Byzantine-Resilient Learning Beyond Gradients: Distributing
Evolutionary Search (Full Report)

Andrei Kucharavy”
andrei.kucharavy@hevs.ch
IC School, EPFL
Lausanne, Switzerland

Rachid Guerraoui
rachid.guerraoui@epfl.ch
IC School, EPFL
Lausanne, Switzerland

ABSTRACT

Modern machine learning (ML) models are capable of impressive
performances. However, their prowess is not due only to the im-
provements in their architecture and training algorithms but also
to a drastic increase in computational power used to train them.

Such a drastic increase led to a growing interest in distributed
ML, which in turn made worker failures and adversarial attacks an
increasingly pressing concern. While distributed byzantine resilient
algorithms have been proposed in a differentiable setting, none exist
in a gradient-free setting.

The goal of this work is to address this shortcoming. For that, we
introduce a more general definition of byzantine-resilience in ML
- the model-consensus, that extends the definition of the classical
distributed consensus. We then leverage this definition to show that
a general class of gradient-free ML algorithms - (1, A)-Evolutionary
Search - can be combined with classical distributed consensus al-
gorithms to generate gradient-free byzantine-resilient distributed
learning algorithms. We provide proofs and pseudo-code for two
specific cases - the Total Order Broadcast and proof-of-work leader
election.

To our knowledge, this is the first time a byzantine resilience in
gradient-free ML was defined, and algorithms to achieve it - were
proposed.

CCS CONCEPTS

« Computing methodologies — Genetic programming; Ma-
chine learning algorithms; Machine learning; » Theory of compu-
tation — Distributed algorithms.

KEYWORDS

Evolutionary Search, Gradient-free optimization, Distributed ma-
chine learning, Byzantine Fault Tolerance

*Corresponding author; Now at HES-SO Valais-Wallis, Sierre, Switzerland

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’23 Companion, July 15-19, 2023, Lisbon, Portugal

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0120-7/23/07.

https://doi.org/10.1145/3583133.3590719

Matteo Monti
matteo.monti@epfl.ch
IC School, EPFL
Lausanne, Switzerland

Ljiljana Dolamic
Jjiljana.dolamic@ar.admin.ch
Cyber-Defence Campus, armasuisse
Thun, Switzerland

ACM Reference Format:

Andrei Kucharavy, Matteo Monti, Rachid Guerraoui, and Ljiljana Dolamic.
2023. Byzantine-Resilient Learning Beyond Gradients: Distributing Evo-
lutionary Search (Full Report). In Genetic and Evolutionary Computation
Conference Companion (GECCO ’23 Companion), July 15-19, 2023, Lisbon, Por-
tugal. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3583133.
3590719

1 INTRODUCTION

Over the last decade, the machine learning field underwent trans-
formative growth, achieving and surpassing human capabilities in
a variety of domains, ranging from image classification and facial
recognition to image generation to strategy games [31, 33, 47, 48].
Beyond impressive performance in the academic setting, Machine
Learning (ML) and Artificial Intelligence (AI) progressively became
central to numerous tasks, ranging from translation to autonomous
driving [29, 67]. Perhaps the most impressive recent development
is the arrival of conversational agents driven by Large Neural Lan-
guage Models (LLMs) [20, 43, 52].

However, the emergence of ML and Al as powerful and widely
accessible tools is not only due to the discovery of better model
architectures and algorithms to train them but also due to the in-
creasing computational capabilities and data volumes available to
train them. Empirical demonstrations of the performance of sto-
chastic gradient descent (SGD) applied to artificial neural networks
(ANNs) were already available by mid-1980s [35, 62], and theo-
retically explained by early 1990s [28]. However, it wasn’t until
sufficient computational power became affordable and sufficiently
large training datasets were accumulated that the machine learn-
ing revolution truly started [36]. This joint scaling of models and
dataset sizes and resources invested in training them still drives
ML progress today, notably for LLMs [19, 27, 30].

1.1 Gradient-Free Learning

The ongoing machine learning revolution has not affected all the
domains equally, given that best-performing algorithms rely on
ANNSs and gradient descent. Image processing was one of the first
domains that saw early breakthroughs [33], more recently followed
by natural language processing as means to make text interpretation
and generation continuous through word embedding and positional
encoding were perfected [40, 60]. However, a number of problems


https://doi.org/10.1145/3583133.3590719
https://doi.org/10.1145/3583133.3590719
https://doi.org/10.1145/3583133.3590719

GECCO ’23 Companion, July 15-19, 2023, Lisbon, Portugal

have so far evaded conversion to a continuous formulation, notably
in the control theory domain.

A set of approaches have been developed for such problems, gen-
erally referred to as black-box, zero-order, or gradient-free optimiza-
tion methods. Representing a diversity of underlying approaches
- from Evolutionary Strategies and Genetic Algorithms to Swarm
Particle Optimization, Simulated Annealing to sample-derived local
gradients - they have nonetheless faded from the general ML com-
munity attention in recent years. Two exceptions are Reinforcement
Learning (RL) [57] and empirical gradients. RL was made famous
through its super-human performance in strategy games [47, 53, 61],
it became the default approach to gradient-free problems, whereas
empirical gradients approximate local gradients through empirical
sampling.

However, neither of the approaches scales to large, overparame-
terized models, known to be needed to train models solving complex
problems [37]. Empirical gradient estimation struggles in high di-
mensions and around saddle points, and is hard to parallelize due to
the need for a synchronized round of gradient evaluations pooling,
which is expensive computation and communication-wise for larger
models. Similar problems exist as well in reinforcement learning.
Notable failure modes are the cases where the observations ("re-
wards") are sparse ("long time horizons") and noisy. In such settings,
the policy reward estimator’s variance will increase to the point
where the learning process becomes unstable. Such instability is not
limited to pathological settings - even in cases it performs well, RL
requires a hyperparameter space search to find a working training
regime even for problems where it performs well [10, 46]. Such
instability is not a fluke either. There are theoretical reasons why
approaches that reduce learning in a non-differentiable setting to a
differentiable one would underperform compared to gradient-free
black-box optimization approaches [39, 46].

This is particularly relevant now, given that the latest devel-
opment in the LLM field is conversation agents, which rely on
optimization based on discrete feedback to align their behavior on
user expectations and non-differentiable layers of hard attention to
solve the issues with rule-following that plague them [20, 43, 51].

1.2 Evolutionary Search

Limitations of RL and empirical gradients approaches led to an in-
creased interest in gradient-free black-box optimization algorithms,
notably Evolutionary Algorithms (EAs). Introduced shortly after the
SGD itself, [17], EAs are expected to scale well with more computa-
tional power, just like the SGD itself. This was confirmed experimen-
tally, including on ranges of control tasks where they outperformed
RL approaches, all while allowing better scaling [10, 46, 54, 56].
These empirical results led to a renewed interest in EAs in ML
and the discovery of cases where they outperformed RL and other
black-boxes approaches, such as model architecture design [44].
Despite its simplicity, the first evolutionary algorithm proposed
by [17] in 1966 is still able to match and out-perform RL approaches
on complex problems [44, 54, 56]. Akin to SGD, it is an iterative
optimization algorithm. However, instead of calculating the local
gradient, it samples the neighborhood of the current model param-
eters to find a better solution and retains the single best one among

Kucharavy, et al.

all sampled ones. It is formally known as (1, A)-Evolutionary Search
((1, 1)-ES) or Evolutionary Strategies.

In addition to their reasonable performance, (1, 1)-ES class algo-
rithms have an additional advantage - scalability. As a population
algorithm, every parameter sample can be evaluated independently,
and an optimal parameter update - shared among all workers once
a desired population of candidate updates has been sampled. Here
we focus on the simplest implementation of the (1,1)-ES class,
which we will refer to as (1, A)-ES for simplicity. A modification of
that algorithm by [46] reduces the message size to about a dozen
bytes regardless of the model size, by leveraging the fact that ran-
dom parameter perturbations can be deterministically derived by a
pseudo-random number generator from a random seed, meaning
that sharing only the random seed is sufficient. Unlike gradient-
based learning, (1, 1)-ES allows any worker to verify the validity of
an update proposed by another vector with a single forward pass,
which is the property we leverage to combine classical distributed
consensus algorithms with (1, 1)-ES to create byzantine-resilient
distributed versions of (1, A)-ES.

Finally, since at no point (1, 1)-ES requires a back-propagation,
it allows for non-differentiable layers, such as hard attention or
deterministic rules, to be included in the model architecture [64].
This makes it interesting even in the setting allowing for gradient-
based learning because, unlike differentiable layers, deterministic
rules can provide deterministic guarantees on Al model decisions,
which is critical in high-stakes applications. In particular, for LLMs,
it has the potential of solving the long-term instruction retaining
problem, currently limiting their application [20, 51].

1.3 Byzantine-Resilience in Machine Learning

The increasing size of ML models has also made them impossible to
train or even run on single machines, making model parallelization
and distribution an increasingly pressing issue [4]. With the in-
crease of the computing nodes involved in the training, the chances
for an arbitrary complex error to occur increase, making fault tol-
erance a prime concern. In the field of distributed computing, the
tolerance to such faults is known as "Byzantine Tolerance", with
the name derived from the seminal paper that introduced that type
of faults [34].

The field of machine learning allowing for such "Byzantine" fault
tolerance led to the emergence of the field of byzantine-resilient
machine learning [7, 8]. Unfortunately, the definition introduced in
the process is specific to differentiable manifolds and focuses on the
setting where every node trains the same model, only has partial
access to the data, and shares non-verifiable gradients calculated on
that data. By introducing novel gradient aggregation rules (GARs)
for the parameter server, they were able to prove that a byzantine
fault impact could be limited to at most a deviation of angle & on
the final parameter update for the fraction f of Byzantine workers
((a, f)-Byzantine Resilience).

!Given multiple conflicting names for different EA algorithms, we have here adopted
the taxonomy from [24]. Notable cases are the use of the "Genetic Algorithm" name to
designate (1, 1)-ES in prior literature, that we reserve to algorithms including "chro-
mosomes” or "recombination” as per the original article [21], or use of Evolutionary
Search for Natural Evolutionary Search (NES), that is closer to empirical gradient
approach than ES proper [63].



Byzantine-Resilient Learning Beyond Gradients: Distributing Evolutionary Search (Full Report)

The reason authors had to introduce a new definition of byzantine-
resilience rather than to re-use existing ones, is that the latter are
poorly suited to the distributed learning setting. If approached from
the Do-All problem perspective [15], parameter update vectors can-
not be verified without repeating the whole computation, meaning
that byzantine-resilience would require several workers to perform
redundant update calculation. In the setting where training a sin-
gle model can cost millions in electricity costs alone (c.f, e.g., [1]),
direct redundancy is an unrealistic assumption.

In the distributed gradient-based learning, the (a, f)-Byzantine
Resilience hence remained the predominant paradigm and has been
further expanded to provide guarantees for models trained in a
more general distributed setting than federated learning [13, 14, 23,
65, 66].

1.4 Our Contribution

Our main contribution is showing that Evolutionary Search is can
be adapted to work as a byzantine-resilient distributed optimization
algorithm in a non-differentiable setting.

Specifically, we show that by introducing a new definition of
distributed consensus in the ML setting, we can leverage the existing
literature on byzantine-resilient distributed computing. In turn,
by using the established primitives of the total order broadcast
and proof-of-work probabilistic consensus primitives [9, 45] we
propose two algorithms for distributed evolutionary search - in
permissioned (closed) and permissionless (open) settings and prove
the bounds on the computational overhead imposed by distributing
the Evolutionary Search.

Interestingly, our new definition of distributed consensus - the
Model-Consensus generalizes the («, f)-Byzantine Resilience in-
troduced by [7, 8] and directly interfaces with the more general
definition of computational consensus.

2 PRELIMINARIES
2.1 Learning Setting

Our problem consists in learning a general function f € F, mapping
inputs x € X to outputs y € Y, determined by parameters 6, noted
£(., 8)2. A scalar performance metric £ is associated to the function
and can be computed for each input/output pair in the training and
validation sets L(f(x, 6),y). We denote Lg, an aggregate perfor-
mance metric on all input-output pairs. Without loss of generality,
L can correspond conversely to loss, accuracy, total reward, fitness,
or another metric of the model performance. The goal of learning
is to find parameters that optimize that value. This process can
be referred to as parameter optimization, parameter space search,
or training. For the sake of simplicity, we adopt the convention
that £ is a loss that we seek to minimize, although, in the context
of evolution, —£ will be occasionally referred to as fitness due to
historical reasons. { Lg} will be referred to as loss landscape (con-
versely fitness landscape). Finally, vLg will refer to the loss vector
obtained by concatenating the losses for all the input/output pairs
(x,y) € X XY in the training set for model parameters 8. While
we assume a non-differentiable setting, we still assume a smooth

Lo.— Lo
loss landscape, ie 3k € R such that V(6;, 8;), H < k.
i~

2For machine learning, we follow the common notation introduced in [22].

GECCO 23 Companion, July 15-19, 2023, Lisbon, Portugal

Given that we are interested in distributing the training phase,
L without further additional notation designates the aggregated
performance metric on the training dataset. We assume as well that
every worker has access to all of the training data and that L is
computed in a deterministic manner by each worker, given 6. This
setting is different from the one used in distributing the gradient
computation, given that the difficulty for the (1, A)-ES algorithm is
to find a valid update.

2.2 Model-Consensus and e-Optimality

In the machine learning context, the consensus problem is for a
set of processes p € II to decide on a common value of model
parameters 0 based on model values correct processes can evaluate
individually 6. A correct process can decide on a value at most
once every training session.

For the sake of readability, given the process-worker equivalence,
we will be referring to processes p as workers and the ensemble of
workers trying to solve the machine learning consensus problem
for a given task IT - as worker pool.

A machine learning consensus protocol must satisfy the follow-
ing conditions:

o Liveness: Each correct worker must eventually decide on a
value of @

o Consistency: No two correct workers can decide on a different
0.

e Validity (Extended): For all correct workers, only a 6 pro-
posed by a correct process can be decided upon.

Given that ML model training is distributed to improve parameter
space search, we expect the workers to propose different values
0, so the extended validity is essential. Moreover, we expect some
parameters to correspond to a better loss value, and we want our
workers to decide on a value of parameters that leads to the lowest
loss possible. This leads us to introduce a new constraint on the
model-consensus:

o c-optimality: If 0 satisfies Ly < minpen(.[:gp) + €, where
€ > 0, the consensus is e-optimal.

A special case of e-optimality is the case where € = 0, in which
case we will refer to the consensus simply as optimal. The two
algorithms we propose here are optimal for each update with high
probability, whereas («, f)-Byzantine Resilience [7, 8] is e-optimal
with € = sin(a) - Ir - kjjpshisz, where Ir is the effective learning rate
and kjjpspiz - the Lipschitz constant of the loss landscape.

2.3 (1, 4)-ES Algorithm

Similar to SGD, algorithms of the (1, 1)-ES class search for optimal
model parameters 6 through a series of steps performing an em-
pirical descent of the loss landscape [25]. At each step i, the value
of the parameters 6; is perturbed by a vector g3 sampled from a
normal distribution N (0, I) and scaled to a learning rate . A num-
ber (k € [1,.., N]) of B values are tested. The one that improves
the model the most (kypgare = argming L(6; + o)) is retained
and becomes the base for the next search (6;4+1 := 0; + of.
We refer to o

update )

update 35 A1 update vector, o B as candidate update

30ther works tend to use € to denote it, whereas we use a Greek letter close to the
neighborhood notation in topology to avoid confusion with € of e-optimality



GECCO ’23 Companion, July 15-19, 2023, Lisbon, Portugal

vectors and 0; + oy as candidate parameters. No update will occur
if no tested vectors have improved loss, so only vectors such as
L(0; + oPr) < L(6;) +v, where v > 0 is a parameter controlling
for a trade-off between random noise due to sampling and gradient
descent - a minimal improvement to be achieved before an update
is triggered. We will refer to o for which this property is true - a
valid update vector.

2.4 Adapting (1, 1)-ES for Distributed Setting

As we mentioned in the introduction, an important improvement
to the (1, A)-ES is for nodes to share only the random seeds used
to derive candidate update vector deterministically with a pseudo-
random numbers generator, allowing update sharing with short
messages (given that randoms seeds are <16 bytes for most ML
libraries), and once bundled with the loss parameter, allows any
correct node to verify the proposed candidate update vector. In all
that follows, we will assume that mode of derivation and refer to
such a random seed as a candidate update vector seed, noted as Gﬁk'
Formalizing the section above, we assume as well that we have an
access to a random generator that is capable of turning a random
seed into a non-scaled update vector (RG : Sg, — fi).

To facilitate the proofs for the permissionless setting, we intro-
duce an additional modification of the (1, A)-ES algorithm that is
run by the workers p. Specifically, to ensure strategy-proofness
and more closely match existing proof-of-work, we add a combined
hashing of the loss and update vector seed, assumed to be a positive
integer below a certain maximal value B4« (eg. the largest integer
that can be encoded with the number of bits in a hash). We refer to
the hash of (Sg,, Lg, ) as 0-block score By, . In the proof-of-work
consensus, it is used as a scheduler for leader election, which is
triggered when By < Brarger, where Byarger is the value set to
control the frequency of leader election given the size of the worker
pool and the frequency of evaluation.

The pseudo-code for the complete evolutionary search algorithm
is presented in the listing 1.

3 PERMISSIONED DISTRIBUTED
EVOLUTIONARY SEARCH

The intuition behind the permissioned setting is to leverage the
verifiability of proposed update vectors in (1, A)-ES to re-use existing
results in classical distributed algorithms. Specifically, given the
iterative nature of (1, 1)-ES, we need the total order broadcast to be
able to order the iterative steps between all correct workers.

THEOREM 3.1. The algorithm in listing 2 implements a machine
learning consensus protocol that is Byzantine-resilient under the same
assumptions as the Total Order Broadcast algorithm used and is opti-

mal with probability bound from above by 5t Al

eval,average

the time needed to perform a Total Order Broadcast, N - the expected
number of tries to find a valid update seed and Toy41 average is the
average time needed by a worker to evaluate a candidate update seed.

, where A is

Proor. The Total Order Broadcast ensures that the valid update
seeds G, are delivered to all correct workers in the same order
after the workers were initialized to the same starting parameters
value 6p. Assuming that a valid update seed exists Vi € [0..Z — 1],
it will be eventually found and broadcasted by a correct worker.

Kucharavy, et al.

Abstraction:
EvolutionarySearcher , Instance es
Interface:
- Request <es.Start | 0;>: starts search
- Request <es.Stop >: ends search
- Indication <es.BestHash | 6;, Gﬁk’ L9i+gﬁk>:
a new seed with a valid hash was found
- Indication <es.BestLoss| 0;, Sg , Lojtop >:
a new valid update vector seed was found
- Procedure es.follow (6;, Gﬁk) -> 0; + 0Pk
derive candidate parameters for a seed
- Procedure es.evaluate (6;, Gﬁk) ->
(Bo+opy » Lojrop, ) evaluates the
hash and loss of a candidate seed

Algorithm :
Implements :
EvolutionarySearcher , instance es;
Parameters:
L: loss function;
o: search radius;
v: minimal loss score improvement;
Brarger: target hash threshold;
procedure reset ():
target = 0;
best_hash = {seed: 0, score: +o0};
best_loss = {seed: 0, score: +oo};
upon <es.Start | 6;>:
reset ();
target = 6;
upon <es.Stop >:
reset ();
procedure es.follow (0;, Gﬁk):
If Gp == 0:
return 6;;
Else:
Bk = RG(Gg, )3
return 0; +ofi;
procedure es.evaluate (6;, Gﬁk):
Loj+opy » vLojrop, = eval(fo+op, )s
Bo;+opy. = hash(Lojsop, . 0Lojropy )3
return (Boopy > Loj+opy )
upon target != null:
seed = rand ();
Bo;+opy » Lojrop, = es
If SBBi-Hyﬁk < %taryetf
best_hash = {seed: Gﬁk’ score: 5Bgi+gﬁk};

.evaluate (0;, Gﬁk );

trigger <es.BestHash | 0;, G’ﬂk’ 539i+g/;k;
If L(6;+0fk) < L(6;)+v:

best_loss = {seed: Gﬁk’ score: L‘gi“’ﬂk};

trigger <es.BestLoss | 0i, g, Lorop >

Listing 1: Single Worker Evolutionary Search

Liveness: Each correct worker will eventually decide on the
final 67 = 0y + ZiZ:?)l 0B first» Where of; girg; is the update vector
derived from the first valid update seed for point 6;.

Consistency: Thanks to the Total Order Broadcast, Vi € [0..Z —
1] B, first are the same values for all workers, and hence for each cor-
rect worker, the final parameters of the model 8, = 90+Zi2=51 oBi first
are identical.

Extended Validity: By construction, the first correct worker to
have its proposed seed successfully broadcast will have its update



Byzantine-Resilient Learning Beyond Gradients: Distributing Evolutionary Search (Full Report)

Abstraction:
PermissionedEvolutionarySearch , instance ps

Uses:
- EvolutionarySearcher , instance es,
parameters (£, o, v, _)

- TotalOrderBroadcast, instance tob

Interface :
- Indication <ps.Output | point>:
parameters found by the evolutionary search

Algorithm :
Implements:
PermissionedEvolutionarySearch , instance ps
Parameters:
L: loss function;
o: search radius;
v: loss threshold for update;
6p: starting point of the search;
Z: number of search steps;
upon <ps.Init >:
target = 6p;
steps = 0;
trigger <es.Start | target >;
upon <es.BestLoss | 6;, Gﬂk’ L9i+gﬁk>:
If 0, == target And L(0;+0fk) < L(6;)+v:
trigger <tob.Broadcast |
["ValidLoss", 6;, Gﬂk]>;
upon <tob.Deliver |
source_es ["ValidLoss", 0;, Gﬁk]>:
If 0; == target:
(s Lojrop,) =
es.evaluate (6;, Gﬁk))
verify that the seed is wvalid indeed
If Lojiop, < Lo +v:
target = es.follow (6;, G/gk);
is actually 01 =0;+ 0Pk
steps = steps + 1;
If steps < Z:
trigger <es.Start | target >;
Else:
trigger <es.Stop >;
trigger <ps.Output | target >;
Else:
trigger <tob.Ban | source_es >;
optional penalty for misbehaving

Listing 2: Permissioned Distributed Search

vector of; firs; accepted. A seed that has not been successfully
broadcasted cannot be accepted.

Probabilistic Optimality: By construction, at every step, upon
the reception of a valid update seed G, First through Total Order
Broadcast, a correct worker will switch to searching for a valid
update vector for the new parameters 0;+1 = 0;+0p; firs;- The only
way a better update at a given step becomes available without being
broadcast first is if one becomes available during the total broadcast.
The probability of that happening is proportional to the number of
seed evaluations occurring before the broadcast completes times
the probability of finding a seed above the threshold and better
than the seed in the broadcast. The former is bound by the number

of evaluations a worker pool can perform during the broadcast
[TI]A

(Teval p— ), whereas the second is bound by the chance of finding

GECCO 23 Companion, July 15-19, 2023, Lisbon, Portugal

a valid seed, which, in case if the seed in broadcast is equal exactly
to the validity threshold is ﬁ

O
4 PERMISSIONLESS DISTRIBUTED
EVOLUTIONARY SEARCH
4.1 Proof-of-Work Mechanism for Probabilistic
Consensus

The probabilistic consensus algorithm through proof-of-work (PoW)
was initially proposed in the Bitcoin blockchain whitepaper [41],
as a mechanism to achieve a probabilistic consensus through a
leader election process tied to the amount of computational power
actively committed to the election process. The principle of the
election mechanism leverages the cryptographically secure hash
function partial inversion. Based on the information provided by
the prior leader election (often the hash of the prior block head),
information to be broadcast by the next leader (often the root of
the Merkle tree of transactions to be cleared), correct workers try
to guess a random string (nonce) that once added to those two
values would lead to a hash in the desired domain (for simplicity,
0 < B < Brarget < Bmax)- In turn, once a node finds a valid
nonce, its leadership can be validated by other nodes by performing
a single hash with the found nonce. This process is referred to
as "mining" and each new leader election - as a "block minting",
and assuming sufficient time between leader elections to allow the
previous block value to propagate (B;arge is adjusted based on the
number of workers for that reason), ensuring an eventual election
of a correct worker as a leader with high probability, assuming
that the majority of computational power is controlled by correct
workers [42, 45].

Unfortunately, the increasing popularity of PoW-based blockchains
led to a combination of a large number of computationally powerful
workers joining it and consequently to the difficulty threshold being
increased to the point where PoOW became a serious environmental
problem [55]. This led to heavy criticism of PoW consensus and
other protocols - such as proof-of-stake [32] - to be promoted as
less harmful alternatives for permissionless distributed consensus.

An alternative approach consisted in trying to highjack the proof
of work to instead perform some useful work that would absorb
computational resources independently of PoW-based blockchains.
Such algorithms - useful proof-of-work (UPoW) - have unfortunately
been hard to find, given the volume of computational power cur-
rently invested into PoW they would need to absorb and strict
constraints on PoW to be usable: provably hard-to-find easy-to-
verify updates, low communication complexity, and message weight
and easily adjustable puzzle difficulty.

4.2 Permissionless Distributed Evolutionary
Search as Proof-of-Work

However, given the ever-growing demand for computational power
in machine learning, parameter space search problems are suffi-
ciently common to leverage the computational power available to
PoW consensus algorithms. Conversely, the distributed (1, A)-ES
seems to fit the constraints on the UPoWs, given that while hard
to find, valid update vectors are straightforwards to validate and



GECCO ’23 Companion, July 15-19, 2023, Lisbon, Portugal

that communication overhead in-between iterative steps of (1, 1)-
ES only contains (Sg,, Lg,) - candidate update vector seed and
associate loss.

To simplify the proofs and enable a direct mechanism for com-
plexity adjustment, rather than using a valid update itself as a proof
for leader election, we instead use the 0-block score %gk, while
propagating the best found valid update seed and associated loss
(Sp, L, ) with the same mechanisms as Merkel tree

update update

roots. Intuitively, this is a distributed equivalent of (1, 1)-ES with
a set sampling population, except with the size decided by the
expected candidate update samples between leader elections.

Given the variety of available blockchain protocols, we will ab-
stract them away in the same we abstracted the total order broadcast
in the permissioned setting and assume they implement an interface
described in listing 4.

THEOREM 4.1. Algorithm in Listing 3 is a valid proof-of-work and
is a machine learning consensus protocol optimal with probability

bound from above by NTevﬁllfqu‘eraqe + 20D y5 5 if g?a >
(14 8)y after d block added on top of the block minted during the
step Z. A and is the time needed to propagate a block or a value,
respectively*, N - the expected number of tries to find a valid update
seed, and Toyal qverage 1S the average time needed by a worker to
evaluate a candidate update seed, o andy - collective minting rates of
correct and faulty nodes and g = e=*2, the propagation delay penalty

for correct nodes.

Proor. The algorithm in the listing 3 is a valid proof-of-work
because the block minting mechanism is equivalent to a partial
inversion of a cryptographic function with an unavoidable loss
function evaluation overhead.

Since the algorithm in the listing 3 is a valid proof-of-work, the
Nakamoto consensus regarding the block propagated at the step Z
of ps after d blocks were added on top of it will not change with
probability 1 — e2(9°¢"d) for any § > 0 as long as g%a > (1+9)y,
as per [42, 45].

The Nakamoto consensus blockchain blocks are available to all
correct workers and are ordered in a unique way for all correct
workers. By replacing Total Order Broadcast in the proof of by the
blockchain segment read containing blocks corresponding to steps
0 to Z, the proof for 3.1 applies.

m]

The intuitive explanation of proof is that the algorithm in listing
3 will fail to register the best random seed with the best candidate
update loss in only two cases. First, if the blockchain forked and
the bock with the best candidate update random seed ended up on
a dead branch. This case occurs with the probability 1 — eQ(0%g"d),
Second, if the candidate update seed with the best loss is found

within the time § from the block update, accounted for by term
Alm|

NTeual‘average

for the size of the blockchain, there is likely a tighter bound, given

that if many valid update seeds were found as a single block was

. While this is possible if the task supplied is too easy

4Given that the propagation of a value and block involves evaluating a candidate
update, depending on the neighbor propagation topology, Deltapock/oal can be
o(|mj - Teual.average)v O(log(|11]) - Teval,auerage) or O(Tepal,stowest )- For the
sake of generalizability, we keep the same notation as previously

Kucharavy, et al.

Abstraction:
PermissionlessEvolutionarySearch , instance ps

Uses:
- EvolutionarySearcher, instance es,
parameters (£, o, v, Brarger)

- Blockchain, instance bl

Interface:
- Indication <ps.Output | point >:
parameters found by the evolutionary search
- Procedure ps.processNewBlock ([6;, target, steps,
es.best_hash, es.best_loss])

Algorithm :
Implements :
PermissionlessEvolutionarySearch , instance ps
Parameters:
same as in 17(’]'771i.§.§i()71U(i
upon <ps.Init >:
same as in [)k’l'”llSSl(?lI{'([
procedure processNewBlock ([0;, target, steps,
es.best_hash, es.best_loss]):
If steps < Z:
trigger <es.Start | target >;
Else:
trigger <es.Stop >;
trigger <ps.Output | target >;
trigger <bl.loadNext >;
upon <es.BestLoss | 6;, Gﬁk, Lsiﬂ;ﬁk >:
If{0; == target And L(0;+0fk) < L(0;) +v:
trigger <bl.sendValue |
["ValidLoss", 0;, Gg,, L(O;+0fk)]>;
upon <bl.deliverValue |
source_es ["ValidLoss", 6;,
Spr » Ldeclared (0i +ofi) ] >:
If 6; == target
And Ljeciarea(0i +ofr) < es.best_loss[score]:
(_, Lualidated9i+o-ﬁk) =
es.evaluate (6;, Gg));
verify that the sender is not lying
If -Ldeclared(ei"'o'ﬁk) == -Lvalidated(gi"'o'ﬂk):
es.best_loss = {seed: Gﬂk’ score: L9i+gﬁk};
trigger <bl.sendValue |
["ValidLoss", 0;, Gg,, L(O:+0fi)]>;
upon <es.BestHash | 0;, 6ﬁk, Qigiﬂ,ﬁk >:

If 0; == target And %ei*'aﬁk < Brarger
target = es.follow (6;, es.best_loss[seed]);
steps += 1;

trigger block = <bl.mintBlock |
[6;, target, steps,
es.best_hash, es.best_loss]>;
trigger <bl.propagateBlock | block >;
ps.ProcessNewBlock (block );
upon <bl.deliverBlock |
source_es [9i, target , steps,
source_es.best_hash, source_es.best_loss]>:
If O;==target:

(Bojrop > ) =
s.evaluate (6;, source_es.best_hash[seed]);
1If{0; == target And %9i+”ﬁk < Brarger :

target = target;

steps = steps;

trigger <bl.propagateBlock
ps.ProcessNewBlock (block);

block >3

Listing 3: Permissionless Distributed Search



Byzantine-Resilient Learning Beyond Gradients: Distributing Evolutionary Search (Full Report)

Abstraction:

Blockchain, instance bl

Interface:

- Procedure bl.sendValue:
worker proposes to its neighbours a value to be
included in the next block

- Procedure bl.deliverValue:
delivers a value proposed for inclusion into the
next block from a neighbour

- Procedure bl.mintBlock:
allows a worker to mint a new block that would
include the best valid updates received

- Procedure bl.propagageBlock:
allows a worker to suggests a newly found block
to be propagated a neighbours

- Procedure bl.deliverBlock:
delivers a block proposed for propagation from
a neighbour

- Procedure bl.loadNext:
loads the next distributed search task queued
in blockchain

Listing 4: Expected Blockchain interface

mined, the last one is not necessarily the one that will reach the
best loss.

5 DISCUSSION AND RELATED WORK

5.1 Byzantine-Resilient Distributed Machine
Learning

As we mentioned in the introduction, while multiple mechanisms
to distribute machine learning algorithms were proposed, the only
one accounting for Byzantine faults is the (e, f)-Byzantine Resilient
learning proposed by [7, 8]. While initially formulated in the context
of federated learning with a centralized parameter aggregation
server, it has been developed to allow byzantine fault tolerance in
the general distributed setting, under realistic assumptions [13].

Compared to our approach, a downside of the (, f)-Byzantine
Resilience is their dependence on direct gradients and a requirement
for the model to be sufficiently small for the gradient vector sharing
to not become a bottleneck. Modern ML and Al models are often
sufficiently large for data transfer time to not be negligible and need
to be synchronized often enough to avoid parameter drift between
models. For instance, the GPT-3 generative language model has
several hundreds of GBs of parameters, and even when split into
single attention heads requires each parameter synchronization to
transfer several GBs of parameter values.

Conversely, an advantage of (a, f)-Byzantine Resilience is its
ability to train on the data that’s different on each worker node, as-
suming the data is uniform across workers. While this assumption
is not necessarily true in all settings, our distributed (1, 1)-ES does
not natively support the data distribution®. The main problem ad-
dressed by distributing (1, A)-ES is the difficulty to find a single valid
update at each step of the optimization task, particularly in cases

>Given the linear nature of the loss wrt to data, it is possible to design variants of
distributed (1, A)-ES that would require a sufficient number of nodes to confirm that a
candidate update vector achieves an acceptable loss improvement on their data as well.
This would however require additional assumptions and a more restrictive learning
setting and is out of the scope of this paper.

GECCO 23 Companion, July 15-19, 2023, Lisbon, Portugal

where the parameter space is in a very high dimension, leading to
long valid update vector search, even when single candidate update
vector evaluation is itself fast. This setting is specifically the one
in which EAs have been successfully applied in modern machine
learning [10, 54, 56]. Notably, the permissionless UPoW (1, 1)-ES
version only makes sense in that setting, complemented with a
high iteration number to ensure that most of the communication
is carrying only candidate update seeds and associated loss values
and minimize training data transfer.

Finally, while there are other distributed approaches to gradient-
free optimization, notably for Support Vector Machines (SVMs)
[18, 59] and the Genetic Algorithm [5, 21], none to our knowledge
allow for byzantine faults.

5.2 Useful proof of work

Given that the computational and energy costs of PoW consensus
were already well-known by the mid-2010s [55], multiple attempts
were made to leverage the PoW to do useful work. The first proposal
was made in 2017, leveraging a set of problems in computational
geometry for which the search of a solution is O(n?) hard and
verification is O(n) hard [3]. Unfortunately, insufficient demand
and lack of difficulty adjustment mechanism meant that this PoW
was impractical. The same year another set of problems - partitioned
linear algebra on very large non-sparse matrices was proposed by
[50]. Unfortunately, that PoW did not take either, given the rarity of
problems involving such matrices and amounts of data (TBs) that
would need to be transferred in the process. Finally, still the same
year, a highly general framework for turning any computationally
intensive task into PoW challenges has been proposed [68]. Relying
on the trusted hardware - Intel SGX - it initially showed a great
performance but was rapidly rendered obsolete by the rarity of
hardware supporting Intel SGX and then the demise of Intel SGX
in the wake of Spectre vulnerabilities [11, 12].

The next iteration of the search for a useful proof of work started
in 2019, focusing on NP-hard problems, notably the traveling sales-
man problem and machine learning. While some success has been
achieved by using TSP in the context of the container ship sailing
route optimization [26], despite being NP-hard TSP has several
probabilistic heuristics available and no initial estimation of hard-
ness for a specific problem, making it non-strategy-proof and hence
not a suitable PoW for blockchain purposes.

Machine learning PoW has been attempted as well, however, all
the approaches we are aware of tried to use gradient-based machine
learning and ran into the fundamental issue of non-verifiability
of gradient calculation, leading them to waste resources through
replication or to leave their PoW non-strategy-proof and often to
have the model training itself to be vulnerable to adversaries. Ex-
amples of such approaches are Proof of Learning (PoLe) [38], which
is essentially a race to a predefined accuracy, and model hyperpa-
rameter sweep PoW [2]. Neither schema introduces any replication,
leaving ML model vulnerable to attackers, and neither schema is
strategy-proof, given that a worker with more computational re-
sources or a good heuristic could consistently "win" each of those
competitions.

Proof of Search [49] occupies an interesting spot among the
proposed useful PoW in that it doesn’t propose a useful PoW per se



GECCO ’23 Companion, July 15-19, 2023, Lisbon, Portugal

but rather a way to transform suitable useful PoW into a blockchain.
In that, it is complementary to our approach since it provides a
blueprint to implement the blockchain interface described in the
listing 4.

Perhaps most relevant to the evolutionary search aspect of our
algorithm, two evolutionary proofs of useful work have been pro-
posed, both using the genetic algorithm [6, 58]. One focuses on
solving the TSP problem by using a genetic algorithm directly,
whereas the other one tries to create a framework similar to the
Proof of Search but using genetic algorithms specifically and ap-
plied to NP-hard problems such as TSP and Knapsack. Not only are
such approaches vulnerable to the issues mentioned above in the
context of TSP blockchains, but the genetic algorithm also implies
a collaborative phase of parameter mixing during the "chromo-
some" "cross-over"®, which runs against the competitive nature of
the Proof-of-Work and adds a layer of communication complex-
ity. In addition to that, both approaches require messages between
workers to carry whole parameter update vectors, adding a com-
munication bottleneck for larger models.

6 CONCLUSION

In this paper, we present a new definition of distributed machine
learning consensus - the Model-Consensus, that generalizes the
previously proposed (a, f)-Byzantine Resilience and is applicable
both in differentiable and non-differentiable settings.

We then present two distributed versions of the (1, 1)-Evolutionary
Search algorithm, both reaching a model-consensus in a gradient-
free setting. One leveraged the classical distributed algorithms ab-
straction of Total Order Broadcast to achieve a consensus in a per-
missioned setting, whereas the other used the Proof-of-Work leader
election consensus to achieve the same result in a permissionless
setting.

To our knowledge, our model-consensus definition is the first
definition of Byzantine resilient consensus in machine learning
that covers both gradient-free and gradient-based learning while
generalizing the previously proposed («, f)-Byzantine Resilience
and allowing for direct compatibility with the classical distributed
algorithms consensus definition.

To our knowledge, the two algorithms we propose are the first
Byzantine-resilient gradient-free learning algorithms and the first
byzantine-resilient evolutionary algorithms. Likewise, our permis-
sionless distributed evolutionary search algorithm is the first useful
proof-of-work algorithm that minimizes the overhead compared to
traditional proof-of-work.

While proposed algorithms work for any black-box optimization
problems, they are most suited for high-dimensional optimization
problems where the evaluation of a single updated parameter set is
quick, but the sheer number of dimensions makes the search for a
valid update excessively slow for a single worker, with a notable
application being the neuroevolution of large ANNs. We foresee
that such a setting is of particular relevance to multipurpose super
neural networks, such as PathNet [16], as well as for conversational
agents derived from LLMs [20, 51].

©As we mention in the introduction, we use Genetic Algorithm only to designate EAs
that has "chromosome" and "cross-over" phases, consistently with the nomenclature
introduced in [24]

Kucharavy, et al.

Finally, more accessible and reliable byzantine-resilient machine
learning allows a variety of entities to poll together their com-
putational resources to train models they could not have trained
individually, which has the potential of democratizing state-of-the-
art ML research in a non-differentiable setting.

ACKNOWLEDGMENTS

We would like to thank the Cyber-Defence Campus, armasuisse
W+T, VBS for the Distinguished CYD Post-Doctoral Fellowship to
AK (ARAMIS CYD-F-2021004), as well as Fabien Salvi and France
Faille (EFPL) for their technical and administrative support and the
anonymous reviewers for their useful feedback.

REFERENCES

[1] 2020. OpenAl's GPT-3 Language Model: A Technical Overview.
lambdalabs.com/blog/demystifying-gpt-3/
[2] Alejandro Baldominos and Yago Saez. 2019. Coin.Al: A Proof-of-Useful-Work
Scheme for Blockchain-Based Distributed Deep Learning. Entropy 21, 8 (2019),
723. https://doi.org/10.3390/e21080723
Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasudevan. 2017.
Proofs of Useful Work. IACR Cryptol. ePrint Arch. (2017), 203. http://eprint.iacr.
org/2017/203
Paul Barham, Aakanksha Chowdhery, Jeff Dean, Sanjay Ghemawat, Steven Hand,
Daniel Hurt, Michael Isard, Hyeontaek Lim, Ruoming Pang, Sudip Roy, et al. 2022.
Pathways: Asynchronous distributed dataflow for ml. Proceedings of Machine
Learning and Systems 4 (2022), 430-449.
Theodore C. Belding. 1995. The Distributed Genetic Algorithm Revisited. In
Proceedings of the 6th International Conference on Genetic Algorithms, Pittsburgh,
PA, USA, July 15-19, 1995, Larry J. Eshelman (Ed.). Morgan Kaufmann, 114-121.
[6] Francesco Bizzaro, Mauro Conti, and Maria Silvia Pini. 2020. Proof of Evolution:
leveraging blockchain mining for a cooperative execution of Genetic Algorithms.
In IEEE International Conference on Blockchain, Blockchain 2020, Rhodes, Greece,
November 2-6, 2020. IEEE, 450-455. https://doi.org/10.1109/Blockchain50366.
2020.00065
[7] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer.
2017. Brief Announcement: Byzantine-Tolerant Machine Learning. In PODC 2017,
Elad Michael Schiller and Alexander A. Schwarzmann (Eds.). ACM, 455-457.
[8] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. 2017.
Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent. In
Advances in Neural Information Processing Systems 30: NeurIPS 2017, Isabelle
Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.
Vishwanathan, and Roman Garnett (Eds.). 119-129. https://proceedings.neurips.
cc/paper/2017/hash/f4b9ec30ad9f68f89b29639786cb62ef- Abstract.html
Jo-Mei Chang and Nicholas F. Maxemchuk. 1984. Reliable Broadcast Protocols.
ACM Trans. Comput. Syst. 2, 3 (1984), 251-273.
Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such, Joel Lehman, Kenneth O.
Stanley, and Jeff Clune. 2018. Improving Exploration in Evolution Strategies for
Deep Reinforcement Learning via a Population of Novelty-Seeking Agents. In
Advances in Neural Information Processing Systems 31: NeurIPS 2018, Samy Bengio,
Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicold Cesa-Bianchi, and
Roman Garnett (Eds.). 5032-5043.
Intel Corporation. 2018. CVE-2017-5715. Available from MITRE, CVE-ID CVE-
2017-5715.. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5715
Intel Corporation. 2018. CVE-2017-5753. Available from MITRE, CVE-ID CVE-
2017-5753.. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5753
[13] El-Mahdi El-Mhamdi, Sadegh Farhadkhani, Rachid Guerraoui, Arsany Guirguis,
Lé-Nguyén Hoang, and Sébastien Rouault. 2021. Collaborative Learning in the
Jungle (Decentralized, Byzantine, Heterogeneous, Asynchronous and Nonconvex
Learning). In Advances in Neural Information Processing Systems 34: NeurIPS 2021,
Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and
Jennifer Wortman Vaughan (Eds.). 25044-25057.
El-Mahdi EI-Mhamdi, Rachid Guerraoui, Arsany Guirguis, Lé Nguyén Hoang,
and Sébastien Rouault. 2020. Genuinely Distributed Byzantine Machine Learning.
In PODC °20: ACM Symposium on Principles of Distributed Computing, Virtual
Event, Italy, August 3-7, 2020, Yuval Emek and Christian Cachin (Eds.). ACM,
355-364. https://doi.org/10.1145/3382734.3405695
Antonio Fernandez, Chryssis Georgiou, Alexander Russell, and Alexander A.
Shvartsman. 2005. The Do-All problem with Byzantine processor failures. Theor.
Comput. Sci. 333, 3 (2005), 433-454. https://doi.org/10.1016/j.tcs.2004.06.034
Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, An-
drei A Rusu, Alexander Pritzel, and Daan Wierstra. 2017. Pathnet: Evolution chan-
nels gradient descent in super neural networks. arXiv preprint arXiv:1701.08734

https://

B3

[4

)

—
L

[10

[11

[12

[14

[15

[16


https://lambdalabs.com/blog/demystifying-gpt-3/
https://lambdalabs.com/blog/demystifying-gpt-3/
https://doi.org/10.3390/e21080723
http://eprint.iacr.org/2017/203
http://eprint.iacr.org/2017/203
https://doi.org/10.1109/Blockchain50366.2020.00065
https://doi.org/10.1109/Blockchain50366.2020.00065
https://proceedings.neurips.cc/paper/2017/hash/f4b9ec30ad9f68f89b29639786cb62ef-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/f4b9ec30ad9f68f89b29639786cb62ef-Abstract.html
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5715
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5753
https://doi.org/10.1145/3382734.3405695
https://doi.org/10.1016/j.tcs.2004.06.034

Byzantine-Resilient Learning Beyond Gradients: Distributing Evolutionary Search (Full Report)

[17]

[18

[19]

[20

[21

[22]

[23

[24

[25]

[28

[29

[30

[31]

[32

[34]

[35]

(2017).

L.J. Fogel, A.J. Owens, and M.J. Walsh. 1966. Artificial intelligence through simu-
lated evolution. Wiley, Chichester, WS, UK.

Pedro A. Forero, Alfonso Cano, and Georgios B. Giannakis. 2010. Consensus-
Based Distributed Support Vector Machines. j. Mach. Learn. Res. 11 (2010),
1663-1707. http://portal.acm.org/citation.cfm?id=1859906

Deep Ganguli, Danny Hernandez, Liane Lovitt, Nova DasSarma, Tom Henighan,
Andy Jones, Nicholas Joseph, Jackson Kernion, Benjamin Mann, Amanda Askell,
Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Nelson Elhage, Sheer EI
Showk, Stanislav Fort, Zac Hatfield-Dodds, Scott Johnston, Shauna Kravec, Neel
Nanda, Kamal Ndousse, Catherine Olsson, Daniela Amodei, Dario Amodei, Tom B.
Brown, Jared Kaplan, Sam McCandlish, Chris Olah, and Jack Clark. 2022. Pre-
dictability and Surprise in Large Generative Models. CoRR abs/2202.07785 (2022).
arXiv:2202.07785 https://arxiv.org/abs/2202.07785

Amelia Glaese, Nat McAleese, Maja Trebacz, John Aslanides, Vlad Firoiu,
Timo Ewalds, Maribeth Rauh, Laura Weidinger, Martin Chadwick, Phoebe
Thacker, Lucy Campbell-Gillingham, Jonathan Uesato, Po-Sen Huang, Ramona
Comanescu, Fan Yang, Abigail See, Sumanth Dathathri, Rory Greig, Charlie Chen,
Doug Fritz, Jaume Sanchez Elias, Richard Green, Sona Mokra, Nicholas Fernando,
Boxi Wu, Rachel Foley, Susannah Young, Iason Gabriel, William Isaac, John Mel-
lor, Demis Hassabis, Koray Kavukcuoglu, Lisa Anne Hendricks, and Geoffrey
Irving. 2022. Improving alignment of dialogue agents via targeted human judge-
ments. CoRR abs/2209.14375 (2022). https://doi.org/10.48550/arXiv.2209.14375
arXiv:2209.14375

David E. Goldberg. 1989. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, Reading, MA.

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org.

Shangwei Guo, Tianwei Zhang, Han Yu, Xiaofei Xie, Lei Ma, Tao Xiang, and Yang
Liu. 2021. Byzantine-resilient decentralized stochastic gradient descent. IEEE
Transactions on Circuits and Systems for Video Technology (2021).

Nikolaus Hansen, Dirk V. Arnold, and Anne Auger. 2015. Evolution Strategies.
In Springer Handbook of Computational Intelligence, Janusz Kacprzyk and Witold
Pedrycz (Eds.). Springer, 871-898. https://doi.org/10.1007/978-3-662-43505-2_44
Nikolaus Hansen, Dirk V. Arnold, and Anne Auger. 2015. Evolution Strategies.
In Springer Handbook of Computational Intelligence, Janusz Kacprzyk and Witold
Pedrycz (Eds.). Springer Berlin Heidelberg, 871-898. https://doi.org/10.1007/978-
3-662-43505-2_44

Mohamed Haouari, Mariem Mhiri, Mazen El-Masri, and Karim Al-Yafi. 2022. A
novel proof of useful work for a blockchain storing transportation transactions.
Inf. Process. Manag. 59, 1(2022), 102749. https://doi.org/10.1016/j.ipm.2021.102749
Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya,
Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Jo-
hannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland, Katie Millican, George
van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Si-
monyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre. 2022. Train-
ing Compute-Optimal Large Language Models. CoRR abs/2203.15556 (2022).
https://doi.org/10.48550/arXiv.2203.15556 arXiv:2203.15556

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. 1989. Multilayer feed-
forward networks are universal approximators. Neural Networks 2, 5 (1989), 359
- 366. https://doi.org/10.1016/0893-6080(89)90020-8

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim Krikun, Yonghui Wu, Zhifeng
Chen, Nikhil Thorat, Fernanda B. Viégas, Martin Wattenberg, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2017. Google’s Multilingual Neural Machine
Translation System: Enabling Zero-Shot Translation. Trans. Assoc. Comput.
Linguistics 5 (2017), 339-351. https://doi.org/10.1162/tacl_a_00065

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin
Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei.
2020. Scaling Laws for Neural Language Models. CoRR abs/2001.08361 (2020).
arXiv:2001.08361 https://arxiv.org/abs/2001.08361

Tero Karras, Samuli Laine, and Timo Aila. 2019. A Style-Based Generator Archi-
tecture for Generative Adversarial Networks. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019.
Computer Vision Foundation / IEEE, 4401-4410. https://doi.org/10.1109/CVPR.
2019.00453

Sunny King and Scott Nadal. 2012. Ppcoin: Peer-to-peer crypto-currency with
proof-of-stake. self-published paper, August 19, 1 (2012).

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Clas-
sification with Deep Convolutional Neural Networks. In Advances in Neural
Information Processing Systems 25: NeurIPS 2012, Peter L. Bartlett, Fernando C. N.
Pereira, Christopher J. C. Burges, Léon Bottou, and Kilian Q. Weinberger (Eds.).
1106-1114.

Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. 1982. The Byzantine
Generals Problem. ACM Trans. Program. Lang. Syst. 4, 3 (1982), 382-401. https:
//doi.org/10.1145/357172.357176

Yann LeCun. 1985. Une procedure d’apprentissage pour reseau a seuil
asymetrique. Proceedings of Cognitiva 85 (1985), 599-604.

(36]

(37]

[38

[40

[41

[42

T~
&

[44

[45]

[46

N
)

[48

[49

[50

(52

[53

o
=

[55

[56

GECCO 23 Companion, July 15-19, 2023, Lisbon, Portugal

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature
521, 7553 (2015), 436-444.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. 2018.
Visualizing the Loss Landscape of Neural Nets. In Advances in Neural Infor-
mation Processing Systems 31: NeurIPS 2018, Samy Bengio, Hanna M. Wal-
lach, Hugo Larochelle, Kristen Grauman, Nicold Cesa-Bianchi, and Roman
Garnett (Eds.). 6391-6401.  https://proceedings.neurips.cc/paper/2018/hash/
a41b3bb3e6b050b6c9067c¢67f663b915- Abstract.html

Yuan Liu, Yixiao Lan, Boyang Li, Chunyan Miao, and Zhihong Tian. 2021. Proof of
Learning (PoLe): Empowering neural network training with consensus building
on blockchains. Comput. Networks 201 (2021), 108594. https://doi.org/10.1016/j.
comnet.2021.108594

Luke Metz, C. Daniel Freeman, Samuel S. Schoenholz, and Tal Kachman. 2021.
Gradients are Not All You Need. CoRR abs/2111.05803 (2021). arXiv:2111.05803
https://arxiv.org/abs/2111.05803

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.
2013. Distributed Representations of Words and Phrases and their Composition-
ality. In NeurIPS 2013, Christopher J. C. Burges, Léon Bottou, Zoubin Ghahramani,
and Kilian Q. Weinberger (Eds.). 3111-3119.

Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. (2008),
9.

Jianyu Niu, Chen Feng, Hoang Dau, Yu-Chih Huang, and Jingge Zhu. 2019.
Analysis of Nakamoto Consensus, Revisited. IACR Cryptol. ePrint Arch. (2019),
1225. https://eprint.iacr.org/2019/1225

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schul-
man, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell,
Peter Welinder, Paul F. Christiano, Jan Leike, and Ryan Lowe. 2022. Training lan-
guage models to follow instructions with human feedback. CoRR abs/2203.02155
(2022). https://doi.org/10.48550/arXiv.2203.02155 arXiv:2203.02155

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. 2019. Regularized
Evolution for Image Classifier Architecture Search. In The Thirty-Third AAAI
Conference on Artificial Intelligence, AAAI 2019. AAAI Press, 4780-4789. https:
//doi.org/10.1609/aaai.v33i01.33014780

Ling Ren. 2019. Analysis of Nakamoto Consensus. IACR Cryptol. ePrint Arch.
(2019), 943. https://eprint.iacr.org/2019/943

Tim Salimans, Jonathan Ho, Xi Chen, and Ilya Sutskever. 2017. Evolution Strate-
gies as a Scalable Alternative to Reinforcement Learning. CoRR abs/1703.03864
(2017). arXiv:1703.03864 http://arxiv.org/abs/1703.03864

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan,
Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis,
Thore Graepel, et al. 2020. Mastering atari, go, chess and shogi by planning with
a learned model. Nature 588, 7839 (2020), 604-609.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015. FaceNet: A unified
embedding for face recognition and clustering. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015. IEEE
Computer Society, 815-823. https://doi.org/10.1109/CVPR.2015.7298682

Naoki Shibata. 2019. Proof-of-Search: Combining Blockchain Consensus Forma-
tion With Solving Optimization Problems. IEEE Access 7 (2019), 172994-173006.
https://doi.org/10.1109/ACCESS.2019.2956698

Ali Shoker. 2018. Brief Announcement: Sustainable Blockchains through Proof of
eXercise. In Proceedings of the 2018 ACM Symposium on Principles of Distributed
Computing, PODC 2018, Egham, United Kingdom, July 23-27, 2018, Calvin Newport
and Idit Keidar (Eds.). ACM, 269-271. https://dl.acm.org/citation.cfm?id=3212781
Kurt Shuster, Mojtaba Komeili, Leonard Adolphs, Stephen Roller, Arthur Szlam,
and Jason Weston. 2022. Language Models that Seek for Knowledge: Modular
Search & Generation for Dialogue and Prompt Completion. CoRR abs/2203.13224
(2022). https://doi.org/10.48550/arXiv.2203.13224 arXiv:2203.13224

Kurt Shuster, Jing Xu, Mojtaba Komeili, Da Ju, Eric Michael Smith, Stephen
Roller, Megan Ung, Moya Chen, Kushal Arora, Joshua Lane, Morteza Behrooz,
William Ngan, Spencer Poff, Naman Goyal, Arthur Szlam, Y-Lan Boureau, Melanie
Kambadur, and Jason Weston. 2022. BlenderBot 3: a deployed conversational
agent that continually learns to responsibly engage. CoRR abs/2208.03188 (2022).
https://doi.org/10.48550/arXiv.2208.03188 arXiv:2208.03188

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
Yutian Chen, Timothy P. Lillicrap, Fan Hui, Laurent Sifre, George van den
Driessche, Thore Graepel, and Demis Hassabis. 2017. Mastering the game
of Go without human knowledge. Nat. 550, 7676 (2017), 354-359. https:
//doi.org/10.1038/nature24270

Kenneth O. Stanley, Jeff Clune, Joel Lehman, and Risto Miikkulainen. 2019. De-
signing neural networks through neuroevolution. Nat. Mach. Intell. 1, 1 (2019),
24-35.

Christian Stoll, Lena Klaaen, and Ulrich Gallersdérfer. 2019. The carbon footprint
of bitcoin. Joule 3, 7 (2019), 1647-1661.

Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O.
Stanley, and Jeff Clune. 2017. Deep Neuroevolution: Genetic Algorithms Are a
Competitive Alternative for Training Deep Neural Networks for Reinforcement


http://portal.acm.org/citation.cfm?id=1859906
https://arxiv.org/abs/2202.07785
https://arxiv.org/abs/2202.07785
https://doi.org/10.48550/arXiv.2209.14375
https://arxiv.org/abs/2209.14375
http://www.deeplearningbook.org
https://doi.org/10.1007/978-3-662-43505-2_44
https://doi.org/10.1007/978-3-662-43505-2_44
https://doi.org/10.1007/978-3-662-43505-2_44
https://doi.org/10.1016/j.ipm.2021.102749
https://doi.org/10.48550/arXiv.2203.15556
https://arxiv.org/abs/2203.15556
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1162/tacl_a_00065
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://doi.org/10.1109/CVPR.2019.00453
https://doi.org/10.1109/CVPR.2019.00453
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://proceedings.neurips.cc/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html
https://doi.org/10.1016/j.comnet.2021.108594
https://doi.org/10.1016/j.comnet.2021.108594
https://arxiv.org/abs/2111.05803
https://arxiv.org/abs/2111.05803
https://eprint.iacr.org/2019/1225
https://doi.org/10.48550/arXiv.2203.02155
https://arxiv.org/abs/2203.02155
https://doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.1609/aaai.v33i01.33014780
https://eprint.iacr.org/2019/943
https://arxiv.org/abs/1703.03864
http://arxiv.org/abs/1703.03864
https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/10.1109/ACCESS.2019.2956698
https://dl.acm.org/citation.cfm?id=3212781
https://doi.org/10.48550/arXiv.2203.13224
https://arxiv.org/abs/2203.13224
https://doi.org/10.48550/arXiv.2208.03188
https://arxiv.org/abs/2208.03188
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270

GECCO ’23 Companion, July 15-19, 2023, Lisbon, Portugal

[57]

[58]

[59

[60]

[61]

Learning. CoRR abs/1712.06567 (2017). arXiv:1712.06567 http://arxiv.org/abs/
1712.06567

Richard S. Sutton. 1991. Dyna, an Integrated Architecture for Learning, Planning,
and Reacting. SIGART Bull. 2, 4 (1991), 160-163. https://doi.org/10.1145/122344.
122377

Willa Ariela Syafruddin, Sajjad Dadkhah, and Mario Koppen. 2019. Blockchain
Scheme Based on Evolutionary Proof of Work. In IEEE Congress on Evolutionary
Computation, CEC 2019, Wellington, New Zealand, June 10-13, 2019. IEEE, 771-776.
https://doi.org/10.1109/CEC.2019.8790128

Vladimir Naumovich Vapnik. 1995. The Nature of Statistical Learning Theory.
Springer. https://doi.org/10.1007/978- 1-4757-2440-0

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems 30: NeurIPS
2017, Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob
Fergus, S. V. N. Vishwanathan, and Roman Garnett (Eds.). 5998-6008.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaél Mathieu, Andrew
Dudzik, Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang,
Laurent Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg, Alexander Sasha
Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David Budden, Yury
Sulsky, James Molloy, Tom Le Paine, Caglar Giilcehre, Ziyu Wang, Tobias Pfaff,
Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wiinsch, Katrina McKinney,
Oliver Smith, Tom Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu, Demis
Hassabis, Chris Apps, and David Silver. 2019. Grandmaster level in StarCraft
II using multi-agent reinforcement learning. Nat. 575, 7782 (2019), 350-354.
https://doi.org/10.1038/s41586-019-1724-z

[62

[63

[64

[66

(67

[68

]
]

]

Kucharavy, et al.

P. J. Werbos. 1974. Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences. Ph. D. Dissertation. Harvard University.

Daan Wierstra, Tom Schaul, Jan Peters, and Jirgen Schmidhuber. 2008. Nat-
ural Evolution Strategies. In Proceedings of the IEEE Congress on Evolutionary
Computation, CEC 2008, June 1-6, 2008, Hong Kong, China. IEEE, 3381-3387.
https://doi.org/10.1109/CEC.2008.4631255

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C. Courville, Ruslan
Salakhutdinov, Richard S. Zemel, and Yoshua Bengio. 2015. Show, Attend and Tell:
Neural Image Caption Generation with Visual Attention. In Proceedings of the
32nd International Conference on Machine Learning, ICML 2015 (JMLR Workshop
and Conference Proceedings, Vol. 37), Francis R. Bach and David M. Blei (Eds.).
JMLR.org, 2048-2057.

Zhixiong Yang and Waheed U. Bajwa. 2019. BRIDGE: Byzantine-resilient De-
centralized Gradient Descent. CoRR abs/1908.08098 (2019). arXiv:1908.08098
http://arxiv.org/abs/1908.08098

Zhixiong Yang and Waheed U. Bajwa. 2019. ByRDIE: Byzantine-Resilient Dis-
tributed Coordinate Descent for Decentralized Learning. IEEE Trans. Signal Inf.
Process. over Networks 5, 4 (2019), 611-627. https://doi.org/10.1109/TSIPN.2019.
2928176

Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and K. Takeda. 2020. A
Survey of Autonomous Driving: Common Practices and Emerging Technologies.
IEEE Access 8 (2020), 58443-58469.

Fan Zhang, Ittay Eyal, Robert Escriva, Ari Juels, and Robbert van Renesse.
2017. REM: Resource-Efficient Mining for Blockchains. In 26th USENIX Secu-
rity Symposium, USENIX Security 2017, Vancouver, BC, Canada, August 16-18,
2017, Engin Kirda and Thomas Ristenpart (Eds.). USENIX Association, 1427-
1444. https://www.usenix.org/conference/usenixsecurity17/technical-sessions/
presentation/zhang


https://arxiv.org/abs/1712.06567
http://arxiv.org/abs/1712.06567
http://arxiv.org/abs/1712.06567
https://doi.org/10.1145/122344.122377
https://doi.org/10.1145/122344.122377
https://doi.org/10.1109/CEC.2019.8790128
https://doi.org/10.1007/978-1-4757-2440-0
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1109/CEC.2008.4631255
https://arxiv.org/abs/1908.08098
http://arxiv.org/abs/1908.08098
https://doi.org/10.1109/TSIPN.2019.2928176
https://doi.org/10.1109/TSIPN.2019.2928176
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/zhang
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/zhang

	Abstract
	1 Introduction
	1.1 Gradient-Free Learning
	1.2 Evolutionary Search
	1.3 Byzantine-Resilience in Machine Learning
	1.4 Our Contribution

	2 Preliminaries
	2.1 Learning Setting
	2.2 Model-Consensus and -Optimality
	2.3 (1,)-ES Algorithm
	2.4 Adapting (1,)-ES for Distributed Setting

	3 Permissioned Distributed Evolutionary Search
	4 Permissionless Distributed Evolutionary Search
	4.1 Proof-of-Work Mechanism for Probabilistic Consensus
	4.2 Permissionless Distributed Evolutionary Search as Proof-of-Work

	5 Discussion and Related Work
	5.1 Byzantine-Resilient Distributed Machine Learning
	5.2 Useful proof of work

	6 Conclusion
	Acknowledgments
	References

