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Artificial intelligence (AI) is reshaping Security Operations Centers (SOCs). This systematic literature review
analyses AI’s transformative impact across the NIST Cybersecurity Framework. The analysis of 189 papers
related to AI use-cases for SOCs shows widespread application of AI for detection, with 65% of studies focusing
on it. Yet, it also reveals deficiencies in recovery, the underutilisation of explainable AI models—with 88% of
studies relying on non-explainable approaches— the sporadic release of tools as open-source and an over-
reliance on proprietary datasets. Common motivations for papers include efficiency, error reduction, and cost
savings, with challenges in data reliance, and integration complexity.

CCS Concepts: • Security and privacy→ Network security; • Networks→ Network monitoring; • General
and reference → Surveys and overviews; • Computing methodologies → Artificial intelligence; •
Applied computing → Operations research; Network forensics;
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1 Introduction
The exponential growth of complexity and frequency of cyber threats has thrust cybersecurity to
the forefront of organisational priorities. A recent study by JupiterOne [93] highlights a staggering
133% increase in the total number of cyber assets involved in business processes in 2023 alone. This
surge underscores the expanding attack surface that Security Operations Centres (SOCs) must
monitor and protect. The strain on SOC teams is evident, with 78% of staff working beyond regular
hours to manage the mounting workload [45]. In this context, the game-changing integration of
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Artificial Intelligence (AI) into SOC practices has garnered substantial attention, promising to
revolutionise the effectiveness and efficiency of cybersecurity operations, offering a significant
improvement over traditional rule-based tools.

As the demand for AI-driven solutions in SOC surges, there remains a critical gap in the current
literature. Existing reviews have explored aspects of AI taxonomy [96], integration [40], and have
offered valuable insights into specific challenges such as real-time threat detection [181], intrusion
detection [147, 225], automation [48], and situation awareness [152, 203] in SOC environments.
However, they fail to provide a holistic view that encompasses all interconnected aspects of these
challenges. These studies highlight limitations such as the lack of comprehensive frameworks [7],
formalised explainability [147], available datasets [225], and the difficulty of effectively integrating
AI across all SOC functions [188]. Furthermore, research often focuses on isolated use cases [9, 15, 17,
171] without considering the broader context of SOC operations and the operational complexities
involved.

The need for a new systematic literature review (SLR) arises from these significant gaps in
the existing body of work. This review does not only map the current state-of-the-art applications
of AI in SOCs but it also critically assesses the limitations, challenges, and research gaps identified
in previous studies. By examining prevailing trends, adoption patterns, and underexplored areas,
this review provides a comprehensive overview that serves as a foundation for future research
and development in the field. The goal is to deliver a more extensive and integrative assessment of
AI-driven SOC solutions, one that addresses the complexities of modern cybersecurity demands
while paving the way for more effective, scalable, and explainable AI applications in SOC operations.

1.1 Scope and Definition of Security Operations Centres (SOCs)
SOCs are critical components within organisational security frameworks, designated to proactively
monitor, detect, respond to, and mitigate cybersecurity threats. The concept of a SOC encompasses a
range of operational models, each designed to address the specific security needs of an organisation.

1.1.1 Definition of a SOC. Although there is no universal definition, several authoritative sources
provide similar perspectives on what constitutes a SOC. According to the International Council of
E-Commerce Consultants (EC Council) a SOC is described as “a team of cybersecurity personnel
dedicated to monitoring and analysing an organisation’s security while responding to potential
or current breaches” [30]. CompTIA defines a SOC as “a team of experts that proactively monitor
an organisation’s ability to operate securely” [5]. Splunk characterises a SOC as a “centralised
location where security professionals build and maintain the security architecture that monitors,
detects, analyses and responds to cybersecurity incidents and threats, typically around the clock”
[1]. These definitions collectively highlight the dual role of the SOC in both proactive surveillance
and reactive incident management, underscoring the versatile nature of SOCs in adapting to diverse
cybersecurity landscapes.

1.1.2 Operational Scope of SOCs. The operational scope of a SOC is delineated by its core
functions, which are illustrated in Figure 1. This flowchart breaks down the SOC’s activities into
several key areas:

(1) Identification and Monitoring: Continuous monitoring of network and system activities
to identify potential security events. This includes asset management and vulnerability
assessments to establish a robust cybersecurity posture.

(2) Threat Detection: Utilisation of advanced analytical tools and methodologies to detect
anomalies that could indicate cybersecurity incidents.This function leverages data integration
from multiple sources, including threat intelligence feeds, to enhance detection capabilities.
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Fig. 1. Flowchart of SOC functionalities and processes.

(3) Incident Response: Once a threat is detected, the SOC personnel are responsible for coordi-
nating and executing response strategies to mitigate risks. This includes incident analysis,
containment efforts, and, crucially, communication with relevant stakeholders to effectively
manage the incident lifecycle.

(4) Recovery and Post-Incident Analysis: Activities focused on restoring systems to opera-
tional status and analysing the incident to prevent future occurrences. Recovery also involves
learning lessons and adapting strategies based on new insights gained from the breach.

The functions and responsibilities that define the role of a SOC within an organisation, as
described above, are based on the NIST Cybersecurity Framework (CSF) 2.0 [4].

1.2 NIST Cybersecurity Framework Overview
The NIST CSF 2.0 provides structured guidance to help organisations manage and mitigate cyberse-
curity risks effectively. Central to the framework are five core functions that collectively outline
the primary roles and activities within a cybersecurity programme.

(1) Identify: Develops an organisational understanding to manage cybersecurity risk to systems,
assets, data, and capabilities. This function underpins the foundation for all other functions
in the framework.

(2) Protect: Outlines appropriate safeguards to ensure the delivery of critical infrastructure
services. Protective measures help to limit or contain the impact of potential cybersecurity
events.

(3) Detect: Defines the activities to identify the occurrence of a cybersecurity event. Timely
detection helps organisations to effectively identify cybersecurity events.

(4) Respond: Includes actions to take regarding a detected cybersecurity event. Response activi-
ties help to contain the impact of a potential cybersecurity incident.

(5) Recover: Identifies activities to maintain resilience and restore any capabilities or services
impaired due to a cybersecurity event, ensuring timely recovery to normal operations.

These core functions form a comprehensive framework that equips SOCs with the necessary
tools to systematically address the full spectrum of cybersecurity challenges, from prevention to
recovery.

ACM Comput. Surv., Vol. 58, No. 3, Article 67. Publication date: September 2025.
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1.3 Adopted Definition of Artificial Intelligence (AI)
Establishing a precise definition of AI is fundamental to our analysis of its implementation in
Security Operations Centers (SOCs). While the field has numerous interpretations and defini-
tions [176], our study adopts a focused, operational perspective: AI is defined as a technology that
enables machines to imitate various complex human skills, such as problem solving, learning from
feedback, and making decisions with some degree of autonomy. AI involves systems that display
intelligent behaviour by analysing their environment and taking actions to achieve specific goals.
This definition encompasses a range of applications currently recognised as AI, while also allowing
future technological developments and understanding. AI is not just about the use of algorithms or
digital technology; it specifically involves systems that can operate with a level of independence to
mimic human cognitive functions [191]. Crucially, this conceptualisation emphasises AI’s capacity
for autonomous operation—a characteristic that fundamentally differentiates it from traditional
rule-based systems.

1.4 ResearchQuestions
This SLR answers the following research questions regarding AI utilisation in SOCs:

—RQ1: What are the current state-of-the-art applications of AI tools for SOC usage,
and what are the prevailing trends and overall adoption patterns? We explore the
broad and detailed integration of AI in SOCs, identifying trends and adoption patterns.

—RQ2: What is the motivation behind the development of AI tools in SOCs? This
question examines the motivations driving AI adoption in SOCs, aiming to align technology
with organisational goals.

—RQ3: To what extent are open-source tools proposed? We investigate the use and
influence of open-source tools in SOCs to understand their accessibility and impact.

—RQ4: Which are the most frequently used AI algorithms? Our analysis focuses on the
prevalent AI algorithms used.

—RQ5: Which are the most frequently used datasets and what are their specific char-
acteristics in availability, and relevance to real-world scenarios? We examine key
datasets used in SOC applications, assessing their relevance and applicability to real-world
needs.

—RQ6: To what extent is the concept of explainability used in the AI tools? This
question explores the integration of explainability in AI models, highlighting its importance
for transparency in cybersecurity.

—RQ7:What are the limitations and challenges of the current applications?We evaluate
the limitations and challenges of AI in SOCs, identifying areas for future research and
innovation.

The overarching aims of this review are to illuminate the AI landscape within SOCs, exploring
its applications, trends, tools, algorithms, datasets, explainability, limitations, and challenges to
guide future research and strategic decision-making.

1.5 Target Audience
The findings of this review and meta-analysis provide essential insights for cyber security practi-
tioners, researchers, policymakers, and other stakeholders considering AI adoption within SOC
operations. This work is pertinent to a diverse range of readers, ranging from SOC professionals to
academic scholars, offering valuable knowledge to improve cyber defence strategies.

For cyber security practitioners, the review highlights state-of-the-art AI proposals and their
operational benefits in SOCs, emphasising strategic AI solutions. Researchers will find a thorough

ACM Comput. Surv., Vol. 58, No. 3, Article 67. Publication date: September 2025.



AI in SOC 67:5

synthesis of the literature that sparks further exploration, while policymakers can make informed
decisions about AI integration based on comprehensive trend analyses. Technology developers
gain understanding of current challenges and opportunities in AI-driven solutions, and educators
can use these insights to enhance learning in AI and cyber security disciplines.

Detailed insights tailored to specific reader groups, including how each section relates to particular
research questions, are provided in our repository.1 This ensures that each audience can find relevant
and practical information to guide their decisions, matched to the defined RQs.

1.6 Contributions
In this SLR, we have conducted a comprehensive analysis to understand the role of AI within SOCs.
Our review provides the following key contributions:

— Systematic Review of the Literature: We engaged in a systematic process of identifying
relevant studies, extracting data, and synthesising findings. This process involved defining
search criteria, selecting studies based on predefined eligibility criteria, and performing
qualitative and quantitative analyses. Our efforts culminated in a comprehensive synthesis
that maps a path for substantial future contributions to the cybersecurity field.

—Analysis of AI Applications: We provide a detailed examination of the AI tools proposed
for SOC usage, addressing their effectiveness, explainability, and integration across SOC
functions. This analysis, derived from the review of 189 scientific papers, provides a detailed
overview of current state-of-the-art applications, the prevailing trends, and adoption patterns
within SOC environments.

— Framework for Future Research: By categorising the existing literature according to the
NIST CSF, this review not only organises previous studies systematically, but also provides a
structured approach to understanding how AI tools can be better developed and implemented
across different SOC functions. This framework serves as a basis for future innovations and
strategic implementations in the field.

— Identification of Research Gaps and Motivation: Our study identifies significant gaps in the
existing research and discusses the motivations driving the development of AI tools for
SOC applications. By highlighting the limitations in current methodologies and frameworks,
especially in terms of explainability and real-time applicability, we suggest avenues for future
research focused on developing more transparent and adaptable AI solutions.

The rest of the article is organised as follows. Section 2 outlines the methodology employed,
detailing the procedures and techniques used to gather and analyse data. Section 3 presents the
results, highlighting key findings and trends identified from the data analysis. Section 4 provides a
discussion of the implications of these results, exploring their significance and limitations in the
context of existing literature, and suggests directions for future research. Section 5 discusses the
related work in detail, contextualising our contributions within the broader research landscape.
Finally, Section 6 concludes the article. Given the multifaceted nature of the topic, some discussions
are addressed directly after presenting the results for a more direct connection between findings
and their implications as they emerge, while limitations are included within discussions rather
than exclusively in the conclusion section of the article, allowing findings to be interpreted more
immediately within their context.

2 Methods
In this section, we describe the methodology used to conduct this review of the literature.

1https://github.com/desgiar/AI4SOC-SLR
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Table 1. Search Keywords

Line Keywords
1 Security Operation? Cent*
2 SOC?; CSOC?; NOC?
3 AI; Artificial Intelligence; Machine Learning; Deep Learning; Neural Network?

Given the frequent appearance of related but distinct concepts in the reviewed studies, we clarify
our use of terminology at the outset. AI is used as an umbrella term encompassing a range of
techniques aimed at simulating intelligent behavior. Within this scope, Machine Learning (ML)
is a subset of AI and it refers to data-driven approaches that enable systems to learn and improve
from experience. Deep Learning (DL), in turn, is a specialised subset of ML, characterised by the
use of multi-layered artificial neural networks to model complex patterns in data. These distinctions
are maintained throughout the review; while “AI” is used as the overarching term, we specify “ML”
and “DL” where appropriate to reflect the scope and nature of each contribution.

2.1 PRISMA Statement
This SLR follows the guidelines outlined in the PRISMA 2020 statement [157]. The PRISMA frame-
work provides a structured approach to systematically identify, select, and evaluate relevant studies
for our research questions. By adhering to this recognised guideline, we minimise bias and increase
the reliability of our findings.

2.2 Eligibility Criteria
To ensure the rigour, relevance and currency of this SLR, a set of predefined criteria has been
defined, shown in Figure 2(a).

The flowchart outlines the selection criteria and the process for including research papers in
a review of the literature focused on AI-enabled automation. The reason why we consider only
papers published after January 2017 is to align with significant increases in AI development and
deployment [128].

2.3 Information Sources
Our SLR required a thorough search to collect relevant scholarly works. We devised a strategic
approach to extensively explore the following major databases: ACMDigital Library,2 IEEE Xplore,3
SpringerLink,4 ScienceDirect,5 Scopus,6 Web of Science,7 and Wiley Online Library8 to ensure a
broad and authoritative data selection.

2.4 Search Strategy
To delve into the existing literature, we crafted a set of search keywords, as outlined in Table 1.
These keywords were selected to cover a broad spectrum of relevant topics within our research
scope. Each line in the table represents a distinct category.

2https://dl.acm.org/
3https://ieeexplore.ieee.org/
4https://link.springer.com/
5https://www.sciencedirect.com/
6https://www.scopus.com/
7https://webofscience.com/
8https://onlinelibrary.wiley.com/
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Fig. 2. Criteria and strategies for literature inclusion in the review.

The search string links terms from each category to ensure relevant and comprehensive results.
Specifically, the search strategy was constructed as follows:

𝑠 ≡ 𝑙1AND 𝑙2AND 𝑙3

where each line 𝑙 represents a disjunction of its respective keywords. For example, 𝑙2 could be
represented as

𝑙2 ≡ {SOC OR SOCs OR CSOC OR CSOCs OR NOC OR NOCs}

We also needed a methodical and exhaustive establishment of the eligibility criteria to ensure
the selection of relevant. Therefore, we devised and processed the search strategy presented in
Figure 2(b). Wherever possible, we also excluded any results that were classified as “Review”,
“Survey,” or “Case Study” in their titles.

Our keywords and search expressions, tailored to each database, are detailed in our repository,9
ensuring a comprehensive and targeted approach to capture the relevant literature.

9https://github.com/desgiar/AI4SOC-SLR
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2.5 Selection and Collection Processes
During the screening stage, a reviewer (one of the authors) evaluated all records, while a second
reviewer (another author) performed a validation test on random samples. To ensure objectivity
and cautious scrutiny, both reviewers worked independently and were blinded to each other’s
decisions. In instances where disagreements arose between the two, they were resolved through a
consensus-based discussion.

2.6 Data Items
In our review, we specifically sought data on the effectiveness and efficiency of AI tools implemented
within SOCs. We defined our outcomes of interest to cover a broad spectrum of AI applications in
SOC environments, reflecting various techniques and their purposes in enhancing SOC operations.
However, we excluded studies that solely discussed theoretical frameworks without empirical
validation, speculative essays on potential AI applications in SOCs, and articles that focused on
broader cyber security measures without a clear emphasis on the implementation of AI tools in
SOC contexts.

Our selection process involved a systematic evaluation of each study’s relevance to our defined
outcomes, ensuring that the data collected were directly applicable to the assessment of AI tools
in SOCs. In instances where studies provided incomplete information or lacked clarity on certain
aspects, we categorised the data as “info not available” or “n/a” (not available). This categorisation
was based on the context provided by each study, allowing us to systematically assess the availability
and relevance of the data.

Given the extensive volume of relevant literature, it was necessary to also refine our scope to
effectively manage the review. We analysed all studies on the implementation of AI tools in SOCs,
applying the same analytical criteria throughout. Although we treated most studies uniformly, for
certain specific research questions, we focused on in-depth publications from the top 10% venues.
These questions are discussed in more detail in Section 2.9 where we elaborate on the insights they
provide into SOC operations.

2.7 Study Risk of Bias Assessment
To ensure the validity and reliability of our findings, we carefully considered the risk of bias in
the studies incorporated into our review. In the context of AI tools for SOC environments, biases
can distort the actual effectiveness or performance of the tool, leading to incorrect conclusions.
Therefore, in an attempt to provide an exhaustive and impartial review, we employed the following
methods to reduce study risk bias:

— Use of multiple data sources: to avoid the risk of database-specific bias, we consulted multiple
academic and industry databases

— Comprehensive Search Strings: the search terms were deliberately broad to capture as many
relevant articles as possible. A combination of terms related to ”AI”, ”Artificial Intelligence”,
”Machine Learning”, ”Deep Learning”, ”Neural Networks” and others ensured that the litera-
ture search was inclusive

— Eligibility Criteria: we set clearly defined criteria at the outset to ensure consistent article
selection. Both inclusion and exclusion criteria were based on objective parameters, ensuring
that the selection process remained free from individual biases.

While we did not apply a formal scoring or quality appraisal tool—given the lack of standardised
frameworks tailored to computer science research—we took several steps to ensure the credibility
of the studies included. This included focusing on peer-reviewed publications, enforcing strict
eligibility criteria (e.g., minimum paper length, empirical validation), and excluding conceptual or

ACM Comput. Surv., Vol. 58, No. 3, Article 67. Publication date: September 2025.
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informal studies.These steps served tomitigate the risk of including low-quality or non-reproducible
research, even in the absence of a numerical quality rating scheme.

2.8 Effect Measures
In our systematic review, we came across various outcomes reported by the studies. Below, we list
the instances we sought—even if that information is not always available in the reviewed paper.

(1) Prevailing trends (RQ1) refer to what is currently popular and/or gaining traction every
year since 2017

(2) Overall adoption pattern (RQ1) refer to the general trajectory of what is adopted and
integrated since 2017

(3) Open-source (RQ3) is determined by the:
— presence of link to a software repository
— (and/or) source code in the paper
— (and/or) explicit mention of licence by the authors

(4) Explainability (RQ6) can be assessed by the:
— explicit mention of explainable AI (XAI) methods by the authors (Explainability

Level:High)
— presence of surrogate models: complex models might be interpreted using simpler, more

explainable “surrogate” models (Explainability Level:Moderate)
— model type: simpler models like linear regression, decision trees, and logistic regression tend

to be more interpretable than complex models like deep neural networks (Explainability
Level:Moderate)

— feature analysis: examining the contributions of individual features to model outputs
through sensitivity analysis and feature importance metrics (Explainability Level:Moderate)

— presence of visualisations such as heat-maps, partial dependence plots, and feature impor-
tance charts (Explainability Level:Moderate)

— narrative explanation: plain-language summaries or rule lists can be generated to explain
model decisions (Explainability Level:Moderate)

A paper can be considered as having a high degree of explainability if it includes at least
three of the criteria marked with a moderate explainability level.

2.9 Synthesis Methods
We employ both qualitative and quantitative synthesis methods, each tailored to specific research
questions to maximise the clarity of our findings.

—Quantitative Synthesis: For research questions RQ3, RQ4, RQ5, and RQ6, which examine the
prevalence, effectiveness, efficiency, and explainability of AI tools within SOC environments,
we utilised a comprehensive quantitative analysis approach. This approach encompasses all
publications included in our review, involves statistical methods to aggregate data from all
studies, to ensure a robust statistical examination, and to capture broader trends across the
entire corpus of literature. It also allows for robust metaanalytical techniques to be applied
where applicable. We displayed the results of individual studies and their synthesis using
structured tables and graphical representations.

—Qualitative Synthesis: Conversely, for RQ2 and RQ7, which focus on the motivations behind
the development of the AI tool and the challenges faced, a qualitative analysis is more
appropriate. This component of our synthesis is restricted to the primary studies selected that
have been published in the top 10% of the venues. We conducted a narrative analysis to extract
motivations and challenges, which were then thematically analysed. This selective approach
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allows us to dig deeper into the most influential research, providing nuanced insights into
the developments and trends within the field.

By distinguishing between these two methods of synthesis, we ensure that each set of research
questions is addressed using the most appropriate and methodologically sound approach.

Due to the wide variation in study types, evaluation metrics, datasets, and research goals across
the included papers, a formal meta-analysis was not feasible. Instead, we adopted a descriptive
and thematic synthesis approach, which is more suitable for reviews in computer science domains
where standardised quantitative outcomes are uncommon.

2.10 Reporting Bias Assessment
In this rapidly evolving scientific field, there is a potential risk of reporting bias, where only
successful tool implementations or favourable outcomes are published. To assess the risk of bias
due to missing results, which may arise from selective outcome reporting and to reduce the risk of
post hoc changes based on observed results, we relied on the following methods.

— Broad Search Strategy: Our SLR encompassed not just mainstream highly-cited publications
but also lesser-known papers to capture a wide range of AI tools designed for SOCs

— Critical Analysis: Rather than focusing solely on the reported successes of AI tools, papers
were critically examined for any limitations, challenges, or areas of improvement (RQ7). This
approach ensures that not just the positive but also the negative or inconclusive aspects of
AI tool design are considered

— Consistent Outcome Measures: to avoid measurement or detection bias, standardised metrics
(see Section 2.8) were consistently used across studies to evaluate AI tool performance in
SOC environments

— Documenting Decisions: Every decision to include or exclude a paper was documented
with clear reasons. This transparency ensures that the review process can be audited and
understood by external parties, adding an extra layer of credibility

2.11 Certainty Assessment
To provide a precise and meaningful synthesis of the existing literature on AI tools for SOC
environments, it is crucial not only to identify and summarise the relevant articles, but also to
assess the certainty or confidence in the body of evidence presented.

— Directness of Evidence: we preferred direct evidence linking the AI tool to the desired outcome
in SOC environments (e.g., reduced false positives, improved threat detection rates) over
indirect outcomes.

—Quality of Reporting: papers that provide detailed methodologies, and were transparent about
their limitations were considered to offer higher certainty

3 Results
In this section, we present the findings of our study. The results are organised according to the
research questions described in Section 1.4.

3.1 Study Selection
As we mentioned in Section 2.1, we followed the PRISMA flow process [157] for the complete
collection and selection of the literature, as illustrated in Figure 3.

Initially, 863 records were identified across multiple databases. Prior to screening, 30 records
were removed due to duplication and 26 for other reasons, including items flagged by publishers
with expressions of concern (indicating potential issues with the reliability of the content), records
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Records identified from: 

IEEE Xplore (n = 658) 
ACM (n = 67) 
SpringerLink (n = 11) 
Science Direct (n = 89) 
Scopus (n = 14) 
Web of Science (n = 9) 
Wiley (n = 15) 

Records screened (n = 807) 

Records identified in total (n = 863) 

Records assessed for eligibility (n = 444) 

Records excluded on second stage: 

Not AI in SOC related (n = 244) 
Not Sufficient Methodology (n= 1)
Technical / White papers (n= 10) 

Records excluded on first stage: 

Not AI in SOC related (n = 229) 
Literature Reviews (n = 31) 
Expert Surveys / Case Studies (n = 22) 
Less than 5 pages long (n= 61) 
Not in English (n = 1) 
Article in Magazine (n =16) 
Systematisation of Knowledge (n = 3) 

Records removed before screening:

Duplicate records removed from: 
IEEE Xplore (n = 11) 
ACM (n = 1) 
Scopus (n = 10) 
Web of Science (n = 8) 

Records removed due to expression of
concern (n=1)
 
Records removed for other reasons (n = 25) 

Records included in review (n = 189) 
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Fig. 3. Flow diagram for this SLR.

consisting only of table of contents or abstracts, and front matters. Upon screening, 807 records
were evaluated, with further exclusions based on relevance and criteria discussed in 2.2, such
as article type, length, language, and methodology. We also excluded categories such as Proofs
of Concept (PoCs) [111], and papers focused on overview and analysis [58] or the evaluation
[41, 59, 125] of ML algorithms. These exclusions were necessary as PoC papers typically explore
feasibility rather than practical implementation, and lack comprehensive data on efficacy within
SOC environments. Similarly, papers solely evaluating ML algorithms often lacked integration with
SOC workflows or considerations of operational constraints and cybersecurity applications. By
excluding these categories, the review ensures that the studies included are directly relevant to the
practical challenges and applications of AI in SOC environments, offering insightful advancements
in the field.

Following a detailed eligibility assessment of 444 records (as shown in 2.4), 189 were ultimately
included in the review.

3.2 Current State-of-the-Art, Prevailing Publication Trends, and Adoption Patterns
In the current state-of-the-art, we delve into the prevailing trends and adoption patterns of AI tools
within SOCs. Our structured analysis provides insights into the venues publishing the relevant
research, a chronological review of advancements over time, and a detailed categorisation of these
technologies according to the NIST CSF core functions. In addition, we classify the findings based
on overarching themes that emerge across the studies.

3.2.1 Time Frame. The examination of publication trends within our selected SLR corpus is
illustrated in Figure 4(a). To ensure the reliability of our findings, we normalised the data based
on the total number of publications indexed in the Scopus database, as shown in Figure 4(b). The
studies span from 2017 to 2023 and as evident from the figures, there has been a notable increase,
in both the total number of SOC-related publications and their proportion relative to the global
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Fig. 4. Trends and ratios of SOC-related AI publications.

research output. This trend underscores an expanding academic interest in SOC technologies and
strategies, indicative of their rising prominence within cybersecurity research circles.

Starting from a modest number of five publications in 2017, the count rose steadily, peaking
at 54 publications by 2022. This crescendo aligns with intensified research and development ac-
tivities in AI applications for SOCs, as cybersecurity evolving dynamics become more complex.
Interestingly, the relative decline in 2023, calls for a deeper analysis to understand underlying
factors such as changes in research funding, academic focus, global economic conditions, or even
the time taken for indexing papers in data sources that might influence research output that
might influence research output. While the decrease is not drastic, it still represents a noticeable
reduction.

This growth trajectory and the ensuing dip provide critical insights into the temporal dynamics
of research interest and resource allocation in cybersecurity. They not only reflect the academic
community’s response to emerging threats, but also highlight potential areas where future research
could either consolidate established knowledge or venture into unexplored territories within the
realm of cybersecurity and AI applications in SOC environments.

3.2.2 Venues. We now analyse the distribution between conferences and journals. Conferences
constitute 64.60% of the publications, while journals account for 35.40% of our sources. This dis-
tribution is significant as it reflects the dynamic and rapidly evolving nature of the field, where
researchers often choose conferences to present their initial results because of faster publication
times. Journals, on the other hand, are chosen for more comprehensive studies and have undergone
a more rigorous peer review process.

For the full list of primary studies, published in the top 10% of venues included in our review,
see Table 2. We did the selection based on the recognised academic metrics mentioned in 2.9. We
used Scopus10 metrics to evaluate journals and CORE rankings11 for conferences. We opt for this
approach, as the CORE rankings for journals were discontinued from March 2022 [3], necessitating
a reliable alternative that continues to reflect current standards. This dual approach ensures that our
selection encompasses publications that are not only influential but also adhere to high standards
of academic impact. By prioritising these metrics, we aim at highlighting studies that provide the
most significant contributions to the field, ensuring that our analysis is grounded in quality and
excellence. There are 64 studies included in Table 2.

10https://www.scopus.com/sources/
11http://portal.core.edu.au/conf-ranks/
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Table 2. The Full List of the Primary (Top 10%) Publications Selected

Venue Ranking/
Percentile

Publications

Conference

ACSAC A [36, 108, 154, 175, 230]
CCS A* [66]
IEEE S&P A* [205, 228]
RAID A [51, 110]
SANER A [195]
Journal
IEEE Access 92 [98, 101, 102, 105, 113, 114, 174, 193, 194,

224], [20, 37, 61, 70, 71, 82, 126, 137, 202]
Journal of Computer and Security 99 [28, 68, 73, 83, 106, 121, 173, 201]
IEEE Transactions on Dependable and Secure Computing 92 [33, 57, 139, 204, 226]
Journal of Information Security and Applications 94 [54, 86, 99, 215]
Journal of Future Generation Computer Systems 98 [24, 79, 179]
IEEE Internet of Things Journal 97 [55, 91, 158]
ACM Transactions on Intelligent Systems and Technology 95 [187]
IEEE Transactions on Visualisation and Computer Graphics 91 [75]
IEEE Communications Surveys & Tutorials 99 [13]
IEEE Transactions on Industrial Informatics 99 [39]
Journal of Cybersecurity 97 [14]
Journal of Expert Systems with Applications 96 [12]
Jounal of Chaos, Solitons & Fractals 99 [161]
Journal of Decision Support Systems 98 [97]
Journal of Information Systems 96 [18]
Journal of Network and Computer Applications 98 [89, 92]

3.2.3 Framework. Following the chronological and venue distribution analysis of the studies, we
transition our exploration to a framework-oriented approach. The NIST CSF, as outlined in 1.2 for
a SOC environment, serves as our foundational structure to categorise the studies. By mapping the
studies to these functions, we provide a comprehensive view of how AI tools are being integrated
into the SOC workflow. Table 3 catalogues a concise overview of the 189 studies included in our
review based on their classification to CSF.

As depicted in Figure 5, the distribution of studies between NIST functions reveals the current
focus areas in the implementation of AI tools within SOC environments. The majority of the
studies (129 entries) mainly focus on the “detect” function, highlighting the prevalent emphasis
on threat detection capabilities within SOCs. This is followed by “identify” and “protect”, each
with 40 and 21 entries, respectively, which underscores the importance of asset management, risk
assessment, and safeguarding measures in initial security setups. “Respond”, with 22 entries, shows
a growing engagement in post-incident handling. The “recover” function indicates an area for
further research and development in recovery processes in SOCs. Finally, studies that span multiple
NIST functions often include elements of the “respond” phase, indicating that, although these tools
are not primarily designed for response activities, there is a noticeable shift towards incorporating
response capabilities or analysis.

RQ1: A chronological analysis shows a rising trend in AI tool publications for SOCs, pre-
dominantly at conferences, while most top-tier papers appearing in journals. This trend is
complemented by a NIST-oriented approach where the “detect” function dominates, pointing
to a focused yet critical need for advancements in “respond” and “recover” functions within
SOC environments.
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Table 3. List of the Studies Based on the NIST CSF 2.0 Core Functions

Function Publications Total Main
class

Identify [8, 16, 19, 23, 31, 32, 39, 42, 44, 49, 60, 61, 63, 75, 77, 81, 83, 92, 98, 99,
126, 127, 140, 141, 155, 173, 178, 180, 192, 194, 205, 212, 214, 218, 220,
226, 229, 230]*, [129]*, [165]*

40 19.57%

Protect [13, 22, 25, 27, 52, 60, 95, 129, 136, 156, 158, 159, 182, 199, 227]*, [54]*,
[177]*, [212]*, [55]*, [121]*, [200]*

21 7.40%

Detect [6, 12, 14, 18, 20, 21, 24, 26, 28, 29, 33–38, 44, 46, 47, 50, 51, 53–56, 62,
64–71, 73, 74, 78, 79, 82, 84, 85, 91, 94, 97, 100–110, 112–124, 130, 133,
134, 137–139, 142–146, 148–150, 153, 161–166, 169, 170, 172, 174, 175,
177, 179, 183–185, 187, 193, 197, 198, 200–202, 204, 206–208, 210, 211,
213, 215–217, 219, 221–224, 228, 230, 231]*, [227]*, [13]*, [212]*, [180]*,
[129]*

129 65.08%

Respond [10, 11, 43, 57, 76, 80, 86, 88, 89, 121, 131, 132, 160, 186, 195, 196]*, [36]*,
[110]*, [51]*, [200]*, [129]*, [163]*, [180]*, [65]*

24 7.93%

Recover - 0 0%
Entries with an asterisk (*) indicate a secondary classification of a study already primarily classified elsewhere. ”Main
class” denotes the percentage of studies primarily classified under each function.
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Fig. 5. Distribution of AI-enabled SOC publications by NIST 2.0 functions.

3.3 Motivations
In addressing the motivation behind the development of AI tools for SOC, we conducted a qualitative
synthesis focusing on the studies published in the top 10% of venues. These papers were subjected
to a detailed narrative examination and the motivations for developing AI tools were extracted
and thematically analysed. The analysis revealed several core motivations which were grouped
into distinct categories as shown in Table 4. Our goal was to provide a deeper understanding of the
forces driving AI integration into SOC environments, based on the most influential and high-impact
research within the field.

RQ2 The development of AI tools for SOCs is motivated by a variety of factors. Key dri-
vers include the need for greater efficiency, enhanced detection capabilities, error reduction,
scalability, and cost savings.
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Table 4. Key Motivational Themes Identified

Motivation NIST Explanation Examples Publications

Improvement in Threat
Detection and Response

Detect,
Respond

Enhancing the accuracy, speed, and
reliability of identifying and mit-
igating threats. Includes automa-
tion and efficiency improvements
for SOC workflows.

Real-time threat detection, auto-
mated incident response, streamlin-
ing SOC processes, reducing false
positives, improving detection algo-
rithms, and faster response times.

[12, 86, 89, 105,
114, 161, 173, 179,
187, 215]

Application of Advanced
AI Techniques

Detect,
Respond

Leveraging cutting-edge AI method-
ologies to solve complex cybersecu-
rity challenges.

Reinforcement learning, adversarial
machine learning, and explainable
AI techniques.

[54, 99, 114, 187,
194]

Real-Time and Scalable
Solutions

Detect,
Respond

Developing solutions that handle
large-scale and high-speed cyberse-
curity requirements.

Scalable anomaly detection, live-
streaming data analysis.

[12, 173, 224]

Explainability in AI Mod-
els

Detect,
Respond

Making AI model decisions under-
standable through explainable pre-
dictions and clear reasoning.

Feature attribution in detection
models, clear explanations for clas-
sification results.

[194]

Adaptability to Evolving
Threats

Identify,
Protect

Developing systems that can adapt
to dynamic and sophisticated cyber
threats.

AI models for emerging malware,
proactive defenses against zero-day
attacks.

[89, 105, 114, 173,
194]

Trust and Transparency Identify,
Protect

Ensuring that AI systems are trust-
worthy, fair, and transparent, with
reliable operations.

Ethical audits, bias detection in
classifiers, and transparent training
methodologies.

[194]

Integration of Cyber
Threat Intelligence (CTI)

Protect,
Detect

Using CTI to improve threat de-
tection, response, and proactive de-
fenses.

OSINT evaluation, regression mod-
els for CTI prediction, timeliness of
alerts.

[18, 194, 201]

Enhanced Situation
Awareness and Intelli-
gence Sharing

Identify Providing real-time insights into cy-
bersecurity threats and improving
information sharing between stake-
holders.

Leveraging social media for threat
awareness, sharing threat intelli-
gence across organisations.

[18, 201]

Enhanced Vulnerability
and Security Assessment

Identify Improving methods for identifying
and assessing vulnerabilities in sys-
tems and networks.

Enhanced SIEM systems, better sit-
uational awareness, and proactive
risk assessments.

[92, 99, 106]

Focus on Specialised
Threat Areas

Protect Addressing niche areas of cyberse-
curity like IoT botnets, DGA-based
malware, and specific malware fam-
ilies.

IoT-specific IDS, botnet traffic detec-
tion, and advanced malware classi-
fication.

[79, 194]

Network Security En-
hancements

Protect Strengthening the monitoring and
protection of network environ-
ments.

Traffic analysis, anomaly detection,
and identifying malicious activities
in networks.

[24, 86, 102]

Strengthening Email and
Phishing Defences

Protect Improving the detection and preven-
tion of email-based threats, includ-
ing phishing.

AI models for phishing detection,
enhanced spam email classification.

[68]

Focus on Industrial and
IoT Security

Protect Addressing the unique security
needs of industrial systems and IoT
environments.

Securing IoT, dual-layer IDS for IoT,
and smart industry cybersecurity.

[14, 79]

Optimisation of Machine
Learning Models

Detect Improving the design and perfor-
mance of machine learning models
used in cybersecurity.

Active learning, handling imbal-
anced datasets, and refining anom-
aly detection models.

[79, 99, 106, 114]

Advancements in Intru-
sion Detection Systems
(IDS)

Detect Enhancing the robustness, accuracy,
and applicability of IDS for modern
networks.

GAN-based IDS, IDS for IoT and
SDN environments.

[14, 54, 102, 161,
224]

Improvement in Mal-
ware Detection and
Classification

Detect Enhancing the accuracy and effi-
ciency of detecting and categorising
malware.

Using graph-based representations,
reducing false alarms, and classify-
ing malware families.

[28, 70, 73, 108]

Enhancements in SOC
Tools and Operations

Respond Improving the tools, technologies,
and workflows used in SOCs to
handle modern cybersecurity chal-
lenges.

API integration for incident map-
ping, advanced tool support for an-
alysts.

[89, 154, 175]

Reduction of Cognitive
Load on Analysts

Respond Minimising the mental strain on se-
curity analysts by simplifying com-
plex processes and reducing noise.

Prioritising alerts, reducing alert fa-
tigue, and providing actionable in-
sights.

[114, 173, 187,
215]

Reduction of Manual Ef-
forts in Security Opera-
tions

Respond Automating labor-intensive tasks in
SOC workflows to save time and re-
sources.

Automating log analysis, mapping
incident response plans to APIs.

[89, 97, 114, 194,
215]
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Table 5. The List of All Publications with Some Information According to the Available Tools Proposed

Open
Source

Indicator Publications

Yes Link to Github Repository [21, 27, 66, 73, 78, 102, 110,
124, 139, 205, 207, 230]

Yes Link to Gitlab Repository [50]
Yes Public release of datasets and code mentioned [178]
Yes Release of code and datasets to IEEE Code Ocean and IEEE DataPort platforms [228]
Maybe Open-sourcing the prototype code after integrated into security products [218]

3.4 Open-Source Tools
We categorised each paper based on whether the introduced tool is published as open source
software (OSS). Among the reviewed articles, only 16 (8.50%), provided explicit information about
proposing and/or implementing open source tools, indicating a direct engagement or recommenda-
tion of such tools. In contrast, the vast majority (173 (91.50%) did not provide specific details about
open source tools, pointing to a significant gap in explicit OSS advocacy or usage details within the
literature.

Further analysis of the papers suggesting potential OSS usage shows that 1 paper (6.25%% of
this specific subset) might suggest an open-source tool, albeit without definitive confirmation.
Meanwhile, 15 papers (93.75% of this subset) definitively identified the use of open source tools,
emphasising a clear but limited recognition of open-source solutions in academic discussions.

Further analysis reveals that of the papers with explicit information, 15 (93.75% of this specific
subset) have definitively identified the use of OSS tools, such as by providing links to GitHub or
GitLab repositories, or announcing the public release of datasets and code, while, 1 paper (6.25% of
this subset) indicates a potential future release of open-source tools (”Maybe OSS”), suggesting a
tentative but not confirmed engagement with OSS practices.

These insights reflect the varying degrees of open source tool proposal within the scholarly
community, illustrating direct and indirect references to their use and importance. For a detailed
breakdown of these categories, see Table 5.

RQ3: Among the reviewed papers, only 8.50% provide some information on whether the
proposed tools are open-sourced, with most including definitive evidence such as repository
links or public releases. The vast majority (91.50%) do not provide information, highlighting a
significant gap in the literature.

3.5 Algorithms
The range of AI algorithms utilised in the literature is diverse and expansive. As detailed in Table 6,
AI algorithms span multiple families and types, from traditional MLmethods to advanced generative
AI.

Figure 6 illustrates the top 10 algorithms by frequency of usage, highlighting a strong preference
for ML classifiers such as Random Forests and Support Vector Machines.

RQ4:The literature features a diverse range of AI algorithms, with a notable preference for
Random Forests and Support Vector Machines.
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Table 6. The Full List of the AI Algorithms Used in the Proposed Tools for SOC

AI Families Types Category Total

Machine Learning
Supervised Learning Classifiers 143

Ensemble Methods 9
Unsupervised Learning Clustering 6

Anomaly Detection 18
Neural Networks 27

Deep Learning
Convolutional Networks 24
Recurrent Networks 32
Autoencoders 9

Natural Language Processing
Techniques 16
Advanced NLP 6

Reinforcement Learning 7
Generative AI 6
Custom Algorithms 3
Federated Learning 2

Random Forests (RF)

Support Vector Machines (SVM)

Decision Trees (DT)

Multilayer Perceptron (MLP)

Logistic Regression (LR)

Naive Bayes (NB)

0 10

Count

20 30

Convolutional Neural Networks

(CNN)

K-Nearest Neighbors (KNN)

Extreme Gradient Boosting

(XGBoost)

Long Short-Term Memory (LSTM)

(uni/bi-directional)

Fig. 6. Top 10 algorithms used in literature.

3.6 Datasets
In this section, we examine the datasets employed. Figure 7(a) presents the most frequently used
datasets. The list reveals that NSL-KDD [151], CICIDS2017 [189], UNSW-NB15 [135], and CSE-
CIC-IDS-2018 [2] are the most referenced datasets, along with notable mentions of IoT-23 [72],
CICDDoS19 [190], and 2019 IEEE BigData Cup [87]. These datasets are indispensable for testing
intrusion detection systems and evaluating cyber attacks, providing structured data for training
and testing ML models in cyber security scenarios.

In addition, Figure 7(b) presents all the datasets reviewed and classified into various categories.
Academic/research datasets which represent the largest category, generated and maintained by
academic institutions for security model evaluations. Custom datasets, and enterprise datasets
follow, highlighting data tailored for specific research or collected from organisational systems,
respectively.

Dataset availability remains a critical factor, as shown in Figure 8, where only 28 datasets are
confirmed available, and a significant portion (159) lack clear availability information. It also details
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Fig. 7. Frequency and types of cybersecurity datasets used in literature.

Information not available - 84.1% (159)

Possibly not - 0.5% (1)

Yes - 14.8% (28)

No - 0.5% (1)

Without Link/Reference - 64.3% (18)

With Link/Reference - 35.7% (10)

Availability of datasets used Details of Available Datasets

Fig. 8. Availability of datasets used in the literarture.

Information not available - 

48.1% (91) No - 1.6% (3)

Partially - 7.4% (14)

Yes - 42.9% (81)

Forums/Blogs/Websites -9.9% (8)

Twitter - 3.7% (3)

Real-world applications/networks - 67.9% (55)

SOC environments - 9.9% (8)

Competitions - 1.2% (1)

Solutions by Vendors - 6.2% (5)

Military - 1.2% (1)

Relevance to real-world Kinds of sources

Fig. 9. Relevance of datasets to real-world.

that among the available datasets, 18 are provided without and 10 with proper references or links,
mainly to GitHub repositories.

55 datasets are directly sourced from real-world applications or networks, emphasising the
relevance of practical data in cybersecurity research. Other sources include social media, vendor
solutions, and SOC environments, further depicted in Figure 9.

This data informs us about the trends and challenges in dataset usage for AI in SOC research,
highlighting the need for better documentation and accessibility to foster research reproducibility
and advancement.
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Table 7. The List of All the Publications with Some Information as Per the Proposed Tool Explainability

Publication Us
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Explainability Level

[217] ✓ High
[211] ✓ ✓ ✓ High
[154] ✓ Moderate
[50] ✓ ✓ ✓ High
[108] ✓ High
[194] ✓ High
[156] ✓ ✓ ✓ High
[197] ✓ ✓ Moderate
[139] ✓ ✓ ✓ High
[105] ✓ High
[148] ✓ Moderate
[67] ✓ High
[37] ✓ Moderate
[6] ✓ ✓ ✓ High
[205] ✓ Moderate
[53] ✓ ✓ ✓ High
[204] ✓ ✓ ✓ ✓ High
[121] ✓ High
[110] ✓ ✓ ✓ High
[51] ✓ ✓ ✓ High
[123] ✓ ✓ ✓ High
[145] ✓ ✓ ✓ High

RQ5: The most frequently used datasets in AI for SOC research include NSL-KDD, CICIDS2017
and UNSW-NB15. Availability information is often lacking, with only 14.80% of datasets
confirmed as accessible. These datasets are primarily sourced from real-world applications or
networks, indicating their high relevance to practical cybersecurity scenarios. Also, there is an
over-reliance on proprietary datasets.

3.7 Explainability
We also assess the extent of explainability incorporated into AI models across various studies.
From the articles examined, only 22 publications reveal engagement with explainability. Out of
this subset, 77.27% explicitly embraced explainability methodologies, see (Table 7). A notable
proportion, 22.73%, has a moderate level of explainability, indicating that these studies incorporate
some level of explainability in their methodologies, even without the application of nuanced XAI
techniques.
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Fig. 10. Indicators of an explainable model.

The breakdown of explainability techniques shows a preference for simpler and more explainable
models, with visualisations use of XAI also prominently used (Figure 10). Specifically, the use of
simpler/interpretable models was the most commonly reported approach, reflecting a trend toward
reducing model complexity for enhanced explainability.

However, our review also highlights a significant gap in methodology reporting, with only
11.64% of the studies explicitly providing information on the extension of the techniques employed
to achieve explainability. This suggests a transparency gap that could hinder the replication and
broader adoption of explainable AI techniques.

A detailed tabulation of the explainability attributes in the selected publications further under-
scores the diverse approaches to integrating explainability into AI systems. While several studies
leveraged multiple techniques for explainability, others relied on specific methods tailored to their
research context, with partial explainability reflecting either an emerging integration of these
techniques or a focused application relevant to specific model functionalities.

RQ6: Among the analysed papers, 5.82% introduce models with inherent transparency, making
them easily explainable, while an additional 5.82% employ techniques to moderately enhance
the explainability of their models. However, a significant majority, 88.36% of the papers do not
include any information on theexplainability of their models.

3.8 Literature Limitations and Challenges
As part of our qualitative synthesis of studies published in top-tier venues, we identified several
critical limitations and challenges that impact the applicability and scalability of current SOC AI
tools. These findings not only highlight pivotal research gaps but also emphasise the pressing need
for innovative solutions tailored to meet the dynamic requirements of cybersecurity.

Table 8 lists the significant limitations revealed in the reviewed literature, illustrating the con-
straints that current research must navigate. These limitations necessitate innovative approaches
to transcend these barriers. Conversely, Table 9 delineates the principal challenges noted in the
studies, each underscoring essential areas for development and collaboration in the cybersecurity
field.

RQ7: The exploration of limitations and challenges in SOC AI tools reveals critical gaps such
as data reliance, scalability issues, and integration complexity, driving the need for innovative
and adaptable cybersecurity solutions.

ACM Comput. Surv., Vol. 58, No. 3, Article 67. Publication date: September 2025.



AI in SOC 67:21

Table 8. Limitations in Literature

Limitations Explanation Publications

Reliance on Available Data Dependence on existing data sources which may not always be
representative or comprehensive, affecting the model’s accuracy
and applicability in real scenarios.

[89, 98, 230]

Scalability and Performance Issues Difficulties in scaling cybersecurity solutions to handle large vol-
umes of data efficiently without degradation in performance. This
includes the need for systems to operate effectively under varying
network loads and transaction volumes.

[12, 24, 28, 66, 68, 82,
215]

Complexity of Integration and Adaptation Related to integration of cybersecurity systems into existing infras-
tructures and their adaptation to new or changing technologies and
threat landscapes.

[161, 173, 187, 201]

Resource and Computational Requirements Points to the high resource and computational demands of running
advanced cybersecurity models, especially in real-time scenarios.

[12, 20, 66, 68, 86, 98,
99]

Lack of Generalisability Many AI tools are tested under controlled conditions and fail to
perform as expected across different settings or data types, due to
the training on datasets that do not fully capture the diversity of
real-world scenarios.

[12, 13, 24, 28, 33, 68,
71, 97, 110, 137, 161,
187, 201, 202, 205,
215]

Interpretability and Explainability The black-box nature of many AI models makes it difficult for SOC
operators to understand and trust the outputs, as they cannot explain
the decisions made by complex models.

[12, 13, 28, 33, 39, 39,
51, 71, 86, 97, 99, 113,
121, 202, 204, 226]

Data Privacy and Legal Concerns Handling sensitive data, complying with privacy laws, and ethical
concerns, which can limit the data available for training and affect
the deployment of cybersecurity solutions.

[173, 230]

Table 9. Challenges in Literature

Challenges Explanation Publications

Handling Complex and Evolving Threats Difficulty in adapting detection models to rapidly evolving cyber
threats. It involves the need for models that can dynamically
update and respond to new threat behaviours without extensive
retraining.

[12, 28, 37, 51, 54,
66, 71, 82, 86, 89, 97–
99, 110, 137, 195, 202,
226]

Data Quality and Availability Involving the limitations in the availability of high-quality, di-
verse datasets necessary for training robust detection models.
This impacts the model’s ability to generalise and function effec-
tively in varied real-world scenarios.

[12, 20, 24, 33, 66, 71,
73, 98, 113, 137, 161,
201, 204, 226]

Real-Time Detection and Analysis Refers to the requirement for cybersecurity tools to perform
threat detection and response in real-time, managing the high-
speed data flow characteristic of modern networks while main-
taining accuracy.

[18, 24, 37, 39, 82,
86, 121, 137, 139, 161,
173, 201, 205, 215]

Adaptation to Diverse Environments Deploying cybersecurity systems that are effective across differ-
ent network architectures, operational technologies, and varying
scales of enterprise environments.

[14, 24, 37, 39, 66,
89, 137, 161, 195, 201,
202]

Model Training and Learning Issues Encompasses difficulties such as limited training data, the com-
plexity of training models on multifaceted cyber threats, and the
need for models to quickly adapt to new threats.

[39, 66, 71, 79, 97,
99, 121, 137, 202, 204,
226]

Accuracy and Efficiency in Detection Balancing the speed of detection and the accuracy, particularly
in environments where the volume and complexity of data can
significantly vary.

[37, 39, 97, 99, 106,
110, 161, 201]

Human-Machine Interaction Concerns the need for effective interfaces between cybersecu-
rity personnel and automated systems, ensuring that users can
understand, interact with, and appropriately trust the machine-
generated insights for decision-making.

[39, 66, 68, 79, 83, 137,
173, 205]

4 Discussion
4.1 Analysis and Future Directions
Our SLR aims to bridge the gaps by offering a holistic overview of the AI tools proposed for
SOCs, highlighting both the algorithmic advancements and the strides made toward developing
explainable AI systems. In doing so, our goal is to foster a deeper understanding of the tools
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available and their implications for security practice, thus guiding future research directions in this
critical area of cybersecurity.

The predominance of conference papers in our review reflects a strategic shift within the cyber-
security community towards more agile and immediate dissemination of research findings. Given
the rapidly evolving landscape of cyber threats and technological advancements, this approach
can be seen as a pragmatic adaptation that ensures that the latest solutions and insights reach
practitioners and researchers rapidly, in a field that demands quick responses to emerging threats
and novel technologies. Conferences facilitate the quick exchange of ideas and foster collaborations
more effectively than the slower, more deliberate process typical of journal publications.

However, the under-representation in top-tier venues reflects a larger challenge within the cyber-
security research community. The scarcity of publications in top-tier venues may suggest a maturity
issue, where groundbreaking, novel ideas that top-tier venues demand are less frequent. Also,
academic venues often prioritise theoretical advances and universal methodologies over applied,
compared with specific-case studies, which are more typical in SOC research.The practical nature of
SOC studies, focusing on immediate applicability rather than broad theoretical contributions, might
not align well with the publication criteria of high impact venues. Future research should bridge
this gap, encouraging studies that balance theoretical rigor with practical relevance to enhance
both the depth and applicability of research in high-impact journals.

Despite the growing relevance of AI in cybersecurity, and beyond publishing challenges, the
overall academic exploration of its role in SOCs remains limited. Several structural and practical
barriers may account for this. First, SOC operations are highly application-driven, and research
in this area often focuses on operational outcomes rather than theoretical advances, which can
make it less aligned with traditional academic publishing norms. Second, access to real-world SOC
environments and data is heavily restricted due to confidentiality, legal, and ethical concerns, hin-
dering empirical validation and reproducibility. Third, meaningful AI integration in SOCs requires
deep interdisciplinary collaboration—combining expertise in cybersecurity, AI, human factors, and
business processes—something that remains challenging within the typically siloed structure of aca-
demic research. Addressing these issues may require stronger partnerships between academia and
industry, incentivised data-sharing frameworks, and funding mechanisms that prioritise applied,
reproducible, and cross-disciplinary work.

Another significant observation is the concentration of research on the “Detect” function within
the NIST framework, while “Respond” and “Recover” functions are notably underexplored. This
distribution could reflect a focus on immediate and detectable benefits of AI in SOC operations, such
as threat detection, over the more complex and less direct applications in response and recovery
phases. The implications of this are profound, suggesting a potential vulnerability in SOCs that are
not fully leveraging AI in all aspects of cybersecurity operations. Future research should address
these gaps by exploring AI’s role in the “Respond” and “Recover” phases; crucial for a holistic
security strategy. The limited attention to the ’Recover’ function, in particular, may stem from its
inherently process-driven and often post-incident nature, combined with the lack of benchmark
datasets and available real-time or real-world data to train and evaluate AI models. Moreover,
recovery activities such as system restoration, impact assessment, and policy updates tend to rely
more heavily on organisational policies and manual procedures, making them less amenable to
current AI capabilities. These factors could help explain the research imbalance and highlight the
need for novel approaches that adapt AI techniques to support recovery workflows. Additionally,
the predominance of certain AI tools in the “Detect” function suggests a potential over-reliance
that might overshadow necessary advancements in other critical areas of SOC operations.

We have also identified a diverse array of motivational factors driving the development of AI
tools for SOCs. Key among these motivations is the imperative to enhance threat detection and
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response capabilities. AI tools are being developed to increase the accuracy, speed, and efficiency
of detecting and responding to cyber threats. Innovations in AI are helping to automate and
streamline SOC workflows, significantly reducing response times and false positives. In addition,
the emphasis on reducing the cognitive burden on analysts through automation alleviates human
factors, which are often the bottleneck in timely threat detection and response. These motivational
drivers highlight the broader implications of AI integration in SOCs, suggesting a paradigm shift
toward more resilient, responsive, and intelligent cybersecurity infrastructures that can anticipate
and counteract emerging threats more effectively.

Aswe extend our contributions beyond identification, we offer an overview of detailed discussions
on algorithms, datasets, and the availability of open-source tools and tools with explainable features.

The analysis around the adoption and proposal of open-source tools reveals a significant gap
in the current literature. Promoting open-source projects can foster innovation and collaboration,
crucial for advancing technology and developing community-driven solutions. On the other hand,
the limited focus on open-source tools may reflect a hesitance due to security concerns or a lack of
robust community support for developing and maintaining such tools, which is crucial for their
sustained utility in high-stakes environments like SOCs. Enhancing the robustness and security
of open-source AI tools could address concerns about their adoption in sensitive environments.
To support open-source development, future efforts could focus on creating dedicated funding
schemes, fostering academic-industry partnerships that prioritise open licensing, and establishing
incentive structures (e.g., recognition or citation systems) that reward the contribution and long-
term maintenance of open-source SOC tools. These measures would help reduce institutional
barriers and make open-source solutions more viable and trusted within operational security
contexts.

The frequent use of specific AI algorithms, such as random forests and support vector machines,
suggests a potential under-exploitation of newer or less conventional algorithms that might offer
improved performance or better address specific types of cyber threats.

Another point of discussion is the difficulty in getting comprehensive, publicly available datasets
for SOC applications. Recurrent use of specific datasets such as NSL-KDD and CICIDS2017 is
undoubtedly beneficial in the development and benchmarking of AI tools. Yet, the challenge
remains in the form of diversity and realism of the dataset, which are necessary to truly validate
the efficacy of AI tools under varied and realistic conditions. Relying on proprietary datasets limits
access and reduces the generalisability of findings. Diversifying the datasets used for training and
testing those tools can significantly improve their applicability and performance across different
scenarios. We also call for a concerted effort to develop and share more open datasets that reflect
the real-world complexity.

While there is a growing acknowledgment of the importance of explainability in AI tools for SOCs,
the actual integration of explainable AI methodologies is not widespread. This gap underscores a
crucial area for future research, particularly in developing tools that are not only effective but also
transparent and understandable by human operators in SOC environments. Nonetheless, increasing
the integration of explainable AI practices will not only make AI tools more user-friendly, but will
also enhance their trustworthiness and acceptance among SOC personnel.

Finally, the identified limitations and challenges underscore the need for innovation and collabo-
ration across domains such as computer science, data science, AI, legal and ethical frameworks,
human-computer interaction, and business management. This multidisciplinary approach is essen-
tial for developing robust, efficient, and user-friendly cybersecurity solutions that are adaptable to
the evolving threat landscape.

In conclusion, the future of AI tool integration into SOC operations should focus on several key
areas. While its influence continues to grow, factors such as integration complexity, data availability
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and incomplete spectrum of response and recovery solutions impact its effectiveness. This study
provides a structured evaluation of AI’s role in SOCs, offering insights into its current applications,
methodology and limitations, and laying the foundation for a clearer understanding of its power
on cybersecurity operations.

4.2 Limitations of Our Study
Despite the detailed methodology applied in this SLR, several limitations must be acknowledged.
The search strategy used in this study was designed to be comprehensive, using a structured set of
keywords in multiple academic databases. However, the focus on keywords like ”SOC” may have
inadvertently excluded relevant studies that do not explicitly use this terminology. In academic
contexts, SOC-related tools and AI applications might be discussed under different terms, with
academia potentially using different nomenclature compared with business or industry settings
where these terms are more common. This limitation could result in an incomplete capture of the
full spectrum of AI tools applicable to SOC environments.

Additionally, this article is an SLR and does not include empirical validation of the AI tools
discussed. The findings and conclusions are based on the reported results of the reviewed studies,
and as such, the practical effectiveness and efficiency of these AI tools in real-world SOC environ-
ments remain largely theoretical. Future research should aim at empiricallying test these tools in
operational settings to validate their performance and applicability.

Moreover, the quality of the studies included in the review varies significantly, which could affect
the reliability of the synthesised findings. Some studies may have methodological weaknesses, such
as small sample sizes, limited datasets, or insufficient validation of AI models. While the review
attempted to assess and account for these factors, variability in study quality remains a potential
source of bias in general conclusions.

Another limitation stems from the decision to restrict the qualitative synthesis for RQ2 and
RQ7 to studies published in the top 10% of venues. While this approach helped ensure a focus on
high-quality, peer-reviewed research and made the analysis manageable, it may have introduced
bias. As a result, innovative contributions from smaller venues might have been overlooked. Future
reviews could expand the scope to include a broader range of publications to capture a more diverse
set of perspectives and early-stage innovations.

Lastly, the review covers studies published up to December 2023, which may limit its ability to
capture the very latest developments in AI technologies for SOC environments. Given the rapid
pace of innovation in AI and cybersecurity, new tools, methodologies, and applications may have
emerged since the cut-off date, which is not reflected in this review. This temporal limitation means
that the findings might not fully represent the latest state of the art in AI for SOCs.

These limitations suggest that while the review provides a comprehensive overview of AI tools
in SOC environments, there is a need for ongoing research and empirical validation to address
these gaps and ensure that the findings remain relevant as the field continues to evolve.

5 Related Work
Several literature reviews have been conducted to provide insight into the state-of-the-art, focus-
ing on various aspects such as AI integration, challenges, and methodologies. These studies are
summarised in Table 10, highlighting their purpose, scope, and contributions.

Studies by Vielberth et al. [209] and Kaur et al. [96] explored broad applications and challenges
of AI in SOCs. In contrast, Agyepong et al. [7] and Yang et al. [225] focused specifically on aspects
such as analyst performance and intrusion detection systems, respectively. The works of Ünal et al.
[203] discussed enhancements to SIEM tools, and Shahjee et al. [188] examined the integration of
NOCs with SOCs. Lastly, Islam et al. [90] addressed security orchestration, and Ainslie et al. [9]
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considered cyber threat intelligence (CTI). Whilst these studies identified significant gaps in AI
integration and CTI effectiveness, they provided a medium focus on AI and its explainability.

Our SLR builds upon these prior studies, which, while insightful, have often offered limited
discussion on the role of AI’s explainability. This oversight highlights a significant gap as SOCs
handle increasingly complex security threats where explainability is not just an added feature, but
a necessity.

We reviewed papers similar in scope to the extensive surveys by Kaur et al. [96] and Ainslie et al.
[9], yet our focus on explainability alongside AI integration provides a unique contribution that is
critical in the current AI-driven security environment.

Additionally, our survey places significant emphasis on the specific algorithms and datasets used
in these applications, a focus that is vital because the choice of algorithm and the quality of the
datasets directly influence the effectiveness and reliability of AI solutions.

Furthermore, our analysis goes beyond mere identification and categorisation. We explore the
motivations behind the proposal of AI methods for SOCs as well as the limitations and challenges
of those methods, aiming to enhance both theoretical and practical understandings in the field.

Finally, recent reviews by Radanliev [167, 168] explore broad cybersecurity topics, but do not
cover AI use in SOCs or apply a NIST CSF lens. Our study fills this gap with a focused review of AI
tools in SOC operations.

6 Conclusion
With this SLR, our contribution is twofold: Firstly, we provide a comprehensive overview of the
current state of AI tools in SOCs, identifying key technological and methodological limitations.
Secondly, we propose a research agenda that emphasises the development of new AI methodolo-
gies that can be seamlessly integrated into existing SOC infrastructures, enhancing both their
effectiveness and their trustworthiness.

Furthermore, our research does not simply catalogue existing tools andmethodologies; it provides
a critical evaluation of these technologies, highlighting their motivations, practical applications,
challenges in real-world SOC environments, and the extent to which these models are explainable.
In doing so, we address the crucial need for operational transparency in high-stakes environments
where decisions must be not only effective, but also interpretable by human operators. We also
include the need for better dataset availability, improved algorithmic diversity, and the integration
of AI-driven response and recovery mechanisms.

Ultimately, our findings reveal that while AI is transforming SOC operations, its application
remains uneven across different security functions. AI-driven solutions are widely proposed for
detection, yet there are clear gaps in their implementation for response and recovery. Moreover,
challenges related to integration, scalability, data availability, and model explainability continue to
hinder their full potential. By mapping the landscape of AI tools for SOCs, this study aims to pave
the way for future research that can enhance the functionality, transparency, and reliability of AI
applications in SOC environments, ensuring that they meet the evolving challenges of cybersecurity
with efficacy and ethical responsibility.
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Appendices
A Data Availability
In accordance with the principles of transparency and open collaboration, all data and supple-
mentary materials which are not included within the paper for brevity are available upon request.
Interested parties can obtain these materials by reaching out to the corresponding author. The
sharing of data and materials will be facilitated to support the replication and validation of findings,
foster scholarly dialogue, and encourage further research inquiries. Requests for materials will be
considered on a case-by-case basis, with the intent of ensuring their appropriate use. Please provide
a brief description of the intended use or purpose for which you are requesting the materials. We are
committed to promoting transparency and collaboration, and will endeavor to respond to requests
promptly.

B Additional Information
In this section includes supplementary information for the survey.
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B.1 Registration and Protocol
This review is not registered and no protocol has been prepared.

B.2 Support
No specific financial support was received for this survey.

B.3 Competing Interests
Authors have no competing interests.
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