arXiv:2501.10347v2 [csLG] 3 Oct 2025

ColNet: Collaborative Optimization in Decentralized
Federated Multi-task Learning Systems

Chao Feng', Nicolas Fazli Kohler!, Zhi Wang!, Weijie Niu!, Alberto Huertas Celdran'?,
Gérome Bovet®, Burkhard Stiller!
lCommunication Systems Group, Department of Informatics, University of Zurich, 8050 Ziirich, Switzerland
[cfeng, niu, huertas, stiller] @ifi.uzh.ch, [nicolasfazli.kohler, zhi.wang] @uzh.ch
2Department of Information and Communications Engineering, University of Murcia, 30100-Murcia, Spain
3Cyber-Defence Campus, armasuisse Science & Technology, 3602 Thun, Switzerland gerome.bovet@armasuisse.ch

Abstract—The integration of Federated Learning (FL) and
Multi-Task Learning (MTL) has been explored to address client
heterogeneity, with Federated Multi-Task Learning (FMTL)
treating each client as a distinct task. However, most existing
research focuses on data heterogeneity (e.g., addressing non-
IID data) rather than task heterogeneity, where clients solve
fundamentally different tasks. Additionally, much of the work
relies on centralized settings with a server managing the fed-
eration, leaving the more challenging domain of decentralized
FMTL largely unexplored. Thus, this work bridges this gap by
proposing ColNet, a framework designed for heterogeneous tasks
in decentralized federated environments.

ColNet partitions models into a backbone and task-specific
heads, and uses adaptive clustering based on model and data
sensitivity to form task-coherent client groups. Backbones are av-
eraged within groups, and group leaders perform hyper-conflict-
averse cross-group aggregation. Across datasets and federations,
ColNet outperforms competing schemes under label and task
heterogeneity and shows robustness to poisoning attacks.

I. INTRODUCTION

The integration of Federated Learning (FL) and Multi-
Task Learning (MTL) has gained significant attention for its
ability to tackle diverse but related tasks in a collaborative and
privacy-preserving manner. FL trains models across clients by
exchanging model updates rather than raw data, preserving
data privacy [1]. Decentralized FL (DFL) eliminates the need
for a central server, enhancing system robustness by avoiding
single points of failure [2]. MTL, traditionally performed on
a single machine, leverages task interdependence to improve
generalization, reduce overfitting, and address data sparsity
[3]], [4]]. Extending MTL to federated settings results in Feder-
ated Multi-Task Learning (FMTL) [5], combining FL’s privacy
preservation with MTL’s collaborative task-sharing benefits.

In both centralized and decentralized FMTL, existing re-
search primarily addresses the challenge of non-independent
and identically distributed (non-IID) data across clients, a
core issue in FL [[6]. Non-IID data arises in various forms,
including attribute skew (differences in feature distributions),
label skew (differences in label distributions), and temporal
skew (time-based changes in data distributions), each com-
plicating model training [7]. However, while much progress
has been made in handling non-IID data, most studies focus
on label heterogeneity rather than deeper task heterogeneity.
Many approaches assume that all clients access the same set

of class labels, even in non-IID settings. In reality, clients
may encounter only subsets of labels relevant to their tasks
[8]], creating disparities in outputs and limiting collaborative
learning. Addressing task heterogeneity, where clients solve
fundamentally different problems, remains a significant chal-
lenge, especially in decentralized settings.

Aggregation algorithms, like FedAvg, struggle in multi-
task learning scenarios due to their reliance on model ho-
mogeneity [9]. Task heterogeneity introduces complexities, as
clients may require distinct model architectures for tasks (e.g.,
classification versus point detection), leading to conflicting and
dominant gradients during training [10], [11]. While recent
methods such as FedBone [12] and FedHCA? [10] mitigate
these challenges, they focus on centralized settings (CFMTL),
leaving decentralized FMTL (DFMTL) largely unexplored.
Decentralization amplifies these challenges due to the absence
of a coordinating server, demanding robust methods for man-
aging tasks and model diversity.

This work proposes ColNet, a decentralized framework for
training multi-task models in heterogeneous environments.
ColNet partitions models into a backbone and task-specific
heads. ColNet uses adaptive clustering that leverages model
sensitivity and data sensitivity to automatically partition nodes
into task-coherent groups. Within each group, backbone layers
are aggregated using FedAvg. Group leaders then exchange
the group-averaged backbones across groups through a hyper-
conflict-averse (HCA) aggregation scheme, which reduces
gradient conflict and strengthens cross-task collaboration.

Experiments on the CIFAR-10 and CelebA datasets demon-
strate the effectiveness of ColNet. Firstly, the framework’s
performance is analyzed with varying aggregation round fre-
quencies, showing that more frequent aggregations improve
model performance. Secondly, different levels of layer pri-
vatization are examined, revealing that sharing most layers
benefits class label heterogeneity setups, while increasing pri-
vatization slightly enhances performance in task heterogeneity
scenarios. Compared with other schemes, ColNet consistently
outperforms baselines in both class label and task hetero-
geneity scenarios. Additional robustness evaluation indicates
that ColNet is resilient to diverse poisoning attacks, including
model poisoning and data poisoning, highlighting its capability
to address diverse challenges in DFL.
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TABLE I: Overview of Research in Federated Multi-Task Learning

Federation Schema  Techniques Research Approach used Heterogeneity Addressed
Convex MOCHA [5] Convex optimization, dynamic client inclusion Label heterogeneity
Optimization OFMTL [13] Convex optimization, dynamic client inclusion Label heterogeneity
Regularization  Ditto [14] Bi-level optimization, local regularization Label heterogeneity
PMTL [15] Differential privacy, noise-injected global aggregation Label heterogeneity
Privatization FedPer [16] Shared base layers, private personalization layers Label heterogeneity
Centralized FedRep [17] Shared base layers, head freezing Label heterogeneity
Grouping CFL [18] Client grouping, cosine similarity Label heterogeneity
HeurFedAMP [19] Dynamic grouping, cosine similarity Label heterogeneity
Knowledge EFDLS [20] Knowledge distillation, local teacher-student models Label heterogeneity
Distillation FedICT [21] Two-way knowledge distillation, reduced model updates Label heterogeneity
Hybrid FedBone [12] Split learning, gradient projection, task adaptation Task heterogeneity
FedHCA? [10] Hyper conflict-averse aggregation, encoder-decoder architecture Task heterogeneity
Regularization =~ DCLPMN [22] Graph-based regularization, neighbor collaboration Label heterogeneity
Decentralized Hybrid SpreadGNN [23] Decentralized aggregation, molecular data focus Label heterogeneity
Hybrid ColNet (This work)  Adaptive task clustering, shared backbone, hyper conflict-averse aggregation = Task heterogeneity

II. RELATED WORK

This section provides an overview of FMTL research,
covering both centralized and decentralized approaches and
comparing them based on the techniques employed and types
of heterogeneity addressed, as presented in TABLE [I]

A. Centralized Approaches

FMTL was first introduced in 2017 with the MOCHA
framework [5]], and since then, a variety of approaches have
emerged to tackle different aspects of multi-task learning in
centralized federated settings. Early work primarily focused
on solving convex optimization problems, such as MOCHA
and OFMTL [[13]], which were robust but unsuitable for mod-
ern non-convex deep learning methods. Subsequent research
addressed this limitation, extending CFMTL to handle non-
convex problems and introducing techniques like regulariza-
tion, privatization, grouping, and knowledge distillation.

Ditto [14] introduced bi-level optimization techniques that
allow each client to maintain a personalized model while
regularizing it toward a global model. This approach ensures
uniform performance across devices and enhances resistance
to data and model poisoning attacks. Similarly, PMTL [15]]
leverages relaxed differential privacy to learn personalized
models while safeguarding client data. By adding noise dur-
ing global aggregation, PMTL enables effective collaboration
without compromising privacy. FedPer [16] tackled statistical
heterogeneity by dividing models into shared base layers and
private personalization layers. Extensions like FedRep [17]
introduced mechanisms such as freezing the shared layers dur-
ing early training phases to improve adaptability and achieve
higher test accuracy.

Frameworks like CFL [18] introduced grouping strategies to
cluster clients with similar data distributions, reducing the im-
pact of conflicting gradients during aggregation. HeurFed AMP
[19] further refined this concept by using cosine similarity
to dynamically determine grouping, allowing more granular
adaptation to client data heterogeneity. EFDLS [20] utilized
knowledge distillation models to transfer knowledge efficiently
within individual clients. This method enables collaborative

learning by sharing only essential updates, reducing communi-
cation overhead. FedICT [21]] extended this idea by employing
a two-way distillation process that customizes local models for
specific tasks while maintaining a flexible and adaptive global
model, making it suitable for diverse client environments.

Most existing studies primarily focus on class label hetero-
geneity, restricting their adaptability in dynamic environments.
Frameworks like FedBone [12] introduced split learning to
separate general models on a central server from task-specific
models on clients. Similarly, FedHCA? [10] proposed inno-
vative aggregation techniques, such as HCA Aggregation, to
address gradient conflicts, but it was designed for central-
ized environments. These advancements have predominantly
relied on centralized coordination, simplifying aggregation but
introducing challenges like single points of failure, limited
scalability, and privacy risks.

B. Decentralized Approaches

DFMTL eliminates the need for a central server, allowing
clients to communicate directly in a peer-to-peer manner.
Despite the advantages, DFMTL introduces added challenges,
such as managing gradient conflicts, asynchronous updates,
and efficient client communication. Early research, such as
DCLPMN [22]], addressed these challenges by leveraging
graph-based regularization to model task relationships, en-
abling collaboration between neighboring clients. SpreadGNN
[23] applied decentralized aggregation techniques tailored for
tasks like molecular data analysis to improve scalability and
address domain-specific requirements.

As presented in TABLE [I, while research on FMTL has
made significant progress, most works address label het-
erogeneity and non-IID data rather than task heterogeneity,
where clients solve different tasks. Additionally, decentral-
ized settings remain underexplored compared to centralized
frameworks, despite their potential for improved privacy and
scalability. Existing frameworks rarely address task hetero-
geneity in decentralized environments, leaving a clear gap
for Heterogeneous DFMTL. This work addresses this gap by
proposing a novel framework, ColNet, designed to handle both
label and task heterogeneity in a decentralized setting.



III. THE ColNet SOLUTION

This work introduces ColNet, a collaborative optimization
approach designed for multi-task learning in DFL. This section
defines the DFMTL problem and outlines its optimization
objectives. It then presents the proposed ColNet framework,
describing each step in turn.

A. Problem Statement

In a DFMTL system with [V nodes, the learning objective
is to collaboratively learning task-specific models while pre-
serving data privacy and operating under a fully decentralized
communication pattern.

Let V ={1,2,..., N} denote the set of nodes. Each node
i € )V is associated with a task 7; and holds a local dataset
D;. The number of distinct tasks is M < N, accommodating
the possibility that multiple nodes may share the same task or
tasks may be heterogeneous across nodes.

The nodes form a connected, undirected graph G = (V, £),
where & specifies the peer-to-peer (P2P) links. Communication
is entirely decentralized, with no central server. Each node
exchanges model updates or partial information solely with
its neighbors N (4).

Each node i maintains a parameter vector w; € R? that
addresses its local task 7;. Heterogeneous local data render
a single global model suboptimal, making personalized node-
specific models more appropriate. Any common structure or
correlation among tasks can be leveraged to improve overall
performance.

Thus, the learning goal is framed as a joint optimization
problem capturing both local performance and inter-task rela-
tionships:

min

N
{wilN Zf7(w“D‘) + R({W’i}zNzl)v (1)

i=1 5—=1

where f;(w;;D;) is the local loss function at node i, and
R({w;}) is a regularization or coupling term designed to
exploit shared structure among tasks.

B. ColNet Architecture

To tackle the challenges of multi-task learning in DFL,
ColNet uses collaborative optimization so that nodes benefit
from both task-coherent peers and cross-task exchanges. Fig.[I|
outlines a five-stage recurrent workflow.

1) Local Learning: Each node trains on its local dataset and
updates both the shared backbone and its task-specific
layers.

2) Model Exchanging: Nodes exchange their current back-
bone parameters with peers in the DFL overlay. Task-
specific layers are not shared.

3) Adaptive Clustering and Intra-Group Aggregation: Using
model-sensitivity and data-sensitivity indicators derived
from Stage 2, nodes are automatically grouped into task-
coherent clusters. Within each cluster, nodes perform
intra-group aggregation on the backbone (FedAvg), while
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Fig. 1: Overview of the ColNet Learning Process

Algorithm 1 ColNet Five-Stage Client Workflow (Node ¢)

Require: Graph G = (V, &), neighbors N (i), data D;, loss £, rounds
R, local epochs E, clusters K, weights «, 3,7, temps Tioss, 77>
leader set Licad

1: Initialize w; = (B;, H;); BY™ < B;
2: for r=1to R do
3: Stage 1: Local Learning > optimize f; on D;

Update (B;, H;) by E-epoch local training with loss ¢

Stage 2: Model Exchanging > backbone only

Exchange B; with all j € N (i) to obtain {B;},en )

Stage 3: Adaptive Clustering & Intra-Group Aggregation

(i, K(2)) < TaskAwareClustering(B;, H;, {B; }, D;)

9: B; < FedAvg({Br}rex(s) U{B:}) » heads H stay local

10: Stage 4: Cross-Group Aggregation > leaders only

11:  if i € Lieaa then

AN A

12: AB; + B; — Bfrcv B
13: Bz < LeaderHCA(Bi, AB“ £lead)
14: end if

15: Stage 5: Redistribution
16: if 7 € Licaa then

17: Broadcast updated B; to all k € K(i)

18: else

19: Receive Bieader from group leader; B; <— Bicader
20: end if

21: B« B;

22: end for

task-specific layers remain private to preserve task diver-
sity. A cluster leader is designated to coordinate cross-
group exchange.

4) Cross-Group Aggregation: Cluster leaders exchange their
group-averaged backbone. Each leader applies a sim-
plified HCA aggregation to reduce conflicting gradients
across tasks, producing an updated backbone that inte-
grates complementary information from other groups.

5) Model Redistribution: Leaders redistribute the updated
backbone to all members of the corresponding clusters.
Nodes synchronize their backbone parameters and resume
Stage 1 with refreshed initialization.



C. Learning Process

Compared to standard DFL methods, the main novelty of
ColNet during training lies in introducing adaptive clustering,
intra-task, and cross-task aggregation. The learning process in
each client is presented in Algorithm

a) Local Learning: Client i solves the local objective
on D; for E epochs (cf. Eq. (1)), updating both B; and H;.

b) Model Exchanging: Clients exchange backbone pa-
rameters with neighbors in G, i.e., each node broadcasts B;
and receives {B;};car(;). Task heads H are not shared.

c) Adaptive Clustering and Intra-Group Aggregation:
Given received backbones {B;};ca(;), client i forms tem-
porary models My = (B;, H;) and M; = (B;, H;) for all
j € N(4) so that all models share the same task head H;.
This aligns the evaluation to client ¢’s task and avoids con-
founding from heterogeneous heads. The adaptive clustering
is presented in Algorithm [2]

(1) Three signals on local data. On D;, client ¢ computes three
pairwise signals among the index set Z = {0} U N (2):

(00, 00,))
O d = wearymeanr @
A[pa Q] = E(aﬁ,y)wDi [E(f(vaq)»y)L

Cosine similarity:

Empirical loss:

3)

Avg. Jacobian norm: J[p,q] = E,.p, [ ‘ m } .
’ q F

“)

Here 0(M) stacks the (flattened) backbone parameters of M
(heads are identical and omitted), f is the task output (e.g.,
logits), and z(-; M,) denotes the backbone feature right before
the head. The Jacobian norm measures the model’s local
sensitivity to backbone features, serving as a proxy for model
stability.

Together, these three signals capture both model similarity
and data-dependent sensitivity on D;, providing a balanced
view that is less biased than any single metric.

(2) Symmetrization and temperature scaling. A and J are
asymmetric because they evaluate M, on D;, thus, they are
symmetrized via:

A+ L(A+AT)

J— T+ JT). ©)

Then, they are converted into similarities via temperatures
Tioss, TJ > 0:

Asimb% Q} = exp( - A[p, Q]/Tloss> 6)
Jsim[p, q] = exp(— J[p, ql/71).

In practice, this work standardizes each matrix before expo-
nentiation (z-score per-matrix) to balance scale across signals.

(3) Affinity fusion and self-confidence. This work fuses the
three channels into an affinity matrix:
S = aC + ﬂAsim + "Yc]sim

7
a,B,7>0& a+pB4+y =1, @

Algorithm 2 TASKAWARECLUSTERING at Node ¢

Require: B;, H;, neighbor backbones {B;};c (i), data D;, loss £,
a, 3,7, Toss, TJ, clusters K
Ensure: Cluster label g;, peer set k(i)
1: Build models M() < (Bi7 HZ) and Mj (—(B]', H»L) for j EN(Z)
. Let index set Z< {0} UN(3); init C, A, J € RIZIXIZI
: for all p,qg € Z do
Clp, q] + CosSim(M,, My)
Alp, q] < AvgLoss(Myg; D;, £)
J|p, q] + AvgJacobianNorm(My; D;)
end for
A= (A+ATY/2, T (T+TT))/2
9: Asim[ 7Q] < exp(—A[p, q]/Tl(’SS)
10: Jim([p, q] <= exp(—J[p, q]/77)
11: S aC + BAsim + vJsim; set S[p,p] + 1
12: Apply spectral clustering on S into K clusters; obtain g;
13: K@)« {keN@U{i} | gr = 9i}
14: return (g;, K(7))

A o

(4) Spectral clustering. Apply normalized spectral clustering
on the affinity matrix S to obtain K clusters. Let g; be the
label assigned to index O (client 7), and define its in-group
peers as K(i) = {k € N (i) U{i} | gx = 9}

(5) Intra-group aggregation (backbone only). Within K(i),
clients average backbones while keeping heads local:

1
_ B B ) — B
w _|IC(Z)| EAWk’ B; +— w”. (8)
keK (i)

This produces a group-coherent backbone B; tailored to 7’s
task via H;.

(6) Leader Selection. Once task groups are established, each
group appoints a leader on a rotating basis to balance coordi-
nation overhead. In round r, one member serves as leader and
coordinates inter-group aggregation; after this step, leadership
rotates (round-robin) to the next member in the group. The
outgoing leader announces the handover to its group and to
peer leaders so that subsequent cross-group exchanges use the
updated routing.

d) Cross-Group Aggregation: Cross-group aggregation
is challenging due to potential conflicts between updates
produced by heterogeneous tasks. Let Lie,q denote the set of
current group leaders and Gy = |Ljeaq| the number of groups.
Each leader i € £}, computes a backbone delta to its previous
round,

B — B B
Awi = Wi = W, brev (9)

exchanges AWiB with other leaders, and forms the mean

=B _ 1 B
update AW” = &3>, Awp.

Inspired by FedHCA? [10], ColNet adapts a gradient-
alignment objective that seeks an aggregated update U close
to Aw? while improving its alignment with the worst-case
task direction:

max min(Aw? U7
U 3

_ (10)
st. U= AwWP| < cl|aw?||



Algorithm 3 LEADERHCA (Cross-Group Agg. at Leader 1)

Require: Current backbone B;, local delta AB;, leader set Liead
Ensure: Updated backbone B;
1: for all £ € Liew \ {i} do

2: Send AB; to ¢; Receive AB, from ¢

3: end for

4: U; + HCA(ABZ', {ABe}eeﬁleud\{i}) > see Eq. li
5. B+ B; + UZ

6: return B;

where ¢ € [0, 1) bounds the deviation from the mean update.
A Lagrangian treatment yields the closed-form

U= Aw>P + U
1T ||
Uy, = i Z we Awy (1)
L€ Licad

with nonnegative weights w, determined by the chosen conflict
metric. This update balances proximity to the mean and re-
duction of cross-task conflicts, as shown in Algorithm [3] Each
leader applies U to its backbone and proceeds to redistribution.

e) Model Redistribution: Group leaders broadcast the
updated backbone to their members, who synchronize B and
continue with the next round, while task heads remain private.
The rotating-leader policy is then applied to select successors
for the following cross-task aggregation.

Stages (2)—(3) adapt collaboration to both model- and data-
driven signals, which improves stability under label and task
heterogeneity. Stage (4) integrates complementary cross-task
information while mitigating gradient conflicts. The five-stage
loop repeats until a stopping criterion is met.

IV. DEPLOYMENT AND EVALUATION

This section details the deployment and experimental eval-
vation of ColNet, covering the targeted multi-task learning
scenarios, the chosen evaluation metrics, and the resulting
performance outcomes [1_1

A. Scenarios, Datasets, and Models

Two heterogeneity scenarios are considered for evaluation:
label heterogeneity and task heterogeneity.

Label heterogeneity arises when clients train on different
subsets of class labels, which requires splitting the model into
a shared backbone and task-specific layers to protect privacy
and maintain performance. Clients with the same labels form
a single task group, sharing only the backbone parameters.
The CIFAR-10 dataset [24]] was selected to evaluate label
heterogeneity, where each image belongs to one of ten classes.
To simulate label heterogeneity, the dataset is partitioned into
two super-classes: animals (bird, cat, deer, dog, frog, horse)
and objects (airplane, automobile, ship, truck). Within each
super-class, samples are split evenly and assigned to three
clients in an IID manner.

ICode available at: https:/github.com/Cyber-Tracer/asfdfmtl

The dataset is split into 50,000 images for training and
10,000 for testing, further subdivided into animal or object
sets. Each client’s training subset is then partitioned (80% train
and 20% validation), and all clients use the same test subset in
a task group. Data augmentation techniques, such as random
cropping, flipping, and color jittering are applied to mitigate
overfitting.

All clients train a ResNet-18 [25] backbone and separate
task layers to accommodate different output dimensions (four
classes for objects, six for animals). A Cross-Entropy loss and
SGD optimizer (learning rate 0.01, momentum 0.9, weight
decay le-3) are employed.

Task heterogeneity is more complex, as clients may work
on entirely different tasks (e.g., image classification and object
detection), each requiring distinct final layers, loss functions,
and optimizers. Dividing the model into a shared backbone and
task-specific layer can facilitate aggregation in this scenario.
The CelebA dataset [20] is used to evaluate task heterogeneity.
It contains over 200,000 face images with up to 40 binary
attributes and five landmark annotations, making it suitable
for multiple tasks, including face attribute recognition and
landmark detection [27], [28], [29].

To simulate task heterogeneity, two distinct task groups are
defined: multi-label face attribute classification and face
landmark detection. A subset comprising 80% of the dataset
is used for training/validation, created by first selecting 40%
for each task group and assigning it evenly across that group’s
clients; the remaining 20% serves as a common test set. Each
client then partitions its local portion into 80% training and
20% validation. Standard augmentations (random rotation and
horizontal flips) are applied to mitigate overfitting.

Both tasks employ ResNet-18 backbone and distinct task
layers: (a) Face attribute classification uses Binary Cross
Entropy loss and an AdamW optimizer 5e-5 learning rate,
5e-3 weight decay; (b) Face landmark detection uses Mean
Squared Error loss and an Adam optimizer Se-4 learning rate.

In the experiments, the overlay network uses a fully con-
nected topology, and nodes have no knowledge of other
nodes’ task types. After each local training round, each node
disseminates only its backbone parameters to all other nodes in
the network. Adaptive task clustering is then performed based
on the received backbones and local data. Normalized spectral
clustering is used with the number of clusters set to k=2, after
which intra-group aggregation and subsequent steps proceed.

The experiments report four evaluation metrics: loss, preci-
sion, recall, and F1-Score. Since face landmark detection is a
regression task, only the loss metric is used to evaluate this
subtask. To handle class imbalance and multi-class scenarios,
micro averaging strategy is used, aggregating metrics across all
classes within each task group. Metrics are kept separate for
different groups because their labels (in the label heterogeneity
scenario) or tasks (in the task heterogeneity scenario) are
distinct.



B. Federation Setup

For the federated setup, six nodes are split into two task
groups, each fully connected internally, with inter-group com-
munication handled by leader nodes. Fifteen training rounds
are performed, each comprising two local epochs followed by
intra-group and cross-group model aggregation. To investigate
aggregation frequency, the experiment also compares 2, 3, and
5 local epochs per round.

Three baselines are implemented to assess the proposed
ColNet framework:

1) No aggregation: Nodes train only on local data.

2) Intra-aggregation only: Nodes aggregate their backbone
parameters within each group, with no cross-group ex-
change.

3) FedPre (intra- and cross-aggregation): Nodes use Fed-
Pre [16] for both intra-group and cross-group backbone
aggregation.

By contrast, ColNet combines FedPre for intra-group aggrega-
tion with HCA-based cross-group aggregation, enabling more
effective handling of diverse tasks.

C. Impact of Aggregation Frequency

To maximize multi-task learning performance, it is im-
portant to determine the optimal aggregation frequency, i.e.,
how many local epochs to run per training round. Hence, the
initial experiment compares ColNet’s performance with 2, 3,
and 5 local epochs under two evaluation scenarios, thereby
identifying the most suitable hyperparameter.

TABLE II: Average Client Test Metrics of ColNet for Two
Evaluation Scenarios with Different Local Epoch Setups

Scenario Subtask Epochs Loss Precision  Recall F1-Score
Animal 2 0.673  0.779 0.768 0.769
Label Classification 3 0.786  0.764 0.732 0.729
. 5 0.801  0.743 0.727 0.717
Heterogeneity
(CIFAR-10) Object 2 0.370  0.888 0.878 0.877
Classification 3 0.333  0.895 0.891 0.891
5 0.383  0.884 0.874 0.874
Attribute 2 0.231  0.741 0.545 0.605
Task Classification 3 0.233  0.735 0.542 0.598
. 5 0.237  0.733 0.522 0.579
Heterogeneity
(CelebA) Landmark 2 5.299
Detection 3 5.224
5 5.762

TABLE [lI| presents the results for four subtasks: animal
classification, object classification, face attribute classification,
and face landmark detection. Since face landmark detection
is a regression task, only the loss metric is reported for that
subtask. Besides, Fig. [J] presents the epoch-wise validation loss
for each subtask with different local training epoch settings.

In the label heterogeneity scenario (i.e., CIFAR-10), using
two epochs per aggregation achieves the best performance
for the animal group, while the object group slightly trails
the three-epoch scheme. However, the difference is negligible,
and both precision and recall remain closely aligned. From
a training perspective (see Figure [2), the two-epoch setup
converges more smoothly and exhibits lower loss. Despite the
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Fig. 2: Average Client Validation Loss in Each Epoch with
Different Local Epoch Setups

minor drop for the object group, the overall benefits of two-
epoch intervals prevail.

Frequent aggregations benefit face attribute classification
in the task heterogeneity scenario (i.e., CelebA). While the
landmark detection task achieves its best results with three
epochs, the two-epoch setting converges more quickly and
smoothly. Consequently, two local training epochs per round
are adopted in all remaining experiments.

D. Impact of the Privatization Degree

When deploying the backbone and task layers, a crucial
hyperparameter concerns how to allocate these two parts of
the network architecture. Although both scenarios in this work
rely on ResNet-18 as the base model, determining which layers
form the backbone and which form the task layers still requires
careful consideration. Retaining more of the original, lower-
level ResNet-18 layers in the backbone increases the amount
of shared information among nodes, which may be detrimental
for highly heterogeneous tasks. Conversely, expanding the
upper residual layers into the task layer offers a higher
degree of privatization but may weaken the effectiveness of
aggregations.

To evaluate how different levels of privatization impact
multi-task learning, three configurations are compared: (i) no
residual layers are privatized (BL-0), (ii) the last residual layer
is part of the task layer (BL-1), and (iii) the last two residual
layers are part of the task layer (BL-2). BL-0 represents the
lowest degree of privatization, whereas BL-2 represents a high
degree.

TABLE compares the performance of ColNet client
models under these three settings in both scenarios. Besides,
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This experiment compares the performance of ColNet with
(1) No aggregation (NO AGG.), (ii) Intra-aggregation (INTRA-
AGG.), and (iii) FedPre with intra- and cross-aggregation
(FEDPRE 1&C), in label heterogeneity and task heterogeneity
scenarios. TABLE presents the test metrics of different
aggregation schemes in these two scenarios after 15 federated
rounds with a total of 30 epochs.

TABLE IV: Average Client Test Metrics for Different Aggre-
gation Schemes

0.40 Scenario Subtask Aggregation Loss  Precision Recall F1-Score
3 10.00 4 NO AGG. 0938  0.699 0.675  0.669
1 Animal INTRA-AGG. 0953  0.723 0.680  0.679
0.35 1 9.00- \ Label Classification FEDCPRE(I&C) 0853 0.730 0700  0.689
) oINet 0.673 0779 0.768  0.769
X Heterogeneity
) A 8.00 - ’i (CIFAR-10) NO AGG. 0464 0.846 0.840  0.840
S o030l ™ Object INTRA-AGG. 0409  0.867 0855  0.856
= 0. \ \ Classification ~ FEDPRE(I&C)  0.346  0.879 0875  0.875
: 7.001 ColNet 0370 0.888 0.878  0.877
x

0.25 - "aifese 6.00 1 A, NO AGG. 0244 0722 0511 0570
: s : T Attribute INTRA-AGG. 0236  0.733 0526 0585
Axmxanx XX AAAARIIINR Task Classification  FEDPRE(I&C)  0.239  0.726 0513 0571
T y v v T ; y y sk ColNet 0231 0741 0545 0.605
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Fig. 3: Average Client Validation Loss in Each Epoch with
Different Privatization Setups

Fig. [3] presents the validation loss in each epoch during the
training process. Overall, BL-2 shows the weakest perfor-
mance, implying that retaining more residual layers in the
backbone benefits DFMTL by providing sufficient neurons to
exchange knowledge across different tasks. At the same time, a
suitable number of task layers enables proper personalization
under varied conditions. Drawing on the results from both
scenarios, a moderate privatization strategy—treating the last
residual block and the output layer of ResNet-18 as task
layers (i.e., BL-1) proves optimal and is therefore adopted for
subsequent experiments.

E. Comparison Among Aggregation Schemes

Having established an appropriate aggregation frequency
and layer privatization strategy, the ColNet framework is
now compared with other aggregation schemes. The main
objective is to determine whether clients that leverage cross-
task knowledge achieve better performance on their own tasks.

TABLE III: Average Client Test Metrics of ColNet for Two
Evaluation Scenarios with Different Privatization Setups

Scenario Subtask Privatization  Loss Precision Recall F1-Score
Animal BL-0 0.706  0.786 0.759 0.758
Label Classification BL-1 0.673  0.779 0.768 0.769
. BL-2 0.810  0.739 0.720 0.716
Heterogeneity
(CIFAR-10) Object BL-0 0.313  0.900 0.895 0.895
Classification BL-1 0370  0.888 0.878 0.877
BL-2 0371  0.881 0.876 0.875
Attribute BL-0 0.230 0.738 0.541 0.599
Task Classification BL-1 0231  0.741 0.545 0.605
. BL-2 0236  0.734 0.533 0.592
Heterogeneity
(CelebA) BL-0 5.285
Landmark
Landmark BL-1 5299
BL-2 5.829

[NO AGG.: No aggregation; INTRA-AGG.: Intra-aggregation;
FEDPRE(1&C): FedPre with intra- and cross-aggregation]

TABLE compares ColNet with three reference aggre-
gation schemes under both the label heterogeneity and task
heterogeneity scenarios. The results demonstrate that ColNet
consistently outperforms the other methods across multiple
datasets in multi-task settings.

In the label heterogeneity scenario, ColNet achieves the
highest performance in both the animal and object classifica-
tion subtasks. Notably, the F1-Score for animal classification
exceeds the reference aggregation schemes by more than 0.08,
signifying a substantial improvement. The findings further
highlight that collaborative learning in a federated environment
produces clearly superior results compared to no aggregation
at all. Aggregating only within task groups increases precision
by about 0.02, while employing an intra- and inter-group
FedPer approach improves performance even more. Besides,
ColNet’s cross-group HCA method effectively resolves con-
flicting gradients among heterogeneous tasks, allowing nodes
to absorb knowledge from tasks beyond their own and enhanc-
ing local task performance.

A similar pattern is presented in the task heterogeneity
scenario. Models without aggregation perform worst, whereas
introducing inter-group aggregation yields a 0.01 gain in
precision and a notable reduction in loss for the landmark
detection subtask. With ColNet, both subtasks attain the best
results: the F1-Score rises by 0.03, precision increases by 0.02,
and the landmark detection loss drops by 0.8. These outcomes
underscore ColNet’s clear advantages over other aggregation
strategies in DFMTL.

Fig. [ presents the average client validation loss across
epochs with using different aggregation schemes. Across all
tasks, ColNet consistently achieves the lowest validation loss,
highlighting its effectiveness in reducing errors during training.



FEDPER (I&C) INTRA-AGG.
—x— COLNET NO AGG.
ANIMAL CLASSIFICATION OBJECT CLASSIFICATION
%, 1.20
1.60 \X Y
X i ~
1.40 v 1.00
w0 ¥y s
n X% 0.801 s
o) 1.20 ‘x\ x5
— XX X%\
1.00 A % % 0.60 A x"x\
Rt A
0.80 1 Fo | 0.401 R

ATTRIBUTE CLASSIFICATION LANDMARK DETECTION

0.40
» \
\ 9.001 1\
0.35
0 i 8.00{ |f
S
20307 % 7.00 1 \
A
"xx \ \
0.25 Pl 6.00
xx'x’""*xxxx-x,nx iy T xm kXK
0 10 20 30 0 10 20 30
EPOCH EPOCH

Fig. 4: Average Client Validation Loss in Each Epoch for
Different Aggregation Schemes

This advantage is particularly pronounced in animal classi-
fication and landmark detection, where ColNet’s smoother
and more stable convergence clearly outperforms the other
methods. The results underscore ColNet’s ability to manage
both inter-task and intra-task heterogeneity more effectively
than simpler aggregation schemes.

In contrast, FedPre and intra-aggregation show higher loss
values and less stable convergence trends, while no aggre-
gation performs the worst in all scenarios, reinforcing the
critical importance of aggregation in federated multi-task
learning. Notably, ColNet demonstrates a significant advan-
tage by mitigating gradient conflicts and enabling knowledge
sharing. These findings affirm ColNet’s superiority in DFMTL
environments.

F. Robustness Analysis of ColNet

In the preceding experiments, all participating clients were
assumed benign (honest and non-adversarial). In decentralized
learning, this assumption often breaks down: some clients may
behave maliciously, most notably via poisoning attacks that
corrupt model updates or local data, degrade performance,
and undermine model usability [30]. Accordingly, this study
evaluates ColNet’s resilience to multiple poisoning settings,
covering both model-poisoning and data-poisoning variants,
and analyzes its model robustness.

1) Poisoning Attack Strategies: This implements four poi-
soning attack strategies to evaluate the model robustness of the
proposed ColNet, covering data poisoning attacks (untargeted
label flipping), model poisoning attacks (scaled boost and
AT2FL [31]), and aggregation manipulation.

Untargeted Label Flipping. Before local training, labels
are corrupted to inject label noise: for multi-label tasks, each
label is flipped with probability p (Bernoulli mask), and for
single-label tasks, the true class is replaced with a uniformly
sampled different class with probability p. The operation
degrades overall generalization without steering predictions
toward a specific alternative.

Scaled Boost. After local training but before upload, the
client scales its update by a factor s > 1 and uploads
s - A;, optionally preserving non-trainable statistics and ap-
plying clipping or BN re-estimation to reduce detectability,
thereby amplifying the client’s influence on global updates
and inducing overshoot or instability.

AT2FL (Inner-Loop Adversarial Data Poisoning). During
local training, for a small number of mini-batches the attacker
computes input gradients and crafts adversarial inputs xX,qy =
Projy(x + esign(VxL)), performs additional optimization
steps on these perturbed samples to steer local parameters
toward directions that increase future loss on target nodes,
then uploads the manipulated backbone.

Aggregation Manipulation (Malicious Aggregation Fil-
ter). At aggregation, the aggregator replaces or perturbs
the conflict-averse aggregate Apca = Apca({A;}) with
Aagg = Fma(Anca, {A;}), thereby compromising cross-task
reconciliation or implanting group-level backdoors.

2) Attack evaluation setup: The robustness analysis exper-
iments follow the same base training and evaluation protocol
as the model-performance experiments. The only change is
that, in each attack trial, a single client is designated as the
attacker while all other clients remain benign. Comparative
runs are executed in two modes: (a) clean baseline (no attacker
present) and (b) attacked (one attacker active). Robustness is
measured by the impact of the attack on the performance of
benign clients; that is, if the loss and F1-Score of benign
clients degrade only mildly under attack relative to the clean
baseline, the system is considered more robust.

The dataset-specific attacker placement used in the ex-
periments is as follows: (i) CIFAR-10 (label-heterogeneous
setting). The first node in the Animal Classification (AN_NO)
task is set as the attacker; the remaining nodes are benign.
(i) CelebA (task-heterogeneous setting). The first node in
the Attribute Classification (AC_NO) task is set as the attacker;
the remaining nodes are benign.

3) Robustness Analysis Results:

a) Untargeted label flipping.: This attack flips labels
in the attacker’s local dataset before training. As shown in
Fig. bl its effect is highly concentrated on the poisoned node:
e.g., on CIFAR-10 the poisoned AN_NO’s loss increased from
~ 0.65 to ~ 4.41 and its F1 dropped from 0.77 to 0.052
(a ~ 0.72 absolute F1 loss). By contrast, same-group mates
AN_NI1/N2) experienced negligible aggregate harm (mean F1
stayed roughly the same: ~ 0.734 — ~ 0.736), and cross-
group object nodes (OB_N) were essentially unaffected. A
similar pattern holds on CelebA dataset: the poisoned attribute
node (AC_NO) suffered a large F1 drop (0.591 — 0.139), while
the other attribute nodes showed small or no degradation.
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Fig. 5: Impact of Untargeted Label Flipping Attack on CIFAR-
10 and CelebA Datasets

b) Scaled Boost (model poisoning).: Scaled Boost am-
plifies a client’s update before upload (here x5 amplified).
As shown in Fig. [6] the poisoned client incurs the largest
absolute degradation, for CIFAR-10 AN_NO F1 fell from 0.77
to ~ 0.18, but unlike simple label flips there is measurable
collateral damage to same-group benign clients: AN_N1/N2
saw modest F1 drops (each ~ 0.04-0.05 absolute), while
cross-group object nodes remained effectively stable (changes
=~ 0 or within noise). On CelebA, the attacker’s attribute node
(AC_NO) lost ~0.27 F1, and the other attribute nodes suffered
smaller but non-negligible drops.

c) AT2FL (inner-loop adversarial poisoning).: AT2FL
crafts adversarial inputs during a few local mini-batches to
bias the local update towards directions that maximize future
loss on target nodes. As shown in Fig. [} for CIFAR-10,
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Fig. 6: Impact of Scaled Boost Attack on CIFAR-10 and
CelebA Datasets
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Fig. 7: Impact of AT2FL Attack on CIFAR-10 and CelebA
Datasets

AN_NO’s F1 decreased from 0.77 to ~ 0.68, while same-group
mates (AN_N1/N2) in some runs even improved slightly,
indicating that adversarially nudging shared representations
can have non-uniform, task-dependent side effects. Cross-
group object nodes remained essentially stable (very small
changes). On CelebA the AT2FL perturbations caused small-
to-moderate F1 decreases on the attribute nodes (e.g., AC_NO:
0.591 — 0.547).

d) Aggregation manipulation.: Tampering with the ag-
gregation routine (replacing or perturbing the conflict-averse
solution) is the most system-wide attack. As shown in Fig[g]
in CIFAR-10 the malicious aggregation caused sizeable F1
drops across both same-group and cross-group nodes: AN
nodes’ F1 decreased from ~ 0.77 to ~ 0.55 (same-group
mean drop ~ 0.18), and object nodes’ F1 also fell substantially
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Fig. 8: Impact of Aggregation manipulation Attack on CIFAR-
10 and CelebA Datasets



(cross-group mean drop ~ 0.18). On CelebA the aggregation
attack produced roughly uniform declines across attribute
nodes (each AC_N lost ~ 0.06 F1) and raised landmark losses.

Untargeted label flipping primarily collapses the attacker’s
own model with minimal spillover to other clients; model-
level manipulations (e.g., Scaled Boost) inflict stronger local
damage and measurable collateral degradation within the at-
tacker’s task group; and attacks that subvert the aggregation
stage break task isolation and cause the most severe, system-
wide declines, affecting both same-task and cross-task nodes.

Overall, ColNet demonstrates model robustness: it strongly
resists isolated label noise and modest manipulations, but
remains vulnerable when an attacker either (i) amplifies their
aggregate influence or (ii) directly compromises the aggrega-
tion routine, suggesting defense priorities of anomaly detection
for client updates and hardening aggregation integrity.

V. SUMMARY AND FUTURE WORK

ColNet is a decentralized federated multi-task learning
framework that groups clients by task, averages backbones
within each group, and reconciles group updates via an HCA-
style conflict-averse aggregator. An adaptive clustering module
discovers and refines group membership over time. Empirical
results show consistent gains over alternative aggregators
while demonstrating improved robustness. The combination of
a shared backbone, task-specific heads, HCA aggregation, and
adaptive clustering substantially limits cross-task propagation
of client-side attacks.

Future work focuses on fault-tolerant deployment, including
leader election and rotation, straggler mitigation, and support
for asynchronous rounds, together with stronger aggregation
hardening through Byzantine-robust and secure aggregation
to balance accuracy, privacy, and robustness. Large-scale dis-
tributed evaluations against stronger adaptive adversaries will
quantify trade-offs and guide improvements toward compre-
hensive robustness guarantees.
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