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Abstract.  Federated Learning (FL) is widely recognized as a
privacy-preserving Machine Learning paradigm due to its model-
sharing mechanism that avoids direct data exchange. Nevertheless,
model training leaves exploitable traces that can be used to infer sen-
sitive information. In Decentralized FL (DFL), the topology, defining
how participants are connected, plays a crucial role in shaping the
model’s privacy, robustness, and convergence. However, the topol-
ogy introduces an unexplored vulnerability: attackers can exploit it
to infer participant relationships and launch targeted attacks. This
work uncovers the hidden risks of DFL topologies by proposing a
novel Topology Inference Attack that infers the topology solely from
model behavior. A taxonomy of topology inference attacks is intro-
duced, categorizing them by the attacker’s capabilities and knowl-
edge. Practical attack strategies are designed for various scenarios,
and experiments are conducted to identify key factors influencing at-
tack success. The results demonstrate that analyzing only the model
of each node can accurately infer the DFL topology, highlighting a
critical privacy risk in DFL systems. These findings offer insights for
improving privacy preservation in DFL environments.

1 Introduction

Federated Learning (FL) has emerged as a novel framework for en-
abling privacy-preserving Machine Learning (ML), facilitating col-
laborative model training among distributed clients without the ne-
cessity of sharing raw data [22]. Conventional FL systems are pred-
icated on a centralized architecture, referred to as Centralized FL
(CFL), wherein a central entity is responsible for collecting, aggre-
gating, and redistributing models to the clients. Nevertheless, this
centralized architecture presents several challenges, such as process-
ing bottlenecks and the single points of failure risk [2]. In response
to these limitations, Decentralized FL. (DFL) has been introduced,
wherein model training and aggregation occur locally, and commu-
nication between nodes relies on a peer-to-peer (P2P) network. This
approach eliminates dependency on a central server, mitigating risks
associated with single points of failure [1].

Although FL, both centralized and decentralized, protect raw data
privacy through its unique model-sharing mechanism, the training
process inevitably leaves traces in the models. These traces can be ex-
ploited by malicious actors, potentially leading to inference attacks,
including membership inference attacks, property inference attacks,
and attribute inference attacks [18]. Previous studies have illustrated

that such attacks pose a considerable risk to privacy within FL sys-
tems by elucidating sensitive information based on the behavior of
the models [5]. While much of the existing work focuses on CFL, a
notable research gap exists in exploring information leakage in DFL.

Overlay network topology defines how participants are intercon-
nected in an FL system. In CFL, the client-server architecture en-
forces a fixed, star-shaped topology. However, DFL leverages the
P2P network, enabling flexible node connections to form diverse
topologies. Existing studies demonstrate that topology significantly
influences DFL models’ robustness and privacy-preserving capabil-
ities [7]. From a security perspective, exposure of the DFL network
topology significantly facilitates malicious attacks. For example, in
poisoning attack scenarios, topology awareness allows adversaries to
pinpoint critical nodes, such as the central node in star topologies,
thereby enabling them to amplify the poisoning intensity and en-
hance its propagation effectiveness [7]. Similarly, for network-level
attacks, knowledge of key nodes within the DFL topology can lead
to more targeted and effective Distributed Denial-of-Service (DDoS)
attacks. Thus, topology information must be regarded as a critical as-
set, both in terms of optimizing DFL training performance and ensur-
ing system security. However, theoretical analyses on how network
topology affects model convergence remain sparse. Moreover, there
is limited research investigating potential information leakage risks
for this sensitive overlay topology data and strategies to safeguard
this critical asset.

Therefore, this paper improves this research gap by proposing a
novel overlay topology inference attack targeting DFL systems. The
proposed attack leverages the behavioral traces generated by models
to uncover sensitive overlay topologies. The main contributions of
this work are as follows: (i) the formulation of a novel taxonomy of
topology inference attacks, classifying these attacks based on the at-
tacker’s capabilities and knowledge; (ii) the development of practical
strategies tailored to various attack types, accompanied by a quanti-
tative analysis of critical factors that influence the efficiency of these
attacks '; (iii) rigorous experimental evaluations conducted across a
range of datasets and real-world network topology configurations to
empirically validate the proposed attack strategies; and (iv) the provi-
sion of insights aimed at informing the design of effective defensive
mechanisms to safeguard sensitive information within DFL systems.
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2 Background and Related Work

This section overviews inference attacks, encompassing their clas-
sifications and potential attack surfaces. Since there is a lack of re-
search directly related to topology inference attacks on DFL, this pa-
per examines topology inference studies conducted in other domains,
including communication systems and social networks.

2.1 Inference Attacks

Inference attacks exploit ML models to extract sensitive informa-
tion without direct access to the underlying data [25]. By analyzing
model behaviors or outputs, adversaries can infer properties of the
data, model parameters, or system structure. As FL grows in adoption
for its privacy-preserving capabilities, it also faces increased vulner-
ability to such attacks [32]. Inference attacks vary in objectives and
strategies, with common types including:

e Membership Inference Attack: Determines whether a specific
data sample was part of the training dataset, often using shadow
models or prediction confidence scores to differentiate between
training and unseen data [28]. This is critical in sensitive domains
like healthcare or finance.

e Model Inversion Attack: Reconstructs input data or infers its
properties by iteratively optimizing inputs to match observed
model outputs, posing risks in applications involving sensitive in-
formation like facial recognition or medical data [9].

o Property Inference Attack: Infers characteristics of the training
data, such as demographic distributions, by analyzing model up-
dates or outputs. In FL, this can involve monitoring node-specific
behaviors to deduce shared properties of local datasets [10].

o Attribute Inference Attack: Targets specific attributes of training
data, often by injecting malicious samples to influence the model’s
learning process and make it vulnerable to data leakage [12].

These attacks not only compromise users’ sensitive information and
undermine data security but also erode trust in FL’s privacy preserv-
ing mechanisms. Users may hesitate to participate in the training pro-
cess, undermining the overall effectiveness of the FL system. How-
ever, existing research primarily focuses on CFL, with limited explo-
ration of privacy leakage in DFL. Moreover, these studies have not
adequately addressed the critical role of DFL’s overlay topology.

2.2 Topology Inference

Topology inference is explored in various research domains, such as
identifying source—destination paths in communication systems and
uncovering interconnections among nodes in social networks.

2.2.1 Communication Systems

In communication systems, most protocols are designed to avoid ring
formation, resulting in tree-like topologies. Many topology inference
studies commonly assume a single path between nodes [3]. A widely
used approach involves leveraging ICMP-based protocols, such as
the traceroute, to map network topologies [19]. Tomography-based
metrics, like packet loss rates, further aid in deducing a system’s
topology: by observing loss rates from a source node to a target node,
one can estimate the likelihood of a direct connection and thereby re-
construct the network [4]. Additionally, by measuring the timestamps
of sent and received packets, it is possible to determine the number
of forwarding hops, offering deeper insight into the overall network
configuration [17].

2.2.2 Social Networks

Social networks generally refer to the social structure formed by
individuals in society connected by a specific relationship. In so-
cial networks, user interactions (e.g., likes, retweets) serve as sig-
nals for topology modeling and inference by capturing how infor-
mation diffuses across the network [11]. However, this behavioral
data is often incomplete, especially in large-scale settings, neces-
sitating methods like noisy sparse subspace clustering to infer net-
work structures from partial observations [30]. Meanwhile, social
networks are dynamic and time-sensitive, and they frequently exhibit
small-world properties.[13] incorporate these distributional patterns
as prior knowledge in evolutionary models to better capture network
changes over time.

To conclude, communication networks often assume tree topolo-
gies and social networks are typically modeled as small-world net-
works. These assumptions do not hold for DFL network topologies.
Moreover, common inference tools and metrics, such as traceroute,
packet loss rate, or user interaction data, are not readily applicable
in DFL contexts, creating the need for specialized inference metrics
and strategies tailored to the particularities of DFL systems.

3 Overlay Topology in DFL

DFL is an ML paradigm that facilitates collaborative model training
across multiple nodes without a central server. In DFL, each node up-
dates its local model parameters using its private data and exchanges
them with its directly connected neighbors. As the overlay topology
in DFL significantly affects model convergence, this work presents
the topology as an undirected graph G = (V, E), where V is the set
of nodes and F represents the edges indicating direct communica-
tion links between nodes. The adjacency matrix A encodes the graph
structure, where:

1 if nodes ¢ and j are connected,
Aij = )]

0 otherwise.

The degree matrix D is a diagonal matrix where D;; = degree(:)+1.
The aggregation process is governed by the normalized aggregation
matrix:

P=D'YA+1), 2)

where [ is the identity matrix. This formulation ensures P is row-
stochastic (Zj P;; = 1), enabling consistent scaling during aggre-
gation.

DFL proceeds iteratively over 1" rounds, comprising local training
and model aggregation steps. Let M; = [95”,0&”, ey 95\?} rep-
resent the models of all nodes at round ¢, where th) denotes the
parameters of node <.

During the training stage, each node updates its model using its
local dataset:

M, :Mt—l + O¢, 3)

where 0; represents local updates, and M,_, is the aggregated
model from round ¢ — 1.

In the aggregation stage, nodes aggregate models from neighbors
using the aggregation matrix P:

M, = PM,;_;. 4



The model parameters after 7" rounds can be expressed as:

T
Mrp = P"Mo+ Y P, 5)
t=1

Assuming G is connected (i.e., no isolated nodes), the spectral
radius of P satisfies p(P) < 1. Additionally, under bounded local
updates (e.g., using SGD or Adam), there exists C' > 0 such that
||5§t) || < C forallt and i. As T increases, the influence of the initial

model diminishes:

|PT Mo|| < ||PT||||Mo]| = 0 as T — oo. 6)

The cumulative effect of local updates is:

T
> Pt @)
t=1

where || P7~t8;|| is bounded by || PT~*||||6¢|. Since || PT~!|| —
0 as T' — oo, the impact of individual updates diminishes, and the
series converges due to p(P) < 1.

Thus, it can be seen that the convergence behavior of DFL is influ-
enced by the topology captured by P. Initially, the aggregation dy-
namics (powers of P) dominate, reducing the influence of My. Over
time, local updates drive the learning process, modulated by the de-
caying powers of P. This interplay underscores the importance of
overlay topology in determining convergence efficiency.

Given the critical role of overlay topology, it is essential to in-
vestigate potential information leakage through model updates and
develop effective methods to protect sensitive topology information
in DFL.

4 Problem Statement

Theoretical analysis of the DFL learning process reveals that overlay
topology is crucial in determining system performance, robustness,
and privacy. This section introduces the problem of topology infer-
ence and categorizes potential attack types based on the attacker’s
knowledge and capabilities.

Consider a DFL system represented by an undirected graph G =
(V, E), where V is the set of participating nodes, and F is the set of
edges representing direct communication links between nodes. The
adjacency matrix A of size |V'| x |V| encodes the network topology,
as defined in Equation (1).

An attacker aims to infer a predicted adjacency matrix A’ that ap-
proximates the ground truth A as closely as possible, thereby reveal-
ing sensitive topology information.

The effectiveness of topology inference attacks depends on the at-
tacker’s knowledge and capabilities. The following assumptions are
made. (i) Internal Adversary: The attacker is an internal participant
in the DFL system and can identify a subset of nodes. (ii) Decoupled
Information: Node-level information (e.g., models and datasets) and
network-level information (e.g., connections) are treated as separate
assets. For instance, an attacker may know a node’s model but not its
connections.

Let V' C V represent a set of nodes known to the attacker and
E' C E represent the subset of edges known to the attacker, where
0 € E' C E torepresent partial knowledge. The attacker’s goal is to
infer the entire edge set E based on partial knowledge of V' and E’.

For each node 7 € V/, the local model is represented as M;, and
the local dataset is represented as D;. This paper assumes that mod-
els and data within a node are distinct assets. Thus, the attacker’s
capabilities are defined as follows:

e Model Knowledge: The attacker can access models of known
nodes V', forming the set: M’ = {M; |i € V'}.

e Dataset Knowledge: The attacker may not have access to the
datasets D; of these nodes. The datasets known to the attacker
are denotedby: D' C {D; |i€V'} or D' =0.

Based on the attacker’s knowledge and capabilities, the topology
inference attack is classified into five scenarios:

e Scenario 1: The attacker knows all node models and datasets, but
only partial edge information (M’ = M,D" = D,) C E' C E).

e Scenario 2: The attacker knows all node models, but none of the
datasets, and only partial edge information (M’ = M,D’ =
0,0 C E'CE).

e Scenario 3: The attacker knows all node models and datasets, but
does not have edge information (M’ = M, D’ = D, E' = ().

e Scenario 4: The attacker knows all node models, but neither
datasets nor edge information (M’ = M, D’ = (), E' = ).

e Scenario 5: The attacker knows partial models, but neither
datasets nor edge information () ¢ M’ C M, D’ =0, E' = ().

For Scenario 1, since the attacker can control all nodes and knows
partial information about the edges, it can be classified as a white-box
attack. Scenarios 2, 3, and 4 can be categorized as gray-box attacks.
For attack scenario 5, no information is available regarding the total
number of nodes or edges, making it difficult to fully reconstruct the
network topology.

5 Topology Inference Attack

This section first explores the metrics that attackers can exploit to
carry out topology inference attacks, and then designs attack strate-
gies for various attack scenarios.

5.1 Attack Metrics

In a DFL system, attackers may leverage the local data and local
models available at each known node. Additionally, DFL’s decen-
tralized communication mechanism allows attackers to access mod-
els transmitted from neighboring nodes. Thus, this paper proposes
six attack metrics that attackers can exploit:

e Relative Loss. This metric evaluates how well a model trained on
one node’s data generalizes to another node’s dataset. Consider a
model f; trained on node 7’s dataset D;, and let D; be the dataset
of another node j. The relative loss Relative Loss; ; measures the
performance of f; on D;. A lower relative loss indicates better
transferability and generalization across nodes:

Relative Loss; ; = L(f;, D;) @®)

where L(f, D) is the loss function used by model f on dataset D.

e Relative Entropy. This metric measures the uncertainty of f;’s
predictions on D;. While relative loss focuses on correctness, rel-
ative entropy focuses on confidence. A model may be confident
(low entropy) but still perform poorly if it is incorrect.

Relative Entropy, ; = —ﬁ Z Zyk(x) log(fik(z)) (9)
J

z€D; k

where yy, () is the true label distribution for sample z and f; » ()
is the predicted probability of class k under model f;.



e Relative Sensitivity. This metric quantifies the sensitivity of
model f;’s predictions on dataset D; using the Jacobian norm.
Relative sensitivity could capture the model’s susceptibility to
small input perturbation.

Relative Sensitivity, . = ' (10)
7 | Dyl I;. oz |p
J
where % is the Jacobian of f;’s outputs with respect to input

x,and || - || denotes the Frobenius norm.

o Cosine Similarity. This metric compares the direction of two pa-
rameter vectors a and b derived from different models. If both
vectors point in similar directions, their cosine similarity is high.
In DFL, a high cosine similarity suggests that the two nodes
frequently aggregate their parameters, resulting in more closely
aligned models:

Cosine Similarity(a, b) = a-b (11
‘ FEPT JalTel
where a - b is the dot product, and ||a||, ||b|| are the L2 norms of
the vectors a and b, respectively.

e Euclidean Similarity. It quantifies how similar two vectors are
based on the Euclidean distance between them. A higher Eu-
clidean similarity indicates that the two models are numerically
closer, while a smaller distance suggests they differ significantly:

Euclidean Similarity(a, b) = (12)

1
14+ />0 (ai —bi)?

where a; and b; are the ¢-th elements of a and b.

e Curvature Divergence. This metric quantifies model divergence
by analyzing implicit second-order information from consecutive
parameter updates, reflecting curvature characteristics without ex-
plicit data dependence. Specifically, it compares parameter update
vectors to capture similarity in model evolution indirectly:

|Aa - Abll;
1(|Aallz + [|Ab]2)

Curvature Divergence(Aa, Ab) = (13)
where Aa = a’ —a'~! and Ab = b’ — b'~! denote parameter
updates between rounds £ — 1 and ¢. A lower value indicates lower
divergence (i.e., more similar updates).

Relative metrics, including relative loss, entropy, and sensitivity,
require access to both local models and local datasets, thus making
them suitable for attack scenarios 1 and 3. While similarity metrics,
i.e. cosine, Euclidean, and curvature similarity, depend only on the
models and do not require dataset access, they are appropriate for
attack scenarios 2 and 4.

5.2 Attack Strategies

In a topology inference attack, the attacker’s objective is to con-
struct a predicted adjacency matrix A’ that closely approximates the
ground-truth adjacency matrix A.

5.2.1 Supervised Attack Strategy.

In attack scenarios 1 and 2, where the attacker has access to partial
ground-truth edge labels, this work introduces EDGEPRE, a super-
vised edge classification framework for topology reconstruction. As
shown in Algorithm 1, the model learns to infer the full adjacency
matrix from node-level behavioral features and a small set of labeled
node pairs.

Model Architecture. Given N nodes and their behavioral metrics
X € RV*? EDGEPRE directly uses an MLP-based edge classifier
without any message passing. For each labeled pair (i, j), the con-
catenated feature pair [z;||x;] is passed to a multilayer perceptron
(MLP) decoder that outputs the predicted edge probability:

15 = o (faee([ws]|2;5]))-
Optionally, feature interaction terms such as z; * z; and |z; — x|
can be included to enhance the representation.

Training Objective. The model is optimized using binary cross-
entropy over the labeled edge set:

L= Y BCE(jy,yi)-
(4,5,945)EP

Adjacency Reconstruction. After training, EDGEPRE general-
izes to all node pairs and produces a reconstructed soft adjacency
matrix A’ € [0, 1]V *", where each entry is computed via:

Ay = o(faee([mil|z5])).

Algorithm 1 EDGEPRE (MLP-BASED)

Require: Node features X € R™*? labeled edge set Pian =
{(%, j, yi;)}, number of epochs T
Ensure: Reconstructed adjacency matrix A" € [0, 1]V >
1: Initialize MLP decoder fec
2: fort =1toT do
3: for each labeled pair (7, j, yi;) € Pirain dO
4 hij < [wil|a;]
5 Gij 4= 0 (faee(hij))
6: Compute loss: £ <= >_; - BCE(i5, Yi5)
7
8

Update decoder parameters via gradient descent
: Inference phase
: for all (i, 7) where 1 < 4,7 < N do
10: hij [mZHmJ]
11: AILJ — O'(fdec(hij))
12: return A’

Nel

5.2.2 Unsupervised Attack Strategy.

For attack scenarios 3 and 4, where no edge labels are available,
this work proposes INFERGAT, an unsupervised structure inference
method based on a GAT encoder-decoder framework. The model pre-
dicts the latent adjacency purely from node-level behavioral metrics
without requiring ground-truth edges.

Model Architecture. The input X € R™*¢ contains attack-
related features such as similarity or entropy. A GAT encoder outputs
embeddings Z = fenc(X), and a symmetric MLP decoder estimates
pairwise edge strength via Aj; = o(MLP([2:]|2])).

Training Objective. The model is trained to reconstruct the behav-
ioral structure with mean squared error:

£=3" 4% - Xyl (4
6]

The final output is the predicted adjacency matrix A’ € [0, 1]V *¥



Algorithm 2 INFERGAT

Require: Attack metrics X € RV 9, learning rate n, epochs T'
Ensure: Predicted adjacency matrix A" € [0, 1]V >V
1: Initialize GAT encoder fenc and decoder fg. with parameters 60
2: fort =1to7 do
3: Z 4 fenc(X)
4 Al faee(2is 25),
5500 ALt + AT
6 L)AL - Xyl
7.
8

> Node embeddings via multi-head GAT
Vi, j > Decoder predicts edge weights
> Symmetrize adjacency
> Reconstruction loss
0—60—n-Vs > Gradient descent update

: return A’

EDGEPRE and INFERGAT represent two attack strategies for
topology inference in DFL. EDGEPRE leverages partial edge su-
pervision to perform explicit edge classification, while INFERGAT
relies solely on behavioral metrics to reconstruct structural patterns
in a self-supervised manner. Together, they cover a broad range of
adversarial capabilities and reflect realistic threat models across dif-
ferent attack scenarios.

6 Evaluation

This work empirically validates the effectiveness of the proposed
topology inference attack. First, it identifies which metrics yield
stronger attack performance. Building on these results, it then thor-
oughly evaluates the proposed attack strategies under various condi-
tions, including different datasets, topologies, node counts, and data
preprocessing methods.

6.1 Experimental Setups

This section describes the configurations employed in the experi-
ments.

A. Dataset and Model: Experiments are conducted on: MNIST,
FMNIST, CIFAR10, SVHN, ImageNet10, and Malware, which are
widely used in FL and inference attack benchmarks.

e MNIST [21]: Contains 60,000 grayscale training images and
10,000 test images of handwritten digits (0-9) at 28 x28 resolu-
tion. A two-hidden-layer MLP (256 and 128 neurons) trained with
Adam (Ir=1e-3) is used.

e FMNIST [31]: Similar size and format to MNIST, but with 10
categories of clothing items. A CNN with two convolutional layers
(32 and 64 filters, kernel size 3x3) is employed.

o CIFARI10 [20]: Contains 60,000 32 x32 RGB images from 10 cat-
egories. The training set is only treated with basic image normal-
ization. The image pixel values are normalized to keep the original
image content unchanged. A MobileNet [26] is used for training.

e SVHN [23]: Composes of over 600,000 32x32 RGB images of
house numbers collected from Google Street View. Each image
contains a centered digit from O to 9. A ResNet9 [16] is adopted
as the training model.

e ImageNetl0: A curated subset of the ImageNet [6], containing
10 classes selected from the original ImageNet hierarchy. This
version [27] includes approximately 15,000 images with varied
object categories and balanced class distributions. A lightweight
PoolFormer-S12 [33] model is used for training.

e Malware [8]: The Malware dataset comprises 342,106 tabu-
lar records with 31 extracted features, collected from eight IoT
crowdsensing devices infected by eight types of malware. Each

record is labeled as either the corresponding malware type or nor-
mal behavior. A MLP with two hidden layers (64 and 32 neurons)
is employed.

B. DFL Topology Setting: All experiments are conducted on DFL
systems comprising two categories of topologies: synthetic and real-
world. The synthetic topologies include ring, star, and three Erd&s-
Rényi (ER) graphs with connection probabilities p =0.3, 0.5, and
0.7. The real-world topologies consist of 27 network topologies col-
lected from the SNDIib [24] and DEFO [15] repositories, which re-
flect realistic communication and infrastructure networks. Detailed
descriptions and properties of these topologies are provided in the
supplementary material.

C. Federation Setting: All experiments employ the following
DFL configurations:

o Number of Nodes: For synthetic topologies, the number of nodes
is set to 10, 20, and 30. For real-world topologies, the number of
nodes ranges from 12 to 87, depending on the specific topology.

o Total Rounds: The total number of communication rounds is de-
termined by the rule rounds = number of nodes. The mechanism
ensures efficient inter-node communication, thereby enabling con-
sistent scalability of training time as the network size increases.

e Local Epochs: Two scenarios (3 and 10 local epochs) are consid-
ered to evaluate how varying levels of local overfitting affect the
attack’s effectiveness.

e Data Distribution: Both Independent and Identically Distributed
(IID) and non-IID o« = 0.1 data distributions are considered to
evaluate the impact of data heterogeneity.

D. Attack Models: To evaluate the effectiveness of the pro-
posed methods, EDGEPRE is compared against classical supervised
classifiers, including Logistic Regression, Support Vector Machine
(SVM), and Random Forest (RF). Additionally, graph-specific super-
vised baselines are also used, including: SEAL [34] and GraphSAGE
(edge classification setting) [14].

For the unsupervised attack strategy, INFERGAT is evaluated
against standard clustering-based methods, including K-Means,
Gaussian Mixture Model (GMM), and Spectral Clustering. This
experiment further adds modern graph-reconstruction and self-
supervised baselines: GRACE [35] and BGRL [29].

E. Evaluation Metric: Since the topology inference attack is for-
mulated as a binary classification problem, evaluation uses the F1-
Score and AUC-ROC metrics.

6.2 Selection of Attack Metrics

Selecting appropriate attack metrics is critical to the success of infer-
ence attacks. An effective attack metric should distinguish between
connected and non-connected nodes as clearly as possible. To this
end, the first part of this experiment examines the effectiveness of
the six proposed attack metrics by analyzing their respective distri-
butions.

Figure 1 illustrates the distributions of these metrics for a 20-node
star topology DFL system trained on the FMNIST dataset, compar-
ing directly connected nodes (edge group) with those not (non-edge
group). To facilitate direct comparison, values have been normalized.

The results indicate that the relative loss for connected nodes is no-
tably lower than that for non-connected nodes, with minimal overlap
between the respective distributions. By contrast, the relative entropy
and sensitivity metrics exhibit substantially greater overlap. Since



Scenario Algorithm CIFAR10 FMNIST ImageNet10 Malware MNIST SVHN
F1 AUC Fl1 AUC Fl1 AUC Fl1 AUC Fl1 AUC Fl1 AUC
SC1 Logistic 0.806 & 0.129 0.519 & 0.064 0.804 £ 0.126 0.500 £ 0.000 0.804 4 0.126 0.500 & 0.000 0.804 £ 0.126 0.500 £ 0.000 0.800 % 0.125 0.500 £ 0.000 0.804 £ 0.126 0.500 = 0.000
RF 0.795 £ 0.132 0.643 & 0.127 0.786 £ 0.142 0.653 £ 0.128 0.833 4 0.107 0.695 = 0.132 0.714 £ 0.144 0.503 £ 0.050 0.765 & 0.135 0.600 £ 0.102 0.788 £ 0.114 0.633 &+ 0.116
SVM 0.840 £ 0.102 0.609 & 0.153 0.818 £0.115 0.561 £ 0.122 0.808 4 0.118 0.519 & 0.066 0.800 £ 0.137 0.499 4 0.025 0.801 & 0.131 0.519 £ 0.067 0.824 £ 0.108 0.566 =+ 0.130
GraphSage  0.740 + 0.077 0.607 £ 0.253 0.699 4 0.058 0.474 + 0.188 0.701 £ 0.045 0.507 & 0.209 0.686 + 0.043 0.423 £ 0.186 0.686 £ 0.039 0.460 & 0.185 0.712 £ 0.056 0.526 =+ 0.200
SEAL 0.701 £ 0.057 0.560 & 0.142 0.697 £ 0.052 0.556 £ 0.152 0.699 £ 0.057 0.557 + 0.156 0.705 £ 0.052 0.577 & 0.144 0.701 & 0.050 0.584 £ 0.129 0.697 £ 0.056 0.548 4 0.146

EDGEPRE 0.847 £ 0.101 0.831 & 0.136 0.873 & 0.096 0.857 + 0.135 0.855 + 0.101

0.826 £ 0.181 0.858 £ 0.102 0.834 & 0.192 0.862 + 0.095 0.839 + 0.144 0.886 £ 0.091 0.871 £ 0.130

SC2 Logistic 0.811 £0.128 0.543 0.101 0.804 4 0.126 0.500 &= 0.000 0.801 £ 0.127

RF 0.787 £ 0.134 0.629 £ 0.132 0.762 4 0.135 0.568 &= 0.107 0.784 £ 0.122
SVM 0.836 £+ 0.108 0.604 £ 0.151 0.817 +0.117 0.559 +0.119 0.810 £0.116
GraphSage  0.697 £ 0.050 0.488 4 0.172 0.700 + 0.069 0.510 £ 0.152 0.699 =+ 0.050
SEAL 0.699 £ 0.042 0.558 £ 0.137 0.704 4 0.052 0.582 + 0.108 0.700 + 0.046

EDGEPRE 0.786 & 0.093 0.721 & 0.175 0.825 4 0.108 0.791 + 0.168 0.811 + 0.091

0.500 £ 0.001 0.804 £ 0.126 0.500 &= 0.000 0.800 % 0.125 0.500 £ 0.000 0.804 £ 0.126 0.500 £ 0.000
0.579 £ 0.096 0.722 4 0.139 0.505 4= 0.048 0.746 £ 0.140 0.562 £ 0.082 0.765 £ 0.129 0.598 £ 0.102
0.520 £ 0.067 0.800 4 0.137 0.499 4 0.025 0.800 £ 0.132 0.517 £ 0.066 0.821 £ 0.110 0.560 £ 0.128
0.501 £ 0.135 0.700 £ 0.056 0.473 4= 0.157 0.698 £ 0.056 0.498 £ 0.139 0.699 £ 0.060 0.490 £ 0.152
0.589 £ 0.105 0.700 £ 0.050 0.561 4 0.145 0.701 £ 0.049 0.570 £ 0.133 0.706 £ 0.051 0.579 £ 0.130
0.772 £ 0.153 0.822 £ 0.112 0.778 £ 0.188 0.827 + 0.108 0.797 £ 0.161 0.826 £ 0.109 0.784 + 0.167

SC3 BGRL 0.384 £ 0.344 0.500 £ 0.000 0.384 £ 0.344 0.500 &= 0.000 0.384 £ 0.344
GMM 0.743 £0.252 0.674 £ 0.081 0.742 4+ 0.201 0.783 +0.129 0.668 £ 0.227
GRACE 0.866 £ 0.000 0.426 £ 0.207 0.534 4= 0.469 0.446 +0.181 0.866 + 0.000
Kmeans 0.793 £ 0.090 0.636 £ 0.087 0.741 4= 0.187 0.891 + 0.134 0.792 + 0.223
Spectral 0.727 £ 0.168 0.592 £ 0.137 0.710 4 0.268 0.594 +0.189 0.684 £ 0.314

INFERGAT 0.893 £ 0.103 0.876 + 0.161 0.850 & 0.116 0.789 + 0.147 0.765 + 0.158

0.500 £ 0.000 0.384 £ 0.344 0.500 & 0.000 0.433 £ 0.349 0.500 £ 0.000 0.384 £ 0.344 0.500 £ 0.000
0.731 £ 0.161 0.795 £ 0.107 0.748 +0.136 0.864 £ 0.150 0.890 + 0.156 0.852 £ 0.186 0.869 £ 0.126
0.396 £ 0.207 0.500 4 0.337 0.441 +0.189 0.534 £ 0.469 0.438 £0.186 0.866 £ 0.000 0.429 £ 0.210
0.774 £ 0.181 0.779 +0.101 0.764 4+ 0.164 0.754 £0.178 0.820 £ 0.152 0.907 £ 0.109 0.934 + 0.093
0.709 £ 0.172 0.875 4 0.111 0.721 4+ 0.207 0.677 £ 0.231 0.594 £ 0.189 0.760 £ 0.148 0.569 + 0.146
0.813 £ 0.157 0.664 4= 0.154 0.793 £+ 0.158 0.657 £ 0.199 0.860 £ 0.186 0.769 £ 0.184 0.692 + 0.391

SC4 BGRL 0.368 £ 0.243 0.500 £ 0.000 0.368 4 0.243 0.500 + 0.000 0.368 + 0.243
GMM 0.360 £ 0.116 0.292 £ 0.129 0.328 4 0.137 0.274 +0.149 0.335 £0.163
GRACE 0.394 £ 0.244 0.536 = 0.191 0.394 4 0.244 0.522 +0.188 0.393 £ 0.241
Kmeans 0.389 £ 0.097 0.272 £ 0.122 0.373 +0.125 0.234 +0.129 0.359 £0.136
Spectral 0.448 £ 0.136 0.448 +0.136 0.43940.110 0.439 = 0.110 0.465 £ 0.141

INFERGAT 0.643 £ 0.194 0.790 & 0.140 0.604 £ 0.232 0.781 + 0.132 0.594 + 0.201

0.500 £ 0.000 0.368 £ 0.243 0.500 4 0.000 0.374 £ 0.242 0.500 £ 0.000 0.368 £ 0.243 0.500 £ 0.000
0.324 £ 0.160 0.331 £ 0.141 0.309 & 0.146 0.303 £ 0.150 0.270 £ 0.157 0.299 £ 0.133 0.255 £ 0.149
0.505 £ 0.190 0.392 4 0.244 0.510 4 0.194 0.401 £ 0.247 0.538 £0.190 0.395 £ 0.248 0.548 £ 0.187
0.280 £ 0.155 0.371 £ 0.121 0.269 = 0.135 0.356 £ 0.115 0.240 £ 0.144 0.344 £ 0.128 0.230 & 0.141
0.465 +0.141 0.443 £ 0.118 0.443 +0.118 0.456 £0.116 0.456 £0.116 0.435 £0.169 0.435 £ 0.169
0.771 £ 0.134 0.607 & 0.179 0.757 & 0.148 0.660 + 0.185 0.794 + 0.145 0.673 £ 0.199 0.805 £ 0.152

Table 1.
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Figure 1. Normalized distributions of attack metrics in a 20-node

star-topology DFL system trained on the FMNIST dataset. The “edge group”
corresponds to metrics calculated between directly connected nodes, while
the “non-edge group” corresponds to metrics calculated between nodes with
no direct connection.
computing the relative loss requires access to local models and data,
it has been employed in attack scenarios 1 and 3.

Regarding similarity-based metrics, the cosine similarity be-
tween connected models is distinctly higher than that between non-
connected models, displaying no overlap between the distributions.
On the other hand, the curvature divergence and Euclidean similar-
ity show a considerably more significant degree of overlap. Thus, the
cosine similarity has been adopted as the attack metric in scenarios
where only local models are available (attack scenarios 2 and 4). The
complete set of experimental results for all datasets and topologies is
in the Appendix.

6.3 Attack Performance

After establishing the attack metrics, the proposed topology infer-
ence attacks are evaluated on six datasets under four scenarios. As
shown in Table 1, EDGEPRE dominates in SC1-SC2, while INFER-
GAT ranks best in SC3-SC4 across all datasets.

Performance decreases as the attacker’s prior knowledge is re-
duced from SC1 to SC4. In SC1, EDGEPRE attains F1 of at least
~0.85 on every dataset (with high AUC as well). Moving to SC2

F1 and AUC (mean = std) across datasets. Best per scenario/dataset in bold.
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Figure 2. Impact of topology density on the F1-scores achieved by each

attack scenario on the CIFAR10 dataset.

yields only a modest drop (typically a few points), indicating that
model parameters alone already encode most of the topology signal.
The larger degradation appears when supervision is removed: in SC3,
INFERGAT remains strongest but F1 becomes dataset-dependent
(e.g., =0.89 on CIFARI10 vs. ~=0.66—0.77 on MNIST and Malware).
Under the weakest prior (SC4), INFERGAT still outperforms other
unsupervised baselines, achieving F1 around 0.60-0.67 with AUC
~0.76-0.80. Overall, these trends confirm that stronger prior/model
knowledge markedly improves topology inference, whereas limited
priors and no labels (SC3 and SC4) lead to the main loss in accuracy.

A. Effect of Topology Density. To investigate the influence of
topological characteristics on topology inference attacks, Figure 2 re-
ports the F1-Scores for four attack scenarios on the CIFAR10 dataset.
Topology density, defined as %, reflects overall connectivity.

Overall, the four scenarios exhibit relatively stable performance
across the full range of densities. For SC3 and SC4, which represent
unsupervised attacks, denser topologies provide richer edge infor-
mation that supports the recovery of the topology, leading to grad-
ually improved performance as connectivity increases. In contrast,
SC1 and SC2 achieve comparatively high scores across all densities,
reflecting their ability to exploit both sparse and dense settings. The
shaded areas further indicate that variability is higher at very low
densities, where limited connections introduce uncertainty, while the
results become stable once sufficient connectivity is reached.



B. Effect of Network Size. To evaluate the scalability of the in-
ference algorithms under different attack scenarios, Figure 3 illus-
trates the variation in F1-Scores as the network size increases. SC1
and SC2 remain relatively stable across different numbers of nodes,
indicating robustness to changes in network size. In contrast, SC3
and SC4 exhibit a clear decline as the number of nodes grows. This
behavior is explained by the fact that larger networks typically corre-
spond to lower densities, which reduce the amount of effective edge
information available for unsupervised inference. Consequently, the
performance of SC3 and SC4 degrades with increasing network size,
whereas the supervised scenarios (SC1 and SC2) maintain more sta-
ble effectiveness.

ATTACK F1-SCORE

10 20 30 40 50 60 70 80 EY
NUMBER OF NODES

Figure 3. Impact of network size on the F1-scores achieved by each attack
scenario on the CIFAR10 dataset.

7 Mitigation

The effectiveness of the proposed topology inference attacks indi-
cates that topology in DFL systems can be discerned solely by an-
alyzing model behaviors. This observation highlights the security
and privacy concerns of DFL systems. This section proposes defense
strategies to mitigate these vulnerabilities within DFL environments.

7.1 Reduce Overfitting

As illustrated in Figure 4, each bar represents a specific training con-
figuration: gray bars denote IID data distributions without augmenta-
tion and blue bars correspond to non-IID data distributions (Dirichlet
a=0.1).

3 LOCAL EPOCHS, NO AUG., IID 3 LOCAL EPOCHS, NO AUG, NON-IID
EEN 10 LOCAL EPOCHS, NO AUG, IID  mmml 10 LOCAL EPOCHS, NO AUG, NON-IID

0.8

F1-SCORE

o
ES
1

0.24

0.0-

SC1 sC2 SC3 sc4
ATTACK SCENARIO

Figure 4. Impact of local training epochs and data heterogeneity on the
F1-Score of topology inference attacks in the CIFAR10 dataset.

Consistent with findings in prior inference attack literature, the
success of topology inference attacks is closely tied to the degree
of overfitting in the target model. To validate this, experiments were
conducted on the CIFAR10 dataset under four attack scenarios. By
increasing the number of local training epochs from 3 to 10, the level
of overfitting was elevated. Results show that, across all examined
topologies, this change consistently improves the F1-Scores of at-
tacks. This observation confirms that overfitting exacerbates the risk
of topological information leakage in DFL systems.

7.2 Data Heterogeneity

Furthermore, data distribution among clients plays a critical role in
attack effectiveness. Non-1ID data were simulated using a Dirichlet
distribution with v = 0.1 to assess this. The results, represented
by the blue bars, indicate a noticeable decline in attack performance
across all scenarios, with the effect being most prominent in scenar-
ios 3 and 4. This suggests that increased data heterogeneity intro-
duces higher model divergence, which in turn hampers the inference
model’s ability to exploit overfitted representations for edge predic-
tion.

7.3 Differential Privacy

Differential Privacy (DP) is a common mitigation for privacy in
FL [2]. DP is integrated into DFL parameter sharing and its effect on
topology inference is assessed. On CIFAR10 (ER_0.5) under SCI1,
attack F1 drops from 0.889 — 0.687 (10 nodes) and 0.824 — 0.637
(20 nodes), approximately 23% reductions, indicating effective mit-
igation.

Overall, these findings imply that reducing overfitting through
fewer local training epochs and increasing data heterogeneity are
promising directions for mitigating topology inference risks in DFL.

8 Conclusion and Future Work

This work introduces a novel topology inference attack against DFL,
exposing critical vulnerabilities related to privacy and information
leakage. By analyzing local models, attackers can accurately infer
the overlay topology, one of DFL’s most sensitive assets, highlighting
the system’s susceptibility to privacy breaches. The study explores
various attack scenarios and develops tailored metrics, models, and
algorithms, with experiments confirming the feasibility and effec-
tiveness of these attacks. Furthermore, network size, density, model
overfitting, and data heterogeneity significantly influence attack suc-
cess. Mitigation strategies, such as increasing data heterogeneity, can
enhance model generalization and reduce the risk of data leakage.

The present work focuses on attack scenarios 1 through 4 and does
not yet address the most challenging attack scenario 5. Future re-
search plans include exploring feasible strategies for Scenario 5 and
extending the evaluations to a wider range of datasets and topolo-
gies. Besides, more attack metrics and strategies will be developed
to improve attack effectiveness.

Acknowledgment

This work has been partially supported by (a) the Swiss Federal
Office for Defense Procurement (armasuisse) with the CyberDFL
project (CYD-C-2020003) and (b) the University of Ziirich UZH.



References

(1]

[2]

(3]

[4]

(51

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

E. T. M. Beltran, A. L. P Gomez, C. Feng, P. M. S. Sanchez, S. L.
Bernal, G. Bovet, M. G. Pérez, G. M. Pérez, and A. H. Celdran. Fed-
stellar: A platform for decentralized federated learning. Expert Systems
with Applications, 242:122861, 2024.

E. T. Beltran, M. Q. Pérez, P. M. S. Séanchez, S. L. Bernal, G. Bovet,
M. G. Pérez, G. M. Pérez, and A. H. Celdran. Decentralized feder-
ated learning: Fundamentals, state of the art, frameworks, trends, and
challenges. IEEE Communications Surveys and Tutorials, 25(4):2983—
3013, 2023. doi: 10.1109/COMST.2023.3315746.

R. Castro, M. Coates, G. Liang, R. Nowak, and B. Yu. Network tomog-
raphy: Recent developments, 2004.

A. Coates, A. O. Hero III, R. Nowak, and B. Yu. Internet tomography.
IEEE Signal processing magazine, 19(3):47-65, 2002.

S. Dayal, D. Alhadidi, A. Abbasi Tadi, and N. Mohammed. Compara-
tive analysis of membership inference attacks in federated learning. In
Proceedings of the 27th International Database Engineered Applica-
tions Symposium, pages 185-192, 2023.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on
computer vision and pattern recognition, pages 248-255. Ieee, 2009.
C. Feng, A. H. Celdran, J. Von der Assen, E. T. M. Beltran, G. Bovet,
and B. Stiller. Dart: A solution for decentralized federated learning
model robustness analysis. Array, page 100360, 2024.

C. Feng, A. H. Celdran, J. Han, H. Ren, X. Cheng, Z. Zeng,
L. Krauter, G. Bovet, and B. Stiller. A crowdsensing intrusion detec-
tion dataset for decentralized federated learning models. arXiv preprint
arXiv:2507.13313, 2025.

M. Fredrikson, S. Jha, and T. Ristenpart. Model inversion attacks that
exploit confidence information and basic countermeasures. In Proceed-
ings of the 22nd ACM SIGSAC conference on computer and communi-
cations security, pages 1322-1333, 2015.

K. Ganju, Q. Wang, W. Yang, C. A. Gunter, and N. Borisov. Property
inference attacks on fully connected neural networks using permutation
invariant representations. In Proceedings of the 2018 ACM SIGSAC
conference on computer and communications security, pages 619-633,
2018.

M. Gomez-Rodriguez, J. Leskovec, and A. Krause. Inferring networks
of diffusion and influence. ACM Transactions on Knowledge Discovery
from Data (TKDD), 5(4):1-37, 2012.

N. Z. Gong and B. Liu. Attribute inference attacks in online social
networks. ACM Transactions on Privacy and Security (TOPS), 21(1):
1-30, 2018.

N. Z. Gong, W. Xu, L. Huang, P. Mittal, E. Stefanov, V. Sekar, and
D. Song. Evolution of social-attribute networks: measurements, model-
ing, and implications using google+. In Proceedings of the 2012 internet
measurement conference, pages 131-144, 2012.

W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learn-
ing on large graphs. Advances in neural information processing systems,
30, 2017.

R. Hartert, S. Vissicchio, P. Schaus, O. Bonaventure, C. Filsfils,
T. Telkamp, and P. Francois. A declarative and expressive approach to
control forwarding paths in carrier-grade networks. ACM SIGCOMM
computer communication review, 45(4):15-28, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770-778, 2016.

T. Hou, Z. Qu, T. Wang, Z. Lu, and Y. Liu. Proto: Proactive topology ob-
fuscation against adversarial network topology inference. In /IEEE IN-
FOCOM 2020-1EEE Conference on Computer Communications, pages
1598-1607. IEEE, 2020.

H. Hu, Z. Salcic, L. Sun, G. Dobbie, P. S. Yu, and X. Zhang. Member-
ship inference attacks on machine learning: A survey. ACM Computing
Surveys (CSUR), 54(11s):1-37, 2022.

X. Jin, W.-P. K. Yiu, S.-H. G. Chan, and Y. Wang. Network topology
inference based on end-to-end measurements. IEEE Journal on Selected
areas in Communications, 24(12):2182-2195, 2006.

A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features
from tiny images, 2009.

Y. LeCun and C. Cortes. MNIST handwritten digit database. http:
/fyann.lecun.com/exdb/mnist/, 2010. Accessed: 2016-01-14.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas.
Communication-efficient learning of deep networks from decentralized
data. In Artificial intelligence and statistics, pages 1273—1282. PMLR,
2017.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, A. Y. Ng, et al.
Reading digits in natural images with unsupervised feature learning. In

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

NIPS workshop on deep learning and unsupervised feature learning,
volume 2011, page 4. Granada, 2011.

S. Orlowski, R. Wessily, M. Piéro, and A. Tomaszewski. Sndlib
1.0—survivable network design library. Networks: An International
Journal, 55(3):276-286, 2010.

A. Salem, Y. Zhang, M. Humbert, P. Berrang, M. Fritz, and M. Backes.
Ml-leaks: Model and data independent membership inference at-
tacks and defenses on machine learning models. arXiv preprint
arXiv:1806.01246, 2018.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks, 2019. URL
https://arxiv.org/abs/1801.04381.

L. Sha. Imagenet10 (kaggle version). https://www.kaggle.com/datasets/
liusha249/imagenet10, 2022.

R. Shokri, M. Stronati, C. Song, and V. Shmatikov.
inference attacks against machine learning models.
Symposium on Security and Privacy (SP), pages 3-18, 2017.
10.1109/SP.2017.41.

S. Thakoor, C. Tallec, M. G. Azar, R. Munos, P. Velickovi¢, and
M. Valko. Bootstrapped representation learning on graphs. In ICLR
2021 workshop on geometrical and topological representation learn-
ing, 2021.

Y. Wang, Y.-X. Wang, and A. Singh. Graph connectivity in noisy sparse
subspace clustering. In Artificial Intelligence and Statistics, pages 538—
546. PMLR, 2016.

H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: A novel
image dataset for benchmarking machine learning algorithms.
arXiv:1708.07747 [cs, stat], Sept. 2017. doi: 10.48550/arXiv.1708.
07747. Accessed: 2023-07-11.

X. Yin, Y. Zhu, and J. Hu. A comprehensive survey of privacy-
preserving federated learning: A taxonomy, review, and future direc-
tions. ACM Computing Surveys (CSUR), 54(6):1-36, 2021.

W. Yu, M. Luo, P. Zhou, C. Si, Y. Zhou, X. Wang, J. Feng, and S. Yan.
Metaformer is actually what you need for vision. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
pages 10819-10829, 2022.

M. Zhang and Y. Chen. Link prediction based on graph neural networks.
Advances in neural information processing systems, 31, 2018.

Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L. Wang. Deep graph
contrastive representation learning. arXiv preprint arXiv:2006.04131,
2020.

Membership
In 2017 IEEE
doi:



A appendix
A.1 Topology Information

This work utilizes two categories of topologies: synthetic and real-world. The synthetic topologies include ring, star, and three Erd6s-Rényi
(ER) graphs with connection probabilities p =0.3, 0.5, and 0.7. The real-world topologies consist of 27 network topologies collected from the
two public network repositories: SNDIib® and DEFO?, which reflect realistic communication and infrastructure networks.

To characterize the structure of different graphs, this work reports the following topological statistics:

Number of Nodes: The total number of distinct vertices in the graph, denoted as N.

Number of Edges: The total number of edges connecting node pairs, denoted as E.

Average Degree: The mean number of edges connected to each node, calculated as %

Density: The ratio of the number of actual edges to the maximum possible number of edges, given by % This metric reflects the
graph’s overall connectivity or sparsity.

A.1.1 Synthetic Topology Characterize Statistics

To evaluate the robustness and generalizability of the proposed method under various topology conditions, this work considers a set of synthetic
topologies ranging from sparse to dense:

o STAR graphs represent extremely sparse topologies, where most nodes are only connected to a single central hub. These graphs have low
average degree and density, reflecting minimal connectivity.

e RING graphs are sparse structures with uniform and low node degrees. While slightly denser than STAR graphs, they remain sparse and
exhibit limited path diversity.

o ER graphs with varying edge probabilities (p = 0.3, 0.5, and 0.7) capture a continuum of connectivity levels. As p increases, the average
degree and edge density grows, gradually transitioning the graph from a sparse to a dense structure.

This selection enables controlled evaluation across different topological regimes, ensuring that performance is not biased toward a specific
graph sparsity or structure. The characterize statistics of synthetic topologies are shown in Table 2

Table 2. Topological Statistics of Different Synthetic Topology

Topology Number of Nodes Number of Edges  Average Degree  Density
ER(p = 0.3) 10 16 3.20 0.36
ER(p = 0.3) 30 115 7.67 0.26
ER(p = 0.3) 20 50 5.00 0.26
ER(p = 0.5) 10 23 4.60 0.51
ER(p = 0.5) 30 202 13.47 0.46
ER(p = 0.5) 20 87 8.70 0.46
ER(p = 0.7) 20 132 13.20 0.69
ER(p = 0.7) 30 298 19.87 0.69
ER(p = 0.7) 10 28 5.60 0.62
RING 10 10 2.00 0.22
RING 20 20 2.00 0.11
RING 30 30 2.00 0.07
STAR 10 9 1.80 0.20
STAR 20 19 1.90 0.10
STAR 30 29 1.93 0.07

A.1.2  Real-world Topology Characterize Statistics

To evaluate the generalizability and robustness of the proposed approach across diverse topological structures, experiments were conducted
on a wide range of real-world network topologies. These networks vary significantly in size, ranging from small-scale graphs with only 10
nodes to large-scale structures with up to 87 nodes. The topologies are sourced from realistic communication infrastructures, including national
research and education networks (NRENs) and Internet service provider (ISP) backbone networks, which reflect actual deployment scenarios.

A statistical overview of these networks is provided in Table 3. Compared to synthetic graphs, real-world networks exhibit higher structural
variability in terms of node degree, connectivity, and scale. Despite this diversity, they are generally characterized by sparse connectivity,
as indicated by low edge densities and moderate average degrees. This sparsity is a common property of real communication networks and
introduces specific challenges to graph data.

2 Available in: https:/sndlib.put.poznan.pl/home.action
3 Available in: https://sites.uclouvain.be/defo/



Table 3. Topological statistics of real-world and synthetic networks

Topology Number of Nodes Number of Edges  Average Degree  Density
ABILENE 12 15 2.50 0.11
ATLANTA 15 22 2.93 0.10
COST266 37 57 3.08 0.04
DFN-GWIN 11 47 8.55 0.43
DI-YUAN 11 42 7.64 0.38
FRANCE 25 45 3.60 0.08
GEANT 22 72 6.55 0.16
GERMANY50 50 88 3.52 0.04
GIUL39 39 172 8.82 0.12
INDIA35 35 80 4.57 0.07
JANOS-US 26 84 6.46 0.13
JANOS-US-CA 39 122 6.26 0.08
NEWYORK 16 49 6.13 0.20
NOBEL-EU 28 41 2.93 0.05
NOBEL-GERMANY 17 26 3.06 0.10
NOBEL-US 14 21 3.00 0.12
NORWAY 27 51 3.78 0.07
PDH 11 34 6.18 0.31
PIORO40 40 89 445 0.06
POLSKA 12 18 3.00 0.14
RF1755 87 322 7.40 0.04
RF3967 79 294 7.44 0.05
SUN 27 102 7.56 0.15
SYNTHS50 50 276 11.04 0.11
TA1 24 51 4.25 0.09
TA2 65 108 3.32 0.03
ZIB54 54 80 2.96 0.03

A.2 Attack Metrics Distribution

This experiment comprehensively demonstrates the distribution of attack metrics in the edge and non-edge groups across CIFAR10 (Figure 5),
MNIST(Figure 6), FMNIST(Figure 7), SVHN(Figure 8), ImageNet10 (Figure 9), and Malware (Figure 10) datasets in various topologies. It can
be observed that, in most cases, the distribution of relative loss is more concentrated than that of relative entropy and sensitivity. Additionally,
relative loss exhibits less overlap between the edge group and the non-edge group. Therefore, this work selects relative loss as the attack metric
when the attacker has access to both local data and the local model, i.e., attack scenarios 1 and 3.

Regarding similarity-based metrics, the cosine similarity between connected models is distinctly higher than that between non-connected
models, displaying no overlap between the distributions. On the other hand, the curvature divergence and Euclidean similarity show a con-
siderably more significant degree of overlap. Thus, the cosine similarity has been adopted as the attack metric in scenarios where only local
models are available (attack scenarios 2 and 4).
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Figure 5. Normalized distributions of attack metrics in various topology DFL systems trained on the CIFAR10 dataset. The “edge group” corresponds to
metrics calculated between directly connected nodes, while the “non-edge group” corresponds to metrics calculated between nodes with no direct connection.
In each subfigure, the attack metrics are respectively: Relative Loss, Relative Entropy, Relative Sensitivity, Cosine Similarity, Euclidean Similarity, and
Curvature Divergence.
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Figure 6. Normalized distributions of attack metrics in various topology DFL systems trained on the MNIST dataset. The “edge group” corresponds to
metrics calculated between directly connected nodes, while the “non-edge group” corresponds to metrics calculated between nodes with no direct connection.
In each subfigure, the attack metrics are respectively: Relative Loss, Relative Entropy, Relative Sensitivity, Cosine Similarity, Euclidean Similarity, and
Curvature Divergence.
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Figure 7. Normalized distributions of attack metrics in various topology DFL systems trained on the FMNIST dataset. The “edge group” corresponds to

metrics calculated between directly connected nodes, while the “non-edge group” corresponds to metrics calculated between nodes with no direct connection.

In each subfigure, the attack metrics are respectively: Relative Loss, Relative Entropy, Relative Sensitivity, Cosine Similarity, Euclidean Similarity, and

Curvature Divergence.




STAR_10

1.00
075

o

o 050

z o2
0.00

-0.25

1.00
Q075
'

3 os0
& o025

0.00

ER 0.7_10

GEANT_22

ATLANTA_15

FRANCE_25

1.00

075

050

025

JANOS-US_26

0.00
-0.25

NOBEL-GERMANY_17

PIORO40_40

100
075
8

' 0.50
Fo2s

0.00

[ EDGE

BN NON-EDGE

050

NEWYORK_16
°

°
s

NOBEL-EU_28

i

5

NORWAY_27
°

e~y

ZIB54_54

H“fr H“ s JH»W H“lr
VT T I )
SRR Y2 0A RN ANNE NN
MORINE b ) 40949 440!
SRR YA RARE (NARRRCIN RN
SRR ISEARRAESIAA IR SIAAL
REARRSEIXXARR A NRNARA X EAAKi
SRR AR S AR AT S XARY
SRARRAEINE, ATHE 494000
XK 9 ISRARNRE'SXAAR:
% X

Figure 8. Normalized distributions of attack metrics in various topology DFL systems trained on the SVHN dataset. The “edge group” corresponds to
metrics calculated between directly connected nodes, while the “non-edge group” corresponds to metrics calculated between nodes with no direct connection.
In each subfigure, the attack metrics are respectively: Relative Loss, Relative Entropy, Relative Sensitivity, Cosine Similarity, Euclidean Similarity, and
Curvature Divergence.
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Figure 9. Normalized distributions of attack metrics in various topology DFL systems trained on the ImageNet10 dataset. The “edge group” corresponds to
metrics calculated between directly connected nodes, while the “non-edge group” corresponds to metrics calculated between nodes with no direct connection.
In each subfigure, the attack metrics are respectively: Relative Loss, Relative Entropy, Relative Sensitivity, Cosine Similarity, Euclidean Similarity, and
Curvature Divergence.
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Figure 10. Normalized distributions of attack metrics in various topology DFL systems trained on the Malware dataset. The “edge group” corresponds to
metrics calculated between directly connected nodes, while the “non-edge group” corresponds to metrics calculated between nodes with no direct connection.
In each subfigure, the attack metrics are respectively: Relative Loss, Relative Entropy, Relative Sensitivity, Cosine Similarity, Euclidean Similarity, and
Curvature Divergence.



