platform or its v v X
Threat (APT) spectrum sensors for a large time period.
Modify spectrum data monitored by IoBT sensors. It leads to wrong decisions
Datq while optimizing spectrum occupancy or decoding transmissions. Two variants are X X v
Poisoning differentiated: Availability Attack and Targeted Attack.
Use of machine learning techniques and security analysis devices to gather insights
Smart Attacks about the IoBT platform defense countermeasures and attack it. / v x
— Spoof. Copy the spectrum data of one RF band into %
another band and add random noise. @ | | , | | R
. . Z gl LRl | ] 1
— Repeat. Replicate the same spectrum data in all EZ ““W‘”” '““m.”'l '“mm”" =
affected RF bands. Z
— Confusion. Swap the spectrum data between affected z
RF bands. ol
— Mimic. Copy the spectrum data of one RF band into ?///
another one. Malicious
Benign Spectrum

— Delay. Sense different outdated spectrum data of
affected RF bands.

— Freeze. Sense the same outdated spectrum data in
affected RF bands.

— Hop. Add noise to random parts of affected segments.

Analyzing the different threats and cyber-attacks affecting
the IoBT spectrum sensors proposed in the scenario, there is a
clear need for solutions proving cybersecurity in a unified and
homogeneous fashion.

III. SPECFORCE FRAMEWORK

The SpecForce framework covers the previous limitations
by combining device behavioral fingerprinting with ML/DL to
detect heterogeneous cyber-attacks affecting [oBT spectrum sen-
sors. In particular, the main objectives of SpecForce are to (a)
identify malicious spectrum sensors, (b) detect heterogeneous
malware, and (c) detect SSDF attacks manipulating spectrum
data. To achieve these goals, SpecForce can be deployed in a
hybrid way, where IoBT sensors host the behavior monitoring
functionality and the server focuses on ML/DL-based detection.
Additionally, all framework components can be deployed on
the IoBT sensors.

Fig. [T] shows the four main modules making up SpecForce.
From an up-down prism, the Data Gathering module hosts three
components able to periodically monitor the sensor behavior
from different perspectives. These perspectives have been
selected with the goal of covering the internal behavior of the
IoBT in a broad fashion in terms of device components, events
granularity level, and complexity. In particular, the Kernel
Software Events component monitors activity from resources
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Fig. 1: SpecForce Architectural Design and IoBT Scenario

such as CPU, memory, network interfaces, or file system,
among others. The System Calls component gathers the system
calls performed by the processes of the sensor scanning the
spectrum. Finally, the Hardware Cycle Counters component
focuses on hardware manufacturing variations by monitoring
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Fig. 2: Collected Data Sources for Device Behavior Fingerprinting.

the cycle counters of different hardware components. Fig.
shows the data sources collected by each component to detect
the cyber-attacks indicated in Section [[I}

The Data Gathering module periodically sends the collected
raw data to the Data Processing module, which is in charge
of extracting valuable information and creating feature vectors
with them. This module contains three different components
with suitable feature extraction techniques for each data source
type. As an example of their functionality, (i) highly correlated
features are filtered for kernel software events, (ii) different
sequence and frequency (n-gram) features are calculated from
raw system calls, (iii) and window-based statistical features are
extracted from hardware cycle counters. After that, the Dataset
Generation module compiles all feature vectors generated
by the previous module, generating datasets with the sensor
behavioral data. Finally, the Al-based Cybersecurity module
trains and evaluates supervised and unsupervised ML-based
models identifying devices and cyber-attacks. For that, Offline
and Online processes are considered. First, the Offline process
selects suitable ML/DL algorithms and trains them with the
created datasets. It generates the ML/DL models used by the
framework. Secondly, the Online one evaluates the current
device behavior using the trained ML/DL models to detect
cyber-attacks.

IV. SPECFORCE IMPLEMENTATION AND RESULTS

To analyze the performance of SpecForce, it has been
deployed on the 25 ToBT spectrum sensors of the scenario
described in Section Then, the following three use cases have
been analyzed: (i) device identification to avoid spoofing attacks,
(ii) detection of heterogeneous malware, and (iii) detection of
SSDF attacks.

A. Identity-focused Attack

This use case focuses on chip imperfections affecting the
hardware performance of IoBT spectrum sensors, which allow
the generation of unique fingerprints per sensor to detect device
spoofing attacks. Ideally, different physical oscillators should be
used to analyze these imperfections, but Raspberries Pi acting as
sensors only contain one oscillator used by all hardware as base
frequency. Therefore, this work leverages the imperfections in
circuits employed to multiply the base oscillator frequency for
the device CPU and GPU separately.

After analyzing the hardware components, the Hardware
Cycle Counter component of SpecForce monitors the data
sources indicated in Fig. 2] for device identification. Then,

it measures the skew between the CPU and the GPU cycle
counters. To obtain stable fingerprints, different functions
are executed on the CPU while the GPU cycle counter is
monitored. Concretely, the functions selected are: (i) sleep
during 120 seconds, (ii) hash calculation of a string, and (iii)
random number generation. To have stability in these values,
process isolation measures are taken in the sensor to avoid
kernel interruptions from other processes while the functions
are running. TABLE [III] contains the details about the data
gathering, data processing and evaluation steps of this use case.
In total, a dataset with 10 fingerprints per device is generated
(8 for training and 2 for testing). To identify the different IoBT
spectrum sensors, the Al-Based Cybersecurity module employs
ML/DL classification algorithms since the number of sensors
in the scenario is constant. Once trained and evaluated, the
average TPR of each model is 71.40% for k-NN, 89.65% for
SVM, 91.92% for XGBoost, 86.47% for DT, 91.64% for RF,
and 85.32% for MLP. As can be appreciated, RF and XGBoost
are the best performing models, with +91% TPR. To identify
those IoBT spectrum sensors having more and less similarity,
Fig. [3| shows the XGBoost confusion matrix for the fingerprints
used during testing. The results show how using a 50% TPR
threshold, all IoBT spectrum sensors can be perfectly identified.
Besides, XGBoost shows that the most important features to
perform the identification are the median and average values
of the 120 second sleep function.

This use case has demonstrated that SpecForce is able to
uniquely identify 25 IoBT spectrum sensors by leveraging
hardware manufacturing imperfections and ML classification
techniques. In other words, SpecForce solves the issue of
identity-focused attacks, as new or duplicated devices would
be recognized before they can cause further harm.

B. Malware Detection

This second use case deals with the detection of hetero-
geneous malware. As starting point, a literature review is
performed to study the data sources available in Raspberry Pis
and the behavior of well-known malware. Due to the activity
of running malware, the internal behavior of a device changes.
This behavior can be reflected from several perspectives, such
as syscalls, running processes or kernel events. In this sense,
some known malware samples include evasion techniques that
hide the malicious processes and syscalls. However, lower-level
sources such as kernel events are harder to modify [10].

As output of such review, the SpecForce Data Gathering
module is implemented to monitor in a periodic manner



SUBMITTED TO IEEE COMMAG 2022

TABLE III: Technical Details of the Use Cases Implementation.
Data Gathering Data Processing Dataset Al-Based Cybersecurity
Generation
Use Case | Source Freq. Resources | Technique Feature Vector Dataset Appr(?ach: Results
Algorithms
. Sliding 18 features: Average time, 10 fingerprints Classification:
ldentity- | CPU/GPU ICPU | window  standard deviation, per device, 300 | k-NN, SVM, 91.92% ave.
focused Cycle ~120 s - .
Attack Counters Core (100 minimum, maximum, or vectors per XGBoost, DT, RF, F1-Score
values) mode of selected functions fingerprint MLP
1-4% N . 6 hours per Anomaly Detection:
Malware Kernel 5 CPU, Nothin 5688 fvt::;lrzsr.i\giU;Il;AM, behavior, ~2160 Autoencoder, IF, +97% TNR,
Detection | Events ; 6.14MB g net ‘y;k > ot > vectors per COPOD, LOF, +97% TPR
RAM ctwork events behavior OC-SVM
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Fig. 3: Confusion Matrices (in percentages) for Device Identification using XGBoost

about 80 kernel events belonging to the usage of resources,
hardware, and software activities produced in the IoBT sensors.
Fig. 2] shows the event families selected for malware detection.
After that, one dataset with “normal” behavior of each IoBT
spectrum sensor is collected for six hours. Then, the rootkits
(Beurk, Diamorphine, and Bdvl), botnets (Mirai and Bashlite),
backdoors (HttpBackdoor, Python Backdoor, and TheTick),
and ransomware (Ransomware_PoC) mentioned in Section |m
are executed in each IoBT spectrum sensor. Later, all malware
samples are monitored for six hours while running in a passive
way (without harmful actions being made) and some of them
(backdoors and ransomware) performing command execution or
data leakage. Anomaly detection is performed because usually
attack behaviors are unknown. Therefore, deviations in the
normal device behavior can allow detecting attacks not seen
during training or zero-day attacks, which are novel attacks
leveraging an unknown vulnerability. 80% of the normal data
is employed for algorithm training, and the remaining 20%
and the malware behavior for testing. TABLE [ITI] shows the
implementation and experimentation details of this use case.

Fig. [] shows the detection performance of OC-SVM, the
best model. Normal sensor behavior should be evaluated as

“Normal” (in the X axis), and the rest of the attack behaviors
should be evaluated as “Abnormal”. Therefore, the higher the
values in that case, the better the framework works. More than
95% of samples belonging to the different normal behaviors
are correctly detected as "Normal.” Looking at the rootkits,
the passive and innocuous behavior of Diamorphine is not
detected, but when it establishes an SSH connection every five
seconds (Diamorphine5S), it is identified as malicious. In the
case of passive behavior of Bdvl, it is detected only half of the
time. In terms of Backdoors, the samples belonging to Data
Leak behavior executed by TheTick are detected correctly.
Similarly, it is important to highlight that the rest of the
malicious behaviors are detected in an almost perfect fashion.

This use case has demonstrated the capabilities of SpecForce
to detect malicious activities performed by different malware
affecting resource-constrained IoBT spectrum sensors. Using
software kernel events and anomaly detection techniques, it
is possible to characterize the behavior of the IoBT spectrum
sensors and detect heterogeneous malware when they are in
active and harmful mode.



SUBMITTED TO IEEE COMMAG 2022

OC-SVM for Malware

Normal - 02.64 97.36
Beurk
Diamorphine - 03.18
Bdvl - 47.63
Bashlite 02.14
Mirai 0
Diamorphine5S 0
HttpBackdoor 0
Simple_Backdoor 0
TheTick 0
Ransomware_PoC 0
Abnormal Normal
Autoencoder for SSDF
Normal - 00.71 99.29
Delay 01.85
Confusion 00.49
Freeze 04.76
Hop 01.21
Mimic 00.09
Noise 00.71
Repeat 07.67
Spoof 01.99
Abnormal Normal

Fig. 4: Confusion Matrices (in percentages) for Malware and
SSDF Attacks

C. SSDF Attacks Detection

The last use case focuses on detecting attacks affecting
spectrum data. As in the previous ones, a literature review is
conducted to identify and select behavioral data sources and
events of IoBT spectrum sensors characterizing the activity of

the spectrum scanning processes affected by SSDF attacks [15].

As these attacks are based on the modification of a legitimate
process, the system calls generated by the software are features
able to reflect the variations in normal activities.

The result of this step highlighted the suitability of system
calls to perform such task in a precise way. Therefore, the
SpecForce Data Gathering module uses perf to collect the
system calls generated by a given set of processes scanning
the spectrum (see Fig. [2] for SSDF attacks detection). Once
the data source is selected, the different normal and SSDF

attack behaviors are monitored for ~6 hours. The system calls
are then processed to generate a feature vector modeling the
activities of the IoBT spectrum sensing process. Then, the
Al-Based Cybersecurity module selects, trains, and evaluates
anomaly detection algorithms. TABLE [II] gives the technical
details of this use case experimentation.

Fig. E| shows the Autoencoder True Negative Rate (TNR)
for normal behavior and the TPR of the different SSDF attacks
when modifying 20 MHz of the 1.6 GHz collected spectrum
band. It can be seen how the normal behavior is recognized
with high performance, showing +99% TNR. Besides, all SSDF
attacks are detected with a +92% TPR.

This use case has demonstrated that SpecForce is able to
successfully detect the different SSDF attacks executed in
IoBT spectrum sensors with a low resource consumption. In
particular, system calls have shown a precise characterization
of the spectrum scanning process. Furthermore, when they are
combined with ML/DL-based anomaly detection techniques, it
is possible to detect heterogeneous SSDF attacks.

V. CONCLUSIONS

This work presents SpecForce, a framework combining
behavior fingerprinting and ML/DL techniques to detect
heterogeneous cyber-attacks affecting IoBT spectrum sensors.
SpecForce has been deployed in a realistic battlefield scenario
composed of 25 IoBT spectrum sensors based on Raspberry
Pi. In such a scenario, first, the cybersecurity threats affecting
the IoBT spectrum sensors have been analyzed to later choose
identity attacks, malware, and SSDF attacks exploiting these
threats.

The detection results obtained by SpecForce for each
attack family affecting IoBT spectrum sensors demonstrate
the suitability of the framework in a battlefield scenario. More
in detail, for spoofing attacks, 25 IoBT spectrum sensors (10
identical RPi3 and 15 identical RPi4) have been individually
identified based on their hardware chip variations. Regarding
malware attacks, software kernel events and ML-based anomaly
detection techniques have detected rootkits, botnets, backdoors
and ransomware. Finally, eight different SSDF attacks have
been detected by combining the system calls generated by the
spectrum scanning process with anomaly detection techniques.

As future work, it is planned to deploy and validate the
SpecForce framework in other scenarios, not only on spectrum
sensors. Additionally, further objectives and research questions
arise associated with the privacy management of the collected
data, seeking to apply Federated Learning for distributed model
generation without data sharing between sensors.
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