
Byzantine-Resilient Learning Beyond Gradients: Distributing
Evolutionary Search (Full Report)

Andrei Kucharavy
∗

andrei.kucharavy@hevs.ch

IC School, EPFL

Lausanne, Switzerland

Matteo Monti

matteo.monti@epfl.ch

IC School, EPFL

Lausanne, Switzerland

Rachid Guerraoui

rachid.guerraoui@epfl.ch

IC School, EPFL

Lausanne, Switzerland

Ljiljana Dolamic

ljiljana.dolamic@ar.admin.ch

Cyber-Defence Campus, armasuisse

Thun, Switzerland

ABSTRACT
Modern machine learning (ML) models are capable of impressive

performances. However, their prowess is not due only to the im-

provements in their architecture and training algorithms but also

to a drastic increase in computational power used to train them.

Such a drastic increase led to a growing interest in distributed

ML, which in turn made worker failures and adversarial attacks an

increasingly pressing concern. While distributed byzantine resilient

algorithms have been proposed in a differentiable setting, none exist

in a gradient-free setting.

The goal of this work is to address this shortcoming. For that, we

introduce a more general definition of byzantine-resilience in ML

- the model-consensus, that extends the definition of the classical

distributed consensus. We then leverage this definition to show that

a general class of gradient-free ML algorithms - (1, 𝜆)-Evolutionary

Search - can be combined with classical distributed consensus al-

gorithms to generate gradient-free byzantine-resilient distributed

learning algorithms. We provide proofs and pseudo-code for two

specific cases - the Total Order Broadcast and proof-of-work leader

election.

To our knowledge, this is the first time a byzantine resilience in

gradient-free ML was defined, and algorithms to achieve it - were

proposed.

CCS CONCEPTS
• Computing methodologies → Genetic programming; Ma-
chine learning algorithms; Machine learning; • Theory of compu-
tation → Distributed algorithms.

KEYWORDS
Evolutionary Search, Gradient-free optimization, Distributed ma-

chine learning, Byzantine Fault Tolerance

∗
Corresponding author; Now at HES-SO Valais-Wallis, Sierre, Switzerland

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0120-7/23/07.

https://doi.org/10.1145/3583133.3590719

ACM Reference Format:
Andrei Kucharavy, Matteo Monti, Rachid Guerraoui, and Ljiljana Dolamic.

2023. Byzantine-Resilient Learning Beyond Gradients: Distributing Evo-

lutionary Search (Full Report). In Genetic and Evolutionary Computation
Conference Companion (GECCO ’23 Companion), July 15–19, 2023, Lisbon, Por-
tugal. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3583133.

3590719

1 INTRODUCTION
Over the last decade, the machine learning field underwent trans-

formative growth, achieving and surpassing human capabilities in

a variety of domains, ranging from image classification and facial

recognition to image generation to strategy games [31, 33, 47, 48].

Beyond impressive performance in the academic setting, Machine

Learning (ML) and Artificial Intelligence (AI) progressively became

central to numerous tasks, ranging from translation to autonomous

driving [29, 67]. Perhaps the most impressive recent development

is the arrival of conversational agents driven by Large Neural Lan-

guage Models (LLMs) [20, 43, 52].

However, the emergence of ML and AI as powerful and widely

accessible tools is not only due to the discovery of better model

architectures and algorithms to train them but also due to the in-

creasing computational capabilities and data volumes available to

train them. Empirical demonstrations of the performance of sto-

chastic gradient descent (SGD) applied to artificial neural networks

(ANNs) were already available by mid-1980s [35, 62], and theo-

retically explained by early 1990s [28]. However, it wasn’t until

sufficient computational power became affordable and sufficiently

large training datasets were accumulated that the machine learn-

ing revolution truly started [36]. This joint scaling of models and

dataset sizes and resources invested in training them still drives

ML progress today, notably for LLMs [19, 27, 30].

1.1 Gradient-Free Learning
The ongoing machine learning revolution has not affected all the

domains equally, given that best-performing algorithms rely on

ANNs and gradient descent. Image processing was one of the first

domains that saw early breakthroughs [33], more recently followed

by natural language processing asmeans tomake text interpretation

and generation continuous through word embedding and positional

encoding were perfected [40, 60]. However, a number of problems

https://doi.org/10.1145/3583133.3590719
https://doi.org/10.1145/3583133.3590719
https://doi.org/10.1145/3583133.3590719

GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Kucharavy, et al.

have so far evaded conversion to a continuous formulation, notably

in the control theory domain.

A set of approaches have been developed for such problems, gen-

erally referred to as black-box, zero-order, or gradient-free optimiza-

tion methods. Representing a diversity of underlying approaches

- from Evolutionary Strategies and Genetic Algorithms to Swarm

Particle Optimization, Simulated Annealing to sample-derived local

gradients - they have nonetheless faded from the general ML com-

munity attention in recent years. Two exceptions are Reinforcement

Learning (RL) [57] and empirical gradients. RL was made famous

through its super-human performance in strategy games [47, 53, 61],

it became the default approach to gradient-free problems, whereas

empirical gradients approximate local gradients through empirical

sampling.

However, neither of the approaches scales to large, overparame-

terizedmodels, known to be needed to trainmodels solving complex

problems [37]. Empirical gradient estimation struggles in high di-

mensions and around saddle points, and is hard to parallelize due to

the need for a synchronized round of gradient evaluations pooling,

which is expensive computation and communication-wise for larger

models. Similar problems exist as well in reinforcement learning.

Notable failure modes are the cases where the observations ("re-

wards") are sparse ("long time horizons") and noisy. In such settings,

the policy reward estimator’s variance will increase to the point

where the learning process becomes unstable. Such instability is not

limited to pathological settings - even in cases it performs well, RL

requires a hyperparameter space search to find a working training

regime even for problems where it performs well [10, 46]. Such

instability is not a fluke either. There are theoretical reasons why

approaches that reduce learning in a non-differentiable setting to a

differentiable one would underperform compared to gradient-free

black-box optimization approaches [39, 46].

This is particularly relevant now, given that the latest devel-

opment in the LLM field is conversation agents, which rely on

optimization based on discrete feedback to align their behavior on

user expectations and non-differentiable layers of hard attention to

solve the issues with rule-following that plague them [20, 43, 51].

1.2 Evolutionary Search
Limitations of RL and empirical gradients approaches led to an in-

creased interest in gradient-free black-box optimization algorithms,

notably Evolutionary Algorithms (EAs). Introduced shortly after the

SGD itself, [17], EAs are expected to scale well with more computa-

tional power, just like the SGD itself. This was confirmed experimen-

tally, including on ranges of control tasks where they outperformed

RL approaches, all while allowing better scaling [10, 46, 54, 56].

These empirical results led to a renewed interest in EAs in ML

and the discovery of cases where they outperformed RL and other

black-boxes approaches, such as model architecture design [44].

Despite its simplicity, the first evolutionary algorithm proposed

by [17] in 1966 is still able to match and out-perform RL approaches

on complex problems [44, 54, 56]. Akin to SGD, it is an iterative

optimization algorithm. However, instead of calculating the local

gradient, it samples the neighborhood of the current model param-

eters to find a better solution and retains the single best one among

all sampled ones. It is formally known as (1, 𝜆)-Evolutionary Search

((1, 𝜆)-ES) or Evolutionary Strategies
1
.

In addition to their reasonable performance, (1, 𝜆)-ES class algo-

rithms have an additional advantage - scalability. As a population

algorithm, every parameter sample can be evaluated independently,

and an optimal parameter update - shared among all workers once

a desired population of candidate updates has been sampled. Here

we focus on the simplest implementation of the (1, 𝜆)-ES class,

which we will refer to as (1, 𝜆)-ES for simplicity. A modification of

that algorithm by [46] reduces the message size to about a dozen

bytes regardless of the model size, by leveraging the fact that ran-

dom parameter perturbations can be deterministically derived by a

pseudo-random number generator from a random seed, meaning

that sharing only the random seed is sufficient. Unlike gradient-

based learning, (1, 𝜆)-ES allows any worker to verify the validity of

an update proposed by another vector with a single forward pass,

which is the property we leverage to combine classical distributed

consensus algorithms with (1, 𝜆)-ES to create byzantine-resilient

distributed versions of (1, 𝜆)-ES.

Finally, since at no point (1, 𝜆)-ES requires a back-propagation,

it allows for non-differentiable layers, such as hard attention or

deterministic rules, to be included in the model architecture [64].

This makes it interesting even in the setting allowing for gradient-

based learning because, unlike differentiable layers, deterministic

rules can provide deterministic guarantees on AI model decisions,

which is critical in high-stakes applications. In particular, for LLMs,

it has the potential of solving the long-term instruction retaining

problem, currently limiting their application [20, 51].

1.3 Byzantine-Resilience in Machine Learning
The increasing size of ML models has also made them impossible to

train or even run on single machines, making model parallelization

and distribution an increasingly pressing issue [4]. With the in-

crease of the computing nodes involved in the training, the chances

for an arbitrary complex error to occur increase, making fault tol-

erance a prime concern. In the field of distributed computing, the

tolerance to such faults is known as "Byzantine Tolerance", with

the name derived from the seminal paper that introduced that type

of faults [34].

The field of machine learning allowing for such "Byzantine" fault

tolerance led to the emergence of the field of byzantine-resilient

machine learning [7, 8]. Unfortunately, the definition introduced in

the process is specific to differentiable manifolds and focuses on the

setting where every node trains the same model, only has partial

access to the data, and shares non-verifiable gradients calculated on

that data. By introducing novel gradient aggregation rules (GARs)

for the parameter server, they were able to prove that a byzantine

fault impact could be limited to at most a deviation of angle 𝛼 on

the final parameter update for the fraction 𝑓 of Byzantine workers

((𝛼 , 𝑓)-Byzantine Resilience).

1
Given multiple conflicting names for different EA algorithms, we have here adopted

the taxonomy from [24]. Notable cases are the use of the "Genetic Algorithm" name to

designate (1, 𝜆)-ES in prior literature, that we reserve to algorithms including "chro-

mosomes" or "recombination" as per the original article [21], or use of Evolutionary

Search for Natural Evolutionary Search (NES), that is closer to empirical gradient

approach than ES proper [63].

Byzantine-Resilient Learning Beyond Gradients: Distributing Evolutionary Search (Full Report) GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal

The reason authors had to introduce a new definition of byzantine-

resilience rather than to re-use existing ones, is that the latter are

poorly suited to the distributed learning setting. If approached from

the Do-All problem perspective [15], parameter update vectors can-

not be verified without repeating the whole computation, meaning

that byzantine-resilience would require several workers to perform

redundant update calculation. In the setting where training a sin-

gle model can cost millions in electricity costs alone (c.f., e.g., [1]),

direct redundancy is an unrealistic assumption.

In the distributed gradient-based learning, the (𝛼 , 𝑓)-Byzantine

Resilience hence remained the predominant paradigm and has been

further expanded to provide guarantees for models trained in a

more general distributed setting than federated learning [13, 14, 23,

65, 66].

1.4 Our Contribution
Our main contribution is showing that Evolutionary Search is can

be adapted to work as a byzantine-resilient distributed optimization

algorithm in a non-differentiable setting.

Specifically, we show that by introducing a new definition of

distributed consensus in theML setting, we can leverage the existing

literature on byzantine-resilient distributed computing. In turn,

by using the established primitives of the total order broadcast

and proof-of-work probabilistic consensus primitives [9, 45] we

propose two algorithms for distributed evolutionary search - in

permissioned (closed) and permissionless (open) settings and prove

the bounds on the computational overhead imposed by distributing

the Evolutionary Search.

Interestingly, our new definition of distributed consensus - the

Model-Consensus generalizes the (𝛼 , 𝑓)-Byzantine Resilience in-

troduced by [7, 8] and directly interfaces with the more general

definition of computational consensus.

2 PRELIMINARIES
2.1 Learning Setting
Our problem consists in learning a general function 𝑓 ∈ F, mapping

inputs 𝑥 ∈ X to outputs 𝑦 ∈ Y, determined by parameters 𝜽 , noted
𝑓 (., 𝜽)2. A scalar performance metricL is associated to the function

and can be computed for each input/output pair in the training and

validation sets L(𝑓 (𝑥, 𝜽), 𝑦). We denote L𝜃 , an aggregate perfor-

mance metric on all input-output pairs. Without loss of generality,

L can correspond conversely to loss, accuracy, total reward, fitness,

or another metric of the model performance. The goal of learning

is to find parameters that optimize that value. This process can

be referred to as parameter optimization, parameter space search,

or training. For the sake of simplicity, we adopt the convention

that L is a loss that we seek to minimize, although, in the context

of evolution, −L will be occasionally referred to as fitness due to

historical reasons. {L𝜃 } will be referred to as loss landscape (con-

versely fitness landscape). Finally, 𝑣𝑳𝜃 will refer to the loss vector
obtained by concatenating the losses for all the input/output pairs

(𝑥,𝑦) ∈ X × Y in the training set for model parameters 𝜽 . While

we assume a non-differentiable setting, we still assume a smooth

loss landscape, ie ∃𝑘 ∈ R such that ∀(𝜽 𝑖 , 𝜽 𝑗),
| L𝜃𝑖

−L𝜃 𝑗
|

∥𝜽 𝑖−𝜽 𝑗 ∥ < 𝑘 .

2
For machine learning, we follow the common notation introduced in [22].

Given that we are interested in distributing the training phase,

L𝜃 without further additional notation designates the aggregated

performance metric on the training dataset. We assume as well that

every worker has access to all of the training data and that L𝜃 is

computed in a deterministic manner by each worker, given 𝜃 . This

setting is different from the one used in distributing the gradient

computation, given that the difficulty for the (1, 𝜆)-ES algorithm is

to find a valid update.

2.2 Model-Consensus and 𝜖-Optimality
In the machine learning context, the consensus problem is for a

set of processes 𝑝 ∈ Π to decide on a common value of model

parameters 𝜽 based on model values correct processes can evaluate

individually 𝜽𝑝 . A correct process can decide on a value at most

once every training session.

For the sake of readability, given the process-worker equivalence,

we will be referring to processes 𝑝 as workers and the ensemble of

workers trying to solve the machine learning consensus problem

for a given task Π - as worker pool.
A machine learning consensus protocol must satisfy the follow-

ing conditions:

• Liveness: Each correct worker must eventually decide on a

value of 𝜽
• Consistency: No two correct workers can decide on a different
𝜽 .

• Validity (Extended): For all correct workers, only a 𝜽 pro-

posed by a correct process can be decided upon.

Given thatMLmodel training is distributed to improve parameter

space search, we expect the workers to propose different values

𝜽𝑝 , so the extended validity is essential. Moreover, we expect some

parameters to correspond to a better loss value, and we want our

workers to decide on a value of parameters that leads to the lowest

loss possible. This leads us to introduce a new constraint on the

model-consensus:

• 𝜖-optimality: If 𝜽 satisfies L𝜃 ≤ 𝑚𝑖𝑛𝑝∈Π (L𝜃𝑝) + 𝜖 , where

𝜖 ≥ 0, the consensus is 𝜖-optimal.
A special case of 𝜖-optimality is the case where 𝜖 = 0, in which

case we will refer to the consensus simply as optimal. The two

algorithms we propose here are optimal for each update with high

probability, whereas (𝛼 , 𝑓)-Byzantine Resilience [7, 8] is 𝜖-optimal

with 𝜖 = 𝑠𝑖𝑛(𝛼) · 𝑙𝑟 ·𝑘𝑙𝑖𝑝𝑠ℎ𝑖𝑡𝑧 , where 𝑙𝑟 is the effective learning rate
and 𝑘𝑙𝑖𝑝𝑠ℎ𝑖𝑡𝑧 - the Lipschitz constant of the loss landscape.

2.3 (1, 𝜆)-ES Algorithm
Similar to SGD, algorithms of the (1, 𝜆)-ES class search for optimal

model parameters 𝜃 through a series of steps performing an em-

pirical descent of the loss landscape [25]. At each step 𝑖 , the value

of the parameters 𝜃𝑖 is perturbed by a vector 𝜷3
sampled from a

normal distribution N(0, 𝐼) and scaled to a learning rate 𝜎 . A num-

ber (𝑘 ∈ [1, .., 𝑁]) of 𝜷 values are tested. The one that improves

the model the most (𝑘𝑢𝑝𝑑𝑎𝑡𝑒 = 𝑎𝑟𝑔min𝑘 L(𝜃𝑖 + 𝜎𝜷𝒌)) is retained
and becomes the base for the next search (𝜃𝑖+1 := 𝜃𝑖 + 𝜎𝜷𝒌𝒖𝒑𝒅𝒂𝒕𝒆

).

We refer to 𝜎𝜷𝒌𝒖𝒑𝒅𝒂𝒕𝒆
as an update vector, 𝜎𝜷𝒌 as candidate update

3
Other works tend to use 𝜖 to denote it, whereas we use a Greek letter close to the

neighborhood notation in topology to avoid confusion with 𝜖 of 𝜖-optimality

GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Kucharavy, et al.

vectors and 𝜽 𝑖 + 𝜎𝜷𝒌 as candidate parameters. No update will occur

if no tested vectors have improved loss, so only vectors such as

L(𝜃𝑖 + 𝜎𝜷𝒌) < L(𝜃𝑖) + 𝜈 , where 𝜈 ≥ 0 is a parameter controlling

for a trade-off between random noise due to sampling and gradient

descent - a minimal improvement to be achieved before an update

is triggered. We will refer to 𝜎𝜷𝒌 for which this property is true - a

valid update vector.

2.4 Adapting (1, 𝜆)-ES for Distributed Setting
As we mentioned in the introduction, an important improvement

to the (1, 𝜆)-ES is for nodes to share only the random seeds used

to derive candidate update vector deterministically with a pseudo-

random numbers generator, allowing update sharing with short

messages (given that randoms seeds are <16 bytes for most ML

libraries), and once bundled with the loss parameter, allows any

correct node to verify the proposed candidate update vector. In all

that follows, we will assume that mode of derivation and refer to

such a random seed as a candidate update vector seed, noted as𝔖𝛽𝑘 .

Formalizing the section above, we assume as well that we have an

access to a random generator that is capable of turning a random

seed into a non-scaled update vector (𝑅𝐺 :𝔖𝛽𝑘 → 𝛽𝑘).

To facilitate the proofs for the permissionless setting, we intro-

duce an additional modification of the (1, 𝜆)-ES algorithm that is

run by the workers 𝑝 . Specifically, to ensure strategy-proofness

and more closely match existing proof-of-work, we add a combined

hashing of the loss and update vector seed, assumed to be a positive

integer below a certain maximal value𝔅𝑚𝑎𝑥 (eg. the largest integer

that can be encoded with the number of bits in a hash). We refer to

the hash of (𝔖𝛽𝑘 , 𝑳𝜃𝑘) as 𝜃 -block score 𝔅𝜃𝑘 . In the proof-of-work

consensus, it is used as a scheduler for leader election, which is

triggered when 𝔅𝜃 < 𝔅𝑡𝑎𝑟𝑔𝑒𝑡 , where 𝔅𝑡𝑎𝑟𝑔𝑒𝑡 is the value set to

control the frequency of leader election given the size of the worker

pool and the frequency of evaluation.

The pseudo-code for the complete evolutionary search algorithm

is presented in the listing 1.

3 PERMISSIONED DISTRIBUTED
EVOLUTIONARY SEARCH

The intuition behind the permissioned setting is to leverage the

verifiability of proposed update vectors in (1, 𝜆)-ES to re-use existing

results in classical distributed algorithms. Specifically, given the

iterative nature of (1, 𝜆)-ES, we need the total order broadcast to be

able to order the iterative steps between all correct workers.

Theorem 3.1. The algorithm in listing 2 implements a machine
learning consensus protocol that is Byzantine-resilient under the same
assumptions as the Total Order Broadcast algorithm used and is opti-
mal with probability bound from above by Δ |Π |

𝑁𝑇𝑒𝑣𝑎𝑙,𝑎𝑣𝑒𝑟𝑎𝑔𝑒
, where Δ is

the time needed to perform a Total Order Broadcast, 𝑁 - the expected
number of tries to find a valid update seed and 𝑇𝑒𝑣𝑎𝑙,𝑎𝑣𝑒𝑟𝑎𝑔𝑒 is the
average time needed by a worker to evaluate a candidate update seed.

Proof. The Total Order Broadcast ensures that the valid update

seeds𝔖𝛽𝑘 are delivered to all correct workers in the same order

after the workers were initialized to the same starting parameters

value 𝜃0. Assuming that a valid update seed exists ∀𝑖 ∈ [0..𝑍 − 1],
it will be eventually found and broadcasted by a correct worker.

Ab s t r a c t i o n :

Evo l u t i on a r yS e a r ch e r , I n s t a n c e es

I n t e r f a c e :

− Request <es . S t a r t | 𝜃𝑖 >: s t a r t s s e a r ch

− Request <es . Stop > : ends s e a r ch

− Indicat ion <es . BestHash | 𝜃𝑖 , 𝔖𝛽𝑘
, L𝜃𝑖+𝜎𝛽𝑘

>:

a new seed with a v a l i d hash was found

− Indicat ion <es . B e s t Lo s s | 𝜃𝑖 , 𝔖𝛽𝑘
, L𝜃𝑖+𝜎𝛽𝑘

>:

a new v a l i d update v e c t o r seed was found

− Procedure es . f o l l ow (𝜃𝑖 , 𝔖𝛽𝑘
) −> 𝜃𝑖 + 𝜎𝛽𝑘

d e r i v e c and i d a t e pa rame te r s f o r a seed

− Procedure es . e v a l u a t e (𝜃𝑖 , 𝔖𝛽𝑘
) −>

(𝔅𝜃𝑖+𝜎𝛽𝑘
, L𝜃𝑖+𝜎𝛽𝑘

) : e v a l u a t e s the

hash and l o s s o f a c and i d a t e seed

Algor i thm :

Implements :
E vo l u t i on a r yS e a r ch e r , i n s t a n c e es ;

Parameters :
L : l o s s f u n c t i o n ;

𝜎 : s e a r ch r a d i u s ;

𝜈 : minimal l o s s s c o r e improvement ;

𝔅𝑡𝑎𝑟𝑔𝑒𝑡 : t a r g e t hash t h r e s h o l d ;

procedure r e s e t () :

t a r g e t = ∅ ;

b e s t _ha sh = { seed : ∅ , s c o r e : +∞ } ;

b e s t _ l o s s = { seed : ∅ , s c o r e : +∞ } ;

upon <es . S t a r t | 𝜃𝑖 >:

r e s e t () ;

t a r g e t = 𝜃𝑖
upon <es . Stop > :

r e s e t () ;

procedure es . f o l l ow (𝜃𝑖 , 𝔖𝛽𝑘
) :

I f 𝔖𝛽𝑘
== ∅ :

r e t u r n 𝜃𝑖 ;

Else :

𝛽𝑘 = RG(𝔖𝛽𝑘
) ;

r e t u r n 𝜃𝑖 + 𝜎𝛽𝑘 ;

procedure es . e v a l u a t e (𝜃𝑖 , 𝔖𝛽𝑘
) :

L𝜃𝑖+𝜎𝛽𝑘
, 𝑣𝑳𝜃𝑖+𝜎𝛽𝑘

= ev a l (𝑓𝜃𝑖+𝜎𝛽𝑘
) ;

𝔅𝜃𝑖+𝜎𝛽𝑘
= hash (L𝜃𝑖+𝜎𝛽𝑘

, 𝑣𝑳𝜃𝑖+𝜎𝛽𝑘
) ;

r e t u r n (𝔅𝜃𝑖+𝜎𝛽𝑘
, L𝜃𝑖+𝜎𝛽𝑘

) ;

upon t a r g e t != n u l l :

s eed = rand () ;

𝔅𝜃𝑖+𝜎𝛽𝑘
, L𝜃𝑖+𝜎𝛽𝑘

= es . e v a l u a t e (𝜃𝑖 , 𝔖𝛽𝑘
) ;

I f 𝔅𝜃𝑖+𝜎𝛽𝑘
< 𝔅𝑡𝑎𝑟𝑔𝑒𝑡 :

b e s t _ha sh = { seed : 𝔖𝛽𝑘
, s c o r e : 𝔅𝜃𝑖+𝜎𝛽𝑘

} ;

t r i g g e r <es . BestHash | 𝜃𝑖 , 𝔖𝛽𝑘
, 𝔅𝜃𝑖+𝜎𝛽𝑘

;

I f L(𝜃𝑖 + 𝜎𝛽𝑘) < L(𝜃𝑖) + 𝜈 :

b e s t _ l o s s = { seed : 𝔖𝛽𝑘
, s c o r e : L𝜃𝑖+𝜎𝛽𝑘

} ;

t r i g g e r <es . B e s t Lo s s | 𝜃𝑖 , 𝔖𝛽𝑘
, L𝜃𝑖+𝜎𝛽𝑘

>;

Listing 1: Single Worker Evolutionary Search

Liveness: Each correct worker will eventually decide on the

final 𝜃𝑍 = 𝜃0 +
∑𝑍−1
𝑖=0 𝜎𝛽𝑖,𝑓 𝑖𝑟𝑠𝑡 , where 𝜎𝛽𝑖,𝑓 𝑖𝑟𝑠𝑡 is the update vector

derived from the first valid update seed for point 𝜃𝑖 .

Consistency: Thanks to the Total Order Broadcast, ∀𝑖 ∈ [0..𝑍 −
1]𝛽𝑖,𝑓 𝑖𝑟𝑠𝑡 are the same values for all workers, and hence for each cor-

rect worker, the final parameters of themodel𝜃𝑍 = 𝜃0+
∑𝑍−1
𝑖=0 𝜎𝛽𝑖,𝑓 𝑖𝑟𝑠𝑡

are identical.

Extended Validity: By construction, the first correct worker to

have its proposed seed successfully broadcast will have its update

Byzantine-Resilient Learning Beyond Gradients: Distributing Evolutionary Search (Full Report) GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal

Ab s t r a c t i o n :

P e rm i s s i on edEvo l u t i ona ryS e a r ch , i n s t a n c e ps

Uses :

− Evo l u t i on a r yS e a r ch e r , i n s t a n c e es ,

pa r ame te r s (L , 𝜎 , 𝜈 , _)

− To t a lO rde rB roadca s t , i n s t a n c e tob

I n t e r f a c e :

− Indicat ion <ps . Output | po in t > :

pa r ame te r s found by the e v o l u t i o n a r y s e a r ch

Algor i thm :

Implements :
P e rm i s s i on edEvo l u t i ona ryS e a r ch , i n s t a n c e ps

Parameters :
L : l o s s f u n c t i o n ;

𝜎 : s e a r ch r a d i u s ;

𝜈 : l o s s t h r e s h o l d f o r update ;

𝜃0 : s t a r t i n g po i n t o f the s e a r ch ;

Z : number o f s e a r ch s t e p s ;

upon <ps . I n i t > :

t a r g e t = 𝜃0 ;

s t e p s = 0 ;

t r i g g e r <es . S t a r t | t a r g e t > ;

upon <es . B e s t Lo s s | 𝜃𝑖 , 𝔖𝛽𝑘
, L𝜃𝑖+𝜎𝛽𝑘

>:

I f 𝜃𝑖 == t a r g e t And L(𝜃𝑖 + 𝜎𝛽𝑘) < L(𝜃𝑖) + 𝜈 :

t r i g g e r < tob . B ro ad c a s t |

[" V a l i d Lo s s " , 𝜃𝑖 , 𝔖𝛽𝑘
] > ;

upon < tob . D e l i v e r |

s ou r c e _ e s [" Va l i d Lo s s " , 𝜃𝑖 , 𝔖𝛽𝑘
] > :

I f 𝜃𝑖 == t a r g e t :

(_ , L𝜃𝑖+𝜎𝛽𝑘
) =

es . e v a l u a t e (𝜃𝑖 , 𝔖𝛽𝑘
))

/ / v e r i f y t h a t t h e s e e d i s v a l i d i n d e e d
I f L𝜃𝑖+𝜎𝛽𝑘

< L𝜃𝑖
+ 𝜈 :

t a r g e t = es . f o l l ow (𝜃𝑖 , 𝔖𝛽𝑘
) ;

/ / i s a c t u a l l y 𝜃𝑖+1 = 𝜃𝑖 + 𝜎𝛽𝑘
s t e p s = s t e p s + 1 ;

I f s t e p s < Z :

t r i g g e r <es . S t a r t | t a r g e t > ;

Else :

t r i g g e r <es . Stop > ;

t r i g g e r <ps . Output | t a r g e t > ;

Else :

t r i g g e r < tob . Ban | source_e s > ;

/ / o p t i o n a l p e n a l t y f o r m i sb ehav ing

Listing 2: Permissioned Distributed Search

vector 𝜎𝛽𝑖,𝑓 𝑖𝑟𝑠𝑡 accepted. A seed that has not been successfully

broadcasted cannot be accepted.

Probabilistic Optimality: By construction, at every step, upon

the reception of a valid update seed𝔖𝛽𝑖,𝑓 𝑖𝑟𝑠𝑡 through Total Order

Broadcast, a correct worker will switch to searching for a valid

update vector for the new parameters 𝜃𝑖+1 = 𝜃𝑖+𝜎𝛽𝑖,𝑓 𝑖𝑟𝑠𝑡 . The only
way a better update at a given step becomes available without being

broadcast first is if one becomes available during the total broadcast.

The probability of that happening is proportional to the number of

seed evaluations occurring before the broadcast completes times

the probability of finding a seed above the threshold and better

than the seed in the broadcast. The former is bound by the number

of evaluations a worker pool can perform during the broadcast

(
|Π |Δ

𝑇𝑒𝑣𝑎𝑙,𝑎𝑣𝑒𝑟𝑎𝑔𝑒
), whereas the second is bound by the chance of finding

a valid seed, which, in case if the seed in broadcast is equal exactly

to the validity threshold is
1

𝑁
.

□

4 PERMISSIONLESS DISTRIBUTED
EVOLUTIONARY SEARCH

4.1 Proof-of-Work Mechanism for Probabilistic
Consensus

The probabilistic consensus algorithm through proof-of-work (PoW)

was initially proposed in the Bitcoin blockchain whitepaper [41],

as a mechanism to achieve a probabilistic consensus through a

leader election process tied to the amount of computational power

actively committed to the election process. The principle of the

election mechanism leverages the cryptographically secure hash

function partial inversion. Based on the information provided by

the prior leader election (often the hash of the prior block head),

information to be broadcast by the next leader (often the root of

the Merkle tree of transactions to be cleared), correct workers try

to guess a random string (nonce) that once added to those two

values would lead to a hash in the desired domain (for simplicity,

0 < 𝔅 < 𝔅𝑡𝑎𝑟𝑔𝑒𝑡 < 𝔅𝑚𝑎𝑥). In turn, once a node finds a valid

nonce, its leadership can be validated by other nodes by performing

a single hash with the found nonce. This process is referred to

as "mining" and each new leader election - as a "block minting",

and assuming sufficient time between leader elections to allow the

previous block value to propagate (𝔅𝑡𝑎𝑟𝑔𝑒𝑡 is adjusted based on the

number of workers for that reason), ensuring an eventual election

of a correct worker as a leader with high probability, assuming

that the majority of computational power is controlled by correct

workers [42, 45].

Unfortunately, the increasing popularity of PoW-based blockchains

led to a combination of a large number of computationally powerful

workers joining it and consequently to the difficulty threshold being

increased to the point where PoW became a serious environmental

problem [55]. This led to heavy criticism of PoW consensus and

other protocols - such as proof-of-stake [32] - to be promoted as

less harmful alternatives for permissionless distributed consensus.

An alternative approach consisted in trying to highjack the proof

of work to instead perform some useful work that would absorb

computational resources independently of PoW-based blockchains.

Such algorithms - useful proof-of-work (UPoW) - have unfortunately

been hard to find, given the volume of computational power cur-

rently invested into PoW they would need to absorb and strict

constraints on PoW to be usable: provably hard-to-find easy-to-

verify updates, low communication complexity, andmessageweight

and easily adjustable puzzle difficulty.

4.2 Permissionless Distributed Evolutionary
Search as Proof-of-Work

However, given the ever-growing demand for computational power

in machine learning, parameter space search problems are suffi-

ciently common to leverage the computational power available to

PoW consensus algorithms. Conversely, the distributed (1, 𝜆)-ES

seems to fit the constraints on the UPoWs, given that while hard

to find, valid update vectors are straightforwards to validate and

GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Kucharavy, et al.

that communication overhead in-between iterative steps of (1, 𝜆)-

ES only contains (𝔖𝛽𝑘 , 𝑳𝜃𝑘) - candidate update vector seed and

associate loss.

To simplify the proofs and enable a direct mechanism for com-

plexity adjustment, rather than using a valid update itself as a proof

for leader election, we instead use the 𝜃 -block score 𝔅𝜃𝑘 , while

propagating the best found valid update seed and associated loss

(𝔖𝛽𝑘𝑢𝑝𝑑𝑎𝑡𝑒
, L𝛽𝑘𝑢𝑝𝑑𝑎𝑡𝑒

) with the same mechanisms as Merkel tree

roots. Intuitively, this is a distributed equivalent of (1, 𝜆)-ES with

a set sampling population, except with the size decided by the

expected candidate update samples between leader elections.

Given the variety of available blockchain protocols, we will ab-

stract them away in the samewe abstracted the total order broadcast

in the permissioned setting and assume they implement an interface

described in listing 4.

Theorem 4.1. Algorithm in Listing 3 is a valid proof-of-work and
is a machine learning consensus protocol optimal with probability
bound from above by Δ |Π |

𝑁𝑇𝑒𝑣𝑎𝑙,𝑎𝑣𝑒𝑟𝑎𝑔𝑒
+ 𝑒Ω (𝛿2𝑔2𝑑) ∀𝛿 > 0 if 𝑔2𝛼 >

(1 + 𝛿)𝛾 after 𝑑 block added on top of the block minted during the
step Z. Δ and is the time needed to propagate a block or a value,
respectively4, 𝑁 - the expected number of tries to find a valid update
seed, and 𝑇𝑒𝑣𝑎𝑙,𝑎𝑣𝑒𝑟𝑎𝑔𝑒 is the average time needed by a worker to
evaluate a candidate update seed, 𝛼 and 𝛾 - collective minting rates of
correct and faulty nodes and 𝑔 = 𝑒−𝛼Δ, the propagation delay penalty
for correct nodes.

Proof. The algorithm in the listing 3 is a valid proof-of-work

because the block minting mechanism is equivalent to a partial

inversion of a cryptographic function with an unavoidable loss

function evaluation overhead.

Since the algorithm in the listing 3 is a valid proof-of-work, the

Nakamoto consensus regarding the block propagated at the step Z

of ps after 𝑑 blocks were added on top of it will not change with

probability 1 − 𝑒Ω (𝛿2𝑔2𝑑)
for any 𝛿 > 0 as long as 𝑔2𝛼 > (1 + 𝛿)𝛾 ,

as per [42, 45].

The Nakamoto consensus blockchain blocks are available to all

correct workers and are ordered in a unique way for all correct

workers. By replacing Total Order Broadcast in the proof of by the

blockchain segment read containing blocks corresponding to steps

0 to Z, the proof for 3.1 applies.

□

The intuitive explanation of proof is that the algorithm in listing

3 will fail to register the best random seed with the best candidate

update loss in only two cases. First, if the blockchain forked and

the bock with the best candidate update random seed ended up on

a dead branch. This case occurs with the probability 1 − 𝑒Ω (𝛿2𝑔2𝑑)
.

Second, if the candidate update seed with the best loss is found

within the time 𝛿 from the block update, accounted for by term

Δ |Π |
𝑁𝑇𝑒𝑣𝑎𝑙,𝑎𝑣𝑒𝑟𝑎𝑔𝑒

. While this is possible if the task supplied is too easy

for the size of the blockchain, there is likely a tighter bound, given

that if many valid update seeds were found as a single block was

4
Given that the propagation of a value and block involves evaluating a candidate

update, depending on the neighbor propagation topology, 𝐷𝑒𝑙𝑡𝑎𝑏𝑙𝑜𝑐𝑘/𝑣𝑎𝑙 can be

𝑂 (|Π | · 𝑇𝑒𝑣𝑎𝑙,𝑎𝑣𝑒𝑟𝑎𝑔𝑒) , 𝑂 (𝑙𝑜𝑔 (|Π |) · 𝑇𝑒𝑣𝑎𝑙,𝑎𝑣𝑒𝑟𝑎𝑔𝑒) or 𝑂 (𝑇𝑒𝑣𝑎𝑙,𝑠𝑙𝑜𝑤𝑒𝑠𝑡) . For the
sake of generalizability, we keep the same notation as previously

Ab s t r a c t i o n :

P e rm i s s i o n l e s s E v o l u t i o n a r y S e a r c h , i n s t a n c e ps

Uses :

− Evo l u t i on a r yS e a r ch e r , i n s t a n c e es ,

pa r ame te r s (L , 𝜎 , 𝜈 , 𝔅𝑡𝑎𝑟𝑔𝑒𝑡)

− B lockcha in , i n s t a n c e b l

I n t e r f a c e :

− Indicat ion <ps . Output | po in t > :

pa r ame te r s found by the e v o l u t i o n a r y s e a r ch

− Procedure ps . processNewBlock ([𝜃𝑖 , t a r g e t , s t ep s ,

e s . be s t_hash , e s . b e s t _ l o s s])

Algor i thm :

Implements :
P e rm i s s i o n l e s s E v o l u t i o n a r y S e a r c h , i n s t a n c e ps

Parameters :
/ / same as i n p e rm i s s i o n e d

upon <ps . I n i t > :

/ / same as i n p e rm i s s i o n e d
procedure processNewBlock ([𝜃𝑖 , t a r g e t , s t ep s ,

e s . be s t_hash , e s . b e s t _ l o s s]) :

I f s t e p s < Z :

t r i g g e r <es . S t a r t | t a r g e t > ;

Else :

t r i g g e r <es . Stop > ;

t r i g g e r <ps . Output | t a r g e t > ;

t r i g g e r < b l . loadNext > ;

upon <es . B e s t Lo s s | 𝜃𝑖 , 𝔖𝛽𝑘
, L𝜃𝑖+𝜎𝛽𝑘

>:

I f {𝜃𝑖 == t a r g e t And L(𝜃𝑖 + 𝜎𝛽𝑘) < L(𝜃𝑖) + 𝜈 :

t r i g g e r < b l . sendValue |

[" V a l i d Lo s s " , 𝜃𝑖 , 𝔖𝛽𝑘
, L(𝜃𝑖 + 𝜎𝛽𝑘)] > ;

upon < b l . d e l i v e rV a l u e |

s ou r c e _ e s [" Va l i d Lo s s " , 𝜃𝑖 ,

𝔖𝛽𝑘
, L𝑑𝑒𝑐𝑙𝑎𝑟𝑒𝑑 (𝜃𝑖 + 𝜎𝛽𝑘)] > :

I f 𝜃𝑖 == t a r g e t

And L𝑑𝑒𝑐𝑙𝑎𝑟𝑒𝑑 (𝜃𝑖 + 𝜎𝛽𝑘) < es . b e s t _ l o s s [s c o r e] :

(_ , L𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒𝑑𝜃𝑖 + 𝜎𝛽𝑘) =

es . e v a l u a t e (𝜃𝑖 , 𝔖𝛽𝑘
)) ;

/ / v e r i f y t h a t t h e s e n d e r i s n o t l y i n g
I f L𝑑𝑒𝑐𝑙𝑎𝑟𝑒𝑑 (𝜃𝑖 + 𝜎𝛽𝑘) == L𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒𝑑 (𝜃𝑖 + 𝜎𝛽𝑘) :

e s . b e s t _ l o s s = { seed : 𝔖𝛽𝑘
, s c o r e : L𝜃𝑖+𝜎𝛽𝑘

} ;

t r i g g e r < b l . sendValue |

[" V a l i d Lo s s " , 𝜃𝑖 , 𝔖𝛽𝑘
, L(𝜃𝑖 + 𝜎𝛽𝑘)] > ;

upon <es . BestHash | 𝜃𝑖 , 𝔖𝛽𝑘
, 𝔅𝜃𝑖+𝜎𝛽𝑘

>:

I f 𝜃𝑖 == t a r g e t And 𝔅𝜃𝑖+𝜎𝛽𝑘
< 𝔅𝑡𝑎𝑟𝑔𝑒𝑡 :

t a r g e t = es . f o l l ow (𝜃𝑖 , e s . b e s t _ l o s s [seed]) ;

s t e p s += 1 ;

t r i g g e r b l o ck = < b l . mintB lock |

[𝜃𝑖 , t a r g e t , s t ep s ,

e s . be s t_hash , e s . b e s t _ l o s s] > ;

t r i g g e r < b l . p ropaga t eB l o ck | b lock > ;

ps . ProcessNewBlock (b l o ck) ;

upon < b l . d e l i v e r B l o c k |

s ou r c e _ e s [𝜃𝑖 , t a r g e t , s t ep s ,

s ou r c e _ e s . bes t_hash , s ou r c e _ e s . b e s t _ l o s s] > :

I f 𝜃𝑖== t a r g e t :

(𝔅𝜃𝑖+𝜎𝛽𝑘
, _) =

es . e v a l u a t e (𝜃𝑖 , s ou r c e _ e s . b e s t _ha sh [seed]) ;

I f {𝜃𝑖 == t a r g e t And 𝔅𝜃𝑖+𝜎𝛽𝑘
< 𝔅𝑡𝑎𝑟𝑔𝑒𝑡 :

t a r g e t = t a r g e t ;

s t e p s = s t e p s ;

t r i g g e r < b l . p ropaga t eB l o ck | b lock > ;

ps . ProcessNewBlock (b l o ck) ;

Listing 3: Permissionless Distributed Search

Byzantine-Resilient Learning Beyond Gradients: Distributing Evolutionary Search (Full Report) GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal

Ab s t r a c t i o n :

B lockcha in , i n s t a n c e b l

I n t e r f a c e :

− Procedure b l . sendValue :

worker p ropose s to i t s ne ighbour s a va lue to be

i n c l u d e d in the nex t b l o ck

− Procedure b l . d e l i v e rV a l u e :

d e l i v e r s a va l u e proposed f o r i n c l u s i o n i n t o the

nex t b l o ck from a ne ighbour

− Procedure b l . mintB lock :

a l l ows a worker to mint a new b lo ck t h a t would

i n c l u d e the b e s t v a l i d upda t e s r e c e i v e d

− Procedure b l . p ropagageB lock :

a l l ows a worker to s u g g e s t s a newly found b lo ck

to be propaga t ed a ne ighbour s

− Procedure b l . d e l i v e r B l o c k :

d e l i v e r s a b l o ck proposed f o r p ropaga t i on from

a ne ighbour

− Procedure b l . l oadNex t :

l o a d s the nex t d i s t r i b u t e d s e a r ch t a s k queued

in b l o c k cha i n

Listing 4: Expected Blockchain interface

mined, the last one is not necessarily the one that will reach the

best loss.

5 DISCUSSION AND RELATED WORK
5.1 Byzantine-Resilient Distributed Machine

Learning
As we mentioned in the introduction, while multiple mechanisms

to distribute machine learning algorithms were proposed, the only

one accounting for Byzantine faults is the (𝛼, 𝑓)-Byzantine Resilient

learning proposed by [7, 8].While initially formulated in the context

of federated learning with a centralized parameter aggregation

server, it has been developed to allow byzantine fault tolerance in

the general distributed setting, under realistic assumptions [13].

Compared to our approach, a downside of the (𝛼, 𝑓)-Byzantine

Resilience is their dependence on direct gradients and a requirement

for the model to be sufficiently small for the gradient vector sharing

to not become a bottleneck. Modern ML and AI models are often

sufficiently large for data transfer time to not be negligible and need

to be synchronized often enough to avoid parameter drift between

models. For instance, the GPT-3 generative language model has

several hundreds of GBs of parameters, and even when split into

single attention heads requires each parameter synchronization to

transfer several GBs of parameter values.

Conversely, an advantage of (𝛼, 𝑓)-Byzantine Resilience is its

ability to train on the data that’s different on each worker node, as-

suming the data is uniform across workers. While this assumption

is not necessarily true in all settings, our distributed (1, 𝜆)-ES does

not natively support the data distribution
5
. The main problem ad-

dressed by distributing (1, 𝜆)-ES is the difficulty to find a single valid

update at each step of the optimization task, particularly in cases

5
Given the linear nature of the loss wrt to data, it is possible to design variants of

distributed (1, 𝜆)-ES that would require a sufficient number of nodes to confirm that a

candidate update vector achieves an acceptable loss improvement on their data as well.

This would however require additional assumptions and a more restrictive learning

setting and is out of the scope of this paper.

where the parameter space is in a very high dimension, leading to

long valid update vector search, even when single candidate update

vector evaluation is itself fast. This setting is specifically the one

in which EAs have been successfully applied in modern machine

learning [10, 54, 56]. Notably, the permissionless UPoW (1, 𝜆)-ES

version only makes sense in that setting, complemented with a

high iteration number to ensure that most of the communication

is carrying only candidate update seeds and associated loss values

and minimize training data transfer.

Finally, while there are other distributed approaches to gradient-

free optimization, notably for Support Vector Machines (SVMs)

[18, 59] and the Genetic Algorithm [5, 21], none to our knowledge

allow for byzantine faults.

5.2 Useful proof of work
Given that the computational and energy costs of PoW consensus

were already well-known by the mid-2010s [55], multiple attempts

were made to leverage the PoW to do useful work. The first proposal

was made in 2017, leveraging a set of problems in computational

geometry for which the search of a solution is 𝑂 (𝑛2) hard and

verification is 𝑂 (𝑛) hard [3]. Unfortunately, insufficient demand

and lack of difficulty adjustment mechanism meant that this PoW

was impractical. The same year another set of problems - partitioned

linear algebra on very large non-sparse matrices was proposed by

[50]. Unfortunately, that PoW did not take either, given the rarity of

problems involving such matrices and amounts of data (TBs) that

would need to be transferred in the process. Finally, still the same

year, a highly general framework for turning any computationally

intensive task into PoW challenges has been proposed [68]. Relying

on the trusted hardware - Intel SGX - it initially showed a great

performance but was rapidly rendered obsolete by the rarity of

hardware supporting Intel SGX and then the demise of Intel SGX

in the wake of Spectre vulnerabilities [11, 12].

The next iteration of the search for a useful proof of work started

in 2019, focusing on NP-hard problems, notably the traveling sales-

man problem and machine learning. While some success has been

achieved by using TSP in the context of the container ship sailing

route optimization [26], despite being NP-hard TSP has several

probabilistic heuristics available and no initial estimation of hard-

ness for a specific problem, making it non-strategy-proof and hence

not a suitable PoW for blockchain purposes.

Machine learning PoW has been attempted as well, however, all

the approaches we are aware of tried to use gradient-based machine

learning and ran into the fundamental issue of non-verifiability

of gradient calculation, leading them to waste resources through

replication or to leave their PoW non-strategy-proof and often to

have the model training itself to be vulnerable to adversaries. Ex-

amples of such approaches are Proof of Learning (PoLe) [38], which

is essentially a race to a predefined accuracy, and model hyperpa-

rameter sweep PoW [2]. Neither schema introduces any replication,

leaving ML model vulnerable to attackers, and neither schema is

strategy-proof, given that a worker with more computational re-

sources or a good heuristic could consistently "win" each of those

competitions.

Proof of Search [49] occupies an interesting spot among the

proposed useful PoW in that it doesn’t propose a useful PoW per se

GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Kucharavy, et al.

but rather a way to transform suitable useful PoW into a blockchain.

In that, it is complementary to our approach since it provides a

blueprint to implement the blockchain interface described in the

listing 4.

Perhaps most relevant to the evolutionary search aspect of our

algorithm, two evolutionary proofs of useful work have been pro-

posed, both using the genetic algorithm [6, 58]. One focuses on

solving the TSP problem by using a genetic algorithm directly,

whereas the other one tries to create a framework similar to the

Proof of Search but using genetic algorithms specifically and ap-

plied to NP-hard problems such as TSP and Knapsack. Not only are

such approaches vulnerable to the issues mentioned above in the

context of TSP blockchains, but the genetic algorithm also implies

a collaborative phase of parameter mixing during the "chromo-

some" "cross-over"
6
, which runs against the competitive nature of

the Proof-of-Work and adds a layer of communication complex-

ity. In addition to that, both approaches require messages between

workers to carry whole parameter update vectors, adding a com-

munication bottleneck for larger models.

6 CONCLUSION
In this paper, we present a new definition of distributed machine

learning consensus - the Model-Consensus, that generalizes the

previously proposed (𝛼 , 𝑓)-Byzantine Resilience and is applicable

both in differentiable and non-differentiable settings.

We then present two distributed versions of the (1, 𝜆)-Evolutionary

Search algorithm, both reaching a model-consensus in a gradient-

free setting. One leveraged the classical distributed algorithms ab-

straction of Total Order Broadcast to achieve a consensus in a per-

missioned setting, whereas the other used the Proof-of-Work leader

election consensus to achieve the same result in a permissionless

setting.

To our knowledge, our model-consensus definition is the first

definition of Byzantine resilient consensus in machine learning

that covers both gradient-free and gradient-based learning while

generalizing the previously proposed (𝛼, 𝑓)-Byzantine Resilience

and allowing for direct compatibility with the classical distributed

algorithms consensus definition.

To our knowledge, the two algorithms we propose are the first

Byzantine-resilient gradient-free learning algorithms and the first

byzantine-resilient evolutionary algorithms. Likewise, our permis-

sionless distributed evolutionary search algorithm is the first useful

proof-of-work algorithm that minimizes the overhead compared to

traditional proof-of-work.

While proposed algorithms work for any black-box optimization

problems, they are most suited for high-dimensional optimization

problems where the evaluation of a single updated parameter set is

quick, but the sheer number of dimensions makes the search for a

valid update excessively slow for a single worker, with a notable

application being the neuroevolution of large ANNs. We foresee

that such a setting is of particular relevance to multipurpose super

neural networks, such as PathNet [16], as well as for conversational

agents derived from LLMs [20, 51].

6
As we mention in the introduction, we use Genetic Algorithm only to designate EAs

that has "chromosome" and "cross-over" phases, consistently with the nomenclature

introduced in [24]

Finally, more accessible and reliable byzantine-resilient machine

learning allows a variety of entities to poll together their com-

putational resources to train models they could not have trained

individually, which has the potential of democratizing state-of-the-

art ML research in a non-differentiable setting.

ACKNOWLEDGMENTS
We would like to thank the Cyber-Defence Campus, armasuisse

W+T, VBS for the Distinguished CYD Post-Doctoral Fellowship to

AK (ARAMIS CYD-F-2021004), as well as Fabien Salvi and France

Faille (EFPL) for their technical and administrative support and the

anonymous reviewers for their useful feedback.

REFERENCES
[1] 2020. OpenAI’s GPT-3 Language Model: A Technical Overview. https://

lambdalabs.com/blog/demystifying-gpt-3/

[2] Alejandro Baldominos and Yago Saez. 2019. Coin.AI: A Proof-of-Useful-Work

Scheme for Blockchain-Based Distributed Deep Learning. Entropy 21, 8 (2019),

723. https://doi.org/10.3390/e21080723

[3] Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasudevan. 2017.

Proofs of Useful Work. IACR Cryptol. ePrint Arch. (2017), 203. http://eprint.iacr.

org/2017/203

[4] Paul Barham, Aakanksha Chowdhery, Jeff Dean, Sanjay Ghemawat, Steven Hand,

Daniel Hurt, Michael Isard, Hyeontaek Lim, Ruoming Pang, Sudip Roy, et al. 2022.

Pathways: Asynchronous distributed dataflow for ml. Proceedings of Machine
Learning and Systems 4 (2022), 430–449.

[5] Theodore C. Belding. 1995. The Distributed Genetic Algorithm Revisited. In

Proceedings of the 6th International Conference on Genetic Algorithms, Pittsburgh,
PA, USA, July 15-19, 1995, Larry J. Eshelman (Ed.). Morgan Kaufmann, 114–121.

[6] Francesco Bizzaro, Mauro Conti, and Maria Silvia Pini. 2020. Proof of Evolution:

leveraging blockchain mining for a cooperative execution of Genetic Algorithms.

In IEEE International Conference on Blockchain, Blockchain 2020, Rhodes, Greece,
November 2-6, 2020. IEEE, 450–455. https://doi.org/10.1109/Blockchain50366.

2020.00065

[7] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer.

2017. Brief Announcement: Byzantine-Tolerant Machine Learning. In PODC 2017,
Elad Michael Schiller and Alexander A. Schwarzmann (Eds.). ACM, 455–457.

[8] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. 2017.

Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent. In

Advances in Neural Information Processing Systems 30: NeurIPS 2017, Isabelle
Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.

Vishwanathan, and Roman Garnett (Eds.). 119–129. https://proceedings.neurips.

cc/paper/2017/hash/f4b9ec30ad9f68f89b29639786cb62ef-Abstract.html

[9] Jo-Mei Chang and Nicholas F. Maxemchuk. 1984. Reliable Broadcast Protocols.

ACM Trans. Comput. Syst. 2, 3 (1984), 251–273.
[10] Edoardo Conti, VashishtMadhavan, Felipe Petroski Such, Joel Lehman, Kenneth O.

Stanley, and Jeff Clune. 2018. Improving Exploration in Evolution Strategies for

Deep Reinforcement Learning via a Population of Novelty-Seeking Agents. In

Advances in Neural Information Processing Systems 31: NeurIPS 2018, Samy Bengio,

Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and

Roman Garnett (Eds.). 5032–5043.

[11] Intel Corporation. 2018. CVE-2017-5715. Available from MITRE, CVE-ID CVE-

2017-5715.. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5715

[12] Intel Corporation. 2018. CVE-2017-5753. Available from MITRE, CVE-ID CVE-

2017-5753.. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5753

[13] El-Mahdi El-Mhamdi, Sadegh Farhadkhani, Rachid Guerraoui, Arsany Guirguis,

Lê-Nguyên Hoang, and Sébastien Rouault. 2021. Collaborative Learning in the

Jungle (Decentralized, Byzantine, Heterogeneous, Asynchronous and Nonconvex

Learning). In Advances in Neural Information Processing Systems 34: NeurIPS 2021,
Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and

Jennifer Wortman Vaughan (Eds.). 25044–25057.

[14] El-Mahdi El-Mhamdi, Rachid Guerraoui, Arsany Guirguis, Lê Nguyên Hoang,

and Sébastien Rouault. 2020. Genuinely Distributed Byzantine Machine Learning.

In PODC ’20: ACM Symposium on Principles of Distributed Computing, Virtual
Event, Italy, August 3-7, 2020, Yuval Emek and Christian Cachin (Eds.). ACM,

355–364. https://doi.org/10.1145/3382734.3405695

[15] Antonio Fernández, Chryssis Georgiou, Alexander Russell, and Alexander A.

Shvartsman. 2005. The Do-All problem with Byzantine processor failures. Theor.
Comput. Sci. 333, 3 (2005), 433–454. https://doi.org/10.1016/j.tcs.2004.06.034

[16] Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, An-

drei A Rusu, Alexander Pritzel, and DaanWierstra. 2017. Pathnet: Evolution chan-

nels gradient descent in super neural networks. arXiv preprint arXiv:1701.08734

https://lambdalabs.com/blog/demystifying-gpt-3/
https://lambdalabs.com/blog/demystifying-gpt-3/
https://doi.org/10.3390/e21080723
http://eprint.iacr.org/2017/203
http://eprint.iacr.org/2017/203
https://doi.org/10.1109/Blockchain50366.2020.00065
https://doi.org/10.1109/Blockchain50366.2020.00065
https://proceedings.neurips.cc/paper/2017/hash/f4b9ec30ad9f68f89b29639786cb62ef-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/f4b9ec30ad9f68f89b29639786cb62ef-Abstract.html
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5715
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5753
https://doi.org/10.1145/3382734.3405695
https://doi.org/10.1016/j.tcs.2004.06.034

Byzantine-Resilient Learning Beyond Gradients: Distributing Evolutionary Search (Full Report) GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal

(2017).

[17] L.J. Fogel, A.J. Owens, and M.J. Walsh. 1966. Artificial intelligence through simu-
lated evolution. Wiley, Chichester, WS, UK.

[18] Pedro A. Forero, Alfonso Cano, and Georgios B. Giannakis. 2010. Consensus-

Based Distributed Support Vector Machines. J. Mach. Learn. Res. 11 (2010),

1663–1707. http://portal.acm.org/citation.cfm?id=1859906

[19] Deep Ganguli, Danny Hernandez, Liane Lovitt, Nova DasSarma, Tom Henighan,

Andy Jones, Nicholas Joseph, Jackson Kernion, Benjamin Mann, Amanda Askell,

Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Nelson Elhage, Sheer El

Showk, Stanislav Fort, Zac Hatfield-Dodds, Scott Johnston, Shauna Kravec, Neel

Nanda, Kamal Ndousse, Catherine Olsson, Daniela Amodei, Dario Amodei, Tom B.

Brown, Jared Kaplan, Sam McCandlish, Chris Olah, and Jack Clark. 2022. Pre-

dictability and Surprise in Large Generative Models. CoRR abs/2202.07785 (2022).

arXiv:2202.07785 https://arxiv.org/abs/2202.07785

[20] Amelia Glaese, Nat McAleese, Maja Trebacz, John Aslanides, Vlad Firoiu,

Timo Ewalds, Maribeth Rauh, Laura Weidinger, Martin Chadwick, Phoebe

Thacker, Lucy Campbell-Gillingham, Jonathan Uesato, Po-Sen Huang, Ramona

Comanescu, Fan Yang, Abigail See, Sumanth Dathathri, Rory Greig, Charlie Chen,

Doug Fritz, Jaume Sanchez Elias, Richard Green, Sona Mokrá, Nicholas Fernando,

Boxi Wu, Rachel Foley, Susannah Young, Iason Gabriel, William Isaac, John Mel-

lor, Demis Hassabis, Koray Kavukcuoglu, Lisa Anne Hendricks, and Geoffrey

Irving. 2022. Improving alignment of dialogue agents via targeted human judge-

ments. CoRR abs/2209.14375 (2022). https://doi.org/10.48550/arXiv.2209.14375

arXiv:2209.14375

[21] David E. Goldberg. 1989. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, Reading, MA.

[22] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT

Press. http://www.deeplearningbook.org.

[23] Shangwei Guo, Tianwei Zhang, Han Yu, Xiaofei Xie, Lei Ma, Tao Xiang, and Yang

Liu. 2021. Byzantine-resilient decentralized stochastic gradient descent. IEEE
Transactions on Circuits and Systems for Video Technology (2021).

[24] Nikolaus Hansen, Dirk V. Arnold, and Anne Auger. 2015. Evolution Strategies.

In Springer Handbook of Computational Intelligence, Janusz Kacprzyk and Witold

Pedrycz (Eds.). Springer, 871–898. https://doi.org/10.1007/978-3-662-43505-2_44

[25] Nikolaus Hansen, Dirk V. Arnold, and Anne Auger. 2015. Evolution Strategies.

In Springer Handbook of Computational Intelligence, Janusz Kacprzyk and Witold

Pedrycz (Eds.). Springer Berlin Heidelberg, 871–898. https://doi.org/10.1007/978-

3-662-43505-2_44

[26] Mohamed Haouari, Mariem Mhiri, Mazen El-Masri, and Karim Al-Yafi. 2022. A

novel proof of useful work for a blockchain storing transportation transactions.

Inf. Process. Manag. 59, 1 (2022), 102749. https://doi.org/10.1016/j.ipm.2021.102749

[27] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya,

Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Jo-

hannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland, Katie Millican, George

van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Si-

monyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre. 2022. Train-

ing Compute-Optimal Large Language Models. CoRR abs/2203.15556 (2022).

https://doi.org/10.48550/arXiv.2203.15556 arXiv:2203.15556

[28] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. 1989. Multilayer feed-

forward networks are universal approximators. Neural Networks 2, 5 (1989), 359
– 366. https://doi.org/10.1016/0893-6080(89)90020-8

[29] Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim Krikun, Yonghui Wu, Zhifeng

Chen, Nikhil Thorat, Fernanda B. Viégas, Martin Wattenberg, Greg Corrado,

Macduff Hughes, and Jeffrey Dean. 2017. Google’s Multilingual Neural Machine

Translation System: Enabling Zero-Shot Translation. Trans. Assoc. Comput.
Linguistics 5 (2017), 339–351. https://doi.org/10.1162/tacl_a_00065

[30] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin

Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei.

2020. Scaling Laws for Neural Language Models. CoRR abs/2001.08361 (2020).

arXiv:2001.08361 https://arxiv.org/abs/2001.08361

[31] Tero Karras, Samuli Laine, and Timo Aila. 2019. A Style-Based Generator Archi-

tecture for Generative Adversarial Networks. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019.
Computer Vision Foundation / IEEE, 4401–4410. https://doi.org/10.1109/CVPR.

2019.00453

[32] Sunny King and Scott Nadal. 2012. Ppcoin: Peer-to-peer crypto-currency with

proof-of-stake. self-published paper, August 19, 1 (2012).
[33] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Clas-

sification with Deep Convolutional Neural Networks. In Advances in Neural
Information Processing Systems 25: NeurIPS 2012, Peter L. Bartlett, Fernando C. N.

Pereira, Christopher J. C. Burges, Léon Bottou, and Kilian Q. Weinberger (Eds.).

1106–1114.

[34] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. 1982. The Byzantine

Generals Problem. ACM Trans. Program. Lang. Syst. 4, 3 (1982), 382–401. https:

//doi.org/10.1145/357172.357176

[35] Yann LeCun. 1985. Une procedure d’apprentissage pour reseau a seuil

asymetrique. Proceedings of Cognitiva 85 (1985), 599–604.

[36] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature
521, 7553 (2015), 436–444.

[37] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. 2018.

Visualizing the Loss Landscape of Neural Nets. In Advances in Neural Infor-
mation Processing Systems 31: NeurIPS 2018, Samy Bengio, Hanna M. Wal-

lach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman

Garnett (Eds.). 6391–6401. https://proceedings.neurips.cc/paper/2018/hash/

a41b3bb3e6b050b6c9067c67f663b915-Abstract.html

[38] Yuan Liu, Yixiao Lan, Boyang Li, ChunyanMiao, and Zhihong Tian. 2021. Proof of

Learning (PoLe): Empowering neural network training with consensus building

on blockchains. Comput. Networks 201 (2021), 108594. https://doi.org/10.1016/j.

comnet.2021.108594

[39] Luke Metz, C. Daniel Freeman, Samuel S. Schoenholz, and Tal Kachman. 2021.

Gradients are Not All You Need. CoRR abs/2111.05803 (2021). arXiv:2111.05803

https://arxiv.org/abs/2111.05803

[40] Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.

2013. Distributed Representations of Words and Phrases and their Composition-

ality. In NeurIPS 2013, Christopher J. C. Burges, Léon Bottou, Zoubin Ghahramani,

and Kilian Q. Weinberger (Eds.). 3111–3119.

[41] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. (2008),

9.

[42] Jianyu Niu, Chen Feng, Hoang Dau, Yu-Chih Huang, and Jingge Zhu. 2019.

Analysis of Nakamoto Consensus, Revisited. IACR Cryptol. ePrint Arch. (2019),
1225. https://eprint.iacr.org/2019/1225

[43] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela

Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schul-

man, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell,

Peter Welinder, Paul F. Christiano, Jan Leike, and Ryan Lowe. 2022. Training lan-

guage models to follow instructions with human feedback. CoRR abs/2203.02155

(2022). https://doi.org/10.48550/arXiv.2203.02155 arXiv:2203.02155

[44] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. 2019. Regularized

Evolution for Image Classifier Architecture Search. In The Thirty-Third AAAI
Conference on Artificial Intelligence, AAAI 2019. AAAI Press, 4780–4789. https:

//doi.org/10.1609/aaai.v33i01.33014780

[45] Ling Ren. 2019. Analysis of Nakamoto Consensus. IACR Cryptol. ePrint Arch.
(2019), 943. https://eprint.iacr.org/2019/943

[46] Tim Salimans, Jonathan Ho, Xi Chen, and Ilya Sutskever. 2017. Evolution Strate-

gies as a Scalable Alternative to Reinforcement Learning. CoRR abs/1703.03864

(2017). arXiv:1703.03864 http://arxiv.org/abs/1703.03864

[47] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan,

Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis,

Thore Graepel, et al. 2020. Mastering atari, go, chess and shogi by planning with

a learned model. Nature 588, 7839 (2020), 604–609.
[48] Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015. FaceNet: A unified

embedding for face recognition and clustering. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015. IEEE
Computer Society, 815–823. https://doi.org/10.1109/CVPR.2015.7298682

[49] Naoki Shibata. 2019. Proof-of-Search: Combining Blockchain Consensus Forma-

tion With Solving Optimization Problems. IEEE Access 7 (2019), 172994–173006.
https://doi.org/10.1109/ACCESS.2019.2956698

[50] Ali Shoker. 2018. Brief Announcement: Sustainable Blockchains through Proof of

eXercise. In Proceedings of the 2018 ACM Symposium on Principles of Distributed
Computing, PODC 2018, Egham, United Kingdom, July 23-27, 2018, Calvin Newport
and Idit Keidar (Eds.). ACM, 269–271. https://dl.acm.org/citation.cfm?id=3212781

[51] Kurt Shuster, Mojtaba Komeili, Leonard Adolphs, Stephen Roller, Arthur Szlam,

and Jason Weston. 2022. Language Models that Seek for Knowledge: Modular

Search & Generation for Dialogue and Prompt Completion. CoRR abs/2203.13224

(2022). https://doi.org/10.48550/arXiv.2203.13224 arXiv:2203.13224

[52] Kurt Shuster, Jing Xu, Mojtaba Komeili, Da Ju, Eric Michael Smith, Stephen

Roller, Megan Ung, Moya Chen, Kushal Arora, Joshua Lane, Morteza Behrooz,

WilliamNgan, Spencer Poff, NamanGoyal, Arthur Szlam, Y-Lan Boureau,Melanie

Kambadur, and Jason Weston. 2022. BlenderBot 3: a deployed conversational

agent that continually learns to responsibly engage. CoRR abs/2208.03188 (2022).

https://doi.org/10.48550/arXiv.2208.03188 arXiv:2208.03188

[53] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja

Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,

Yutian Chen, Timothy P. Lillicrap, Fan Hui, Laurent Sifre, George van den

Driessche, Thore Graepel, and Demis Hassabis. 2017. Mastering the game

of Go without human knowledge. Nat. 550, 7676 (2017), 354–359. https:

//doi.org/10.1038/nature24270

[54] Kenneth O. Stanley, Jeff Clune, Joel Lehman, and Risto Miikkulainen. 2019. De-

signing neural networks through neuroevolution. Nat. Mach. Intell. 1, 1 (2019),
24–35.

[55] Christian Stoll, Lena Klaaßen, and Ulrich Gallersdörfer. 2019. The carbon footprint

of bitcoin. Joule 3, 7 (2019), 1647–1661.
[56] Felipe Petroski Such, VashishtMadhavan, Edoardo Conti, Joel Lehman, Kenneth O.

Stanley, and Jeff Clune. 2017. Deep Neuroevolution: Genetic Algorithms Are a

Competitive Alternative for Training Deep Neural Networks for Reinforcement

http://portal.acm.org/citation.cfm?id=1859906
https://arxiv.org/abs/2202.07785
https://arxiv.org/abs/2202.07785
https://doi.org/10.48550/arXiv.2209.14375
https://arxiv.org/abs/2209.14375
http://www.deeplearningbook.org
https://doi.org/10.1007/978-3-662-43505-2_44
https://doi.org/10.1007/978-3-662-43505-2_44
https://doi.org/10.1007/978-3-662-43505-2_44
https://doi.org/10.1016/j.ipm.2021.102749
https://doi.org/10.48550/arXiv.2203.15556
https://arxiv.org/abs/2203.15556
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1162/tacl_a_00065
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://doi.org/10.1109/CVPR.2019.00453
https://doi.org/10.1109/CVPR.2019.00453
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://proceedings.neurips.cc/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html
https://doi.org/10.1016/j.comnet.2021.108594
https://doi.org/10.1016/j.comnet.2021.108594
https://arxiv.org/abs/2111.05803
https://arxiv.org/abs/2111.05803
https://eprint.iacr.org/2019/1225
https://doi.org/10.48550/arXiv.2203.02155
https://arxiv.org/abs/2203.02155
https://doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.1609/aaai.v33i01.33014780
https://eprint.iacr.org/2019/943
https://arxiv.org/abs/1703.03864
http://arxiv.org/abs/1703.03864
https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/10.1109/ACCESS.2019.2956698
https://dl.acm.org/citation.cfm?id=3212781
https://doi.org/10.48550/arXiv.2203.13224
https://arxiv.org/abs/2203.13224
https://doi.org/10.48550/arXiv.2208.03188
https://arxiv.org/abs/2208.03188
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270

GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Kucharavy, et al.

Learning. CoRR abs/1712.06567 (2017). arXiv:1712.06567 http://arxiv.org/abs/

1712.06567

[57] Richard S. Sutton. 1991. Dyna, an Integrated Architecture for Learning, Planning,

and Reacting. SIGART Bull. 2, 4 (1991), 160–163. https://doi.org/10.1145/122344.

122377

[58] Willa Ariela Syafruddin, Sajjad Dadkhah, and Mario Köppen. 2019. Blockchain

Scheme Based on Evolutionary Proof of Work. In IEEE Congress on Evolutionary
Computation, CEC 2019, Wellington, New Zealand, June 10-13, 2019. IEEE, 771–776.
https://doi.org/10.1109/CEC.2019.8790128

[59] Vladimir Naumovich Vapnik. 1995. The Nature of Statistical Learning Theory.
Springer. https://doi.org/10.1007/978-1-4757-2440-0

[60] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All

you Need. In Advances in Neural Information Processing Systems 30: NeurIPS
2017, Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob

Fergus, S. V. N. Vishwanathan, and Roman Garnett (Eds.). 5998–6008.

[61] Oriol Vinyals, Igor Babuschkin,WojciechM. Czarnecki, MichaëlMathieu, Andrew

Dudzik, Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko

Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang,

Laurent Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg, Alexander Sasha

Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David Budden, Yury

Sulsky, James Molloy, Tom Le Paine, Çaglar Gülçehre, Ziyu Wang, Tobias Pfaff,

Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney,

Oliver Smith, Tom Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu, Demis

Hassabis, Chris Apps, and David Silver. 2019. Grandmaster level in StarCraft

II using multi-agent reinforcement learning. Nat. 575, 7782 (2019), 350–354.

https://doi.org/10.1038/s41586-019-1724-z

[62] P. J. Werbos. 1974. Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences. Ph. D. Dissertation. Harvard University.

[63] Daan Wierstra, Tom Schaul, Jan Peters, and Jürgen Schmidhuber. 2008. Nat-

ural Evolution Strategies. In Proceedings of the IEEE Congress on Evolutionary
Computation, CEC 2008, June 1-6, 2008, Hong Kong, China. IEEE, 3381–3387.
https://doi.org/10.1109/CEC.2008.4631255

[64] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C. Courville, Ruslan

Salakhutdinov, Richard S. Zemel, and Yoshua Bengio. 2015. Show, Attend and Tell:

Neural Image Caption Generation with Visual Attention. In Proceedings of the
32nd International Conference on Machine Learning, ICML 2015 (JMLR Workshop
and Conference Proceedings, Vol. 37), Francis R. Bach and David M. Blei (Eds.).

JMLR.org, 2048–2057.

[65] Zhixiong Yang and Waheed U. Bajwa. 2019. BRIDGE: Byzantine-resilient De-

centralized Gradient Descent. CoRR abs/1908.08098 (2019). arXiv:1908.08098

http://arxiv.org/abs/1908.08098

[66] Zhixiong Yang and Waheed U. Bajwa. 2019. ByRDiE: Byzantine-Resilient Dis-

tributed Coordinate Descent for Decentralized Learning. IEEE Trans. Signal Inf.
Process. over Networks 5, 4 (2019), 611–627. https://doi.org/10.1109/TSIPN.2019.

2928176

[67] Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and K. Takeda. 2020. A

Survey of Autonomous Driving: Common Practices and Emerging Technologies.

IEEE Access 8 (2020), 58443–58469.
[68] Fan Zhang, Ittay Eyal, Robert Escriva, Ari Juels, and Robbert van Renesse.

2017. REM: Resource-Efficient Mining for Blockchains. In 26th USENIX Secu-
rity Symposium, USENIX Security 2017, Vancouver, BC, Canada, August 16-18,
2017, Engin Kirda and Thomas Ristenpart (Eds.). USENIX Association, 1427–

1444. https://www.usenix.org/conference/usenixsecurity17/technical-sessions/

presentation/zhang

https://arxiv.org/abs/1712.06567
http://arxiv.org/abs/1712.06567
http://arxiv.org/abs/1712.06567
https://doi.org/10.1145/122344.122377
https://doi.org/10.1145/122344.122377
https://doi.org/10.1109/CEC.2019.8790128
https://doi.org/10.1007/978-1-4757-2440-0
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1109/CEC.2008.4631255
https://arxiv.org/abs/1908.08098
http://arxiv.org/abs/1908.08098
https://doi.org/10.1109/TSIPN.2019.2928176
https://doi.org/10.1109/TSIPN.2019.2928176
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/zhang
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/zhang

	Abstract
	1 Introduction
	1.1 Gradient-Free Learning
	1.2 Evolutionary Search
	1.3 Byzantine-Resilience in Machine Learning
	1.4 Our Contribution

	2 Preliminaries
	2.1 Learning Setting
	2.2 Model-Consensus and -Optimality
	2.3 (1,)-ES Algorithm
	2.4 Adapting (1,)-ES for Distributed Setting

	3 Permissioned Distributed Evolutionary Search
	4 Permissionless Distributed Evolutionary Search
	4.1 Proof-of-Work Mechanism for Probabilistic Consensus
	4.2 Permissionless Distributed Evolutionary Search as Proof-of-Work

	5 Discussion and Related Work
	5.1 Byzantine-Resilient Distributed Machine Learning
	5.2 Useful proof of work

	6 Conclusion
	Acknowledgments
	References

