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Abstract

The number of Cyber-Physical Systems (CPS) available in industrial environments is growing mainly due to the evolution
of the Internet-of-Things (IoT) paradigm. In such a context, radio frequency spectrum sensing in industrial scenarios is one
of the most interesting applications of CPS due to the scarcity of the spectrum. Despite the benefits of operational platforms,
IoT spectrum sensors are vulnerable to heterogeneous malware. The usage of behavioral fingerprinting and machine learning
has shown merit in detecting cyberattacks. Still, there exist challenges in terms of (i) designing, deploying, and evaluating
ML-based fingerprinting solutions able to detect malware attacks affecting real IoT spectrum sensors, (ii) analyzing the
suitability of kernel events to create stable and precise fingerprints of spectrum sensors, and (iii) detecting recent malware
samples affecting real IoT spectrum sensors of crowdsensing platforms. Thus, this work presents a detection framework that
applies device behavioral fingerprinting and machine learning to detect anomalies and classify different botnets, rootkits,
backdoors, ransomware and cryptojackers affecting real IoT spectrum sensors. Kernel events from CPU, memory, network,
file system, scheduler, drivers, and random number generation have been analyzed, selected, and monitored to create device
behavioral fingerprints. During testing, an IoT spectrum sensor of the ElectroSense platform has been infected with ten
recent malware samples (two botnets, three rootkits, three backdoors, one ransomware, and one cryptojacker) to measure
the detection performance of the framework in two different network configurations. Both supervised and semi-supervised
approaches provided promising results when detecting and classifying malicious behaviors from the eight previous malware
and seven normal behaviors. In particular, the framework obtained 0.88-0.90 true positive rate when detecting the previous
malicious behaviors as unseen or zero-day attacks and 0.94-0.96 F1-score when classifying them.
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the Industry 4.0 umbrella are enabled by crowdsourcing plat-
forms, being radio frequency spectrum sensing one of the
most promising ones due to the scarcity of the radio frequency
spectrum [2] and the increment of cyberthreats jamming or
interfering critical radio transmissions [3]. In such a con-
text, ElectroSense [4] is an IoT crowd-sensing platform that
senses radio frequency spectrum in populated regions of the
world and makes data available in real-time. Thus, countless
resource-constrained sensors, implemented in Raspberry Pis
or single-board devices, are deployed worldwide to collect
spectrum data and send them to a backend platform. After
analyzing and processing these data in the backend, different
services, such as spectrum monitor or spectrum decoder, are
provided through the ElectroSense Web site [5].

Despite the advantages of platforms using resource-
constrained devices to sense the spectrum, they are vulnera-
ble to cyberattacks. Vulnerabilities are influenced by the poor
security mechanisms implemented in sensors due to a lack of
resources or short development time. In this sense, cyberat-
tacks affecting spectrum sensors in general, and ElectroSense
sensors in particular, can be launched by different types of
malware. Still, botnets [6], rootkits [7], backdoors [8], ran-
somware [9], and cryptojackers [10] have been highlighted as
some of the most harmful families. Botnets are particularly
interesting for crowdsourcing scenarios due to the number
of devices and the possibility of recruiting them as zom-
bies to launch Distributed Denial-of-Service (DDoS) attacks.
Rootkits are also very powerful, because of their capabilities
to hide unauthorized or illegal activities and to pivot to other
devices in a subsequent phase. Backdoors allow unauthorized
users to access devices and systems to control the device func-
tionality and steal sensitive data or cryptographical material
managed by spectrum sensors. Ransomware encrypts critical
files asking for money to recover them. Finally, cryptojackers
exploit the device processing resources to generate cryp-
tocurrency and extract benefits from the infected devices.
In summary, the previous five families of malware are some
of the most dangerous affecting [oT Spectrum sensors due to
their impact not only on the sensors availability and integrity,
but also on the privacy, confidentiality, and integrity of sen-
sitive data [11].

The literature has proposed different mechanisms and
approaches to detect botnets, rootkits, backdoors, ran-
somware, cryptojackers, and other malware affecting dif-
ferent devices. On the one hand, classic static analysis
approaches focus on detecting well-known malware sig-
natures. However, signature-based approaches are useless
against novel malware samples or small variations of the
existing ones. To improve these drawbacks, dynamic anal-
ysis methods, such as behavioral fingerprinting [12], have
gained popularity to detect unseen or zero-day attacks. This
technique consists of monitoring the device behavior with the
hypothesis that the data collected should allow differentiating
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between the “normal” behavior of the device and the behav-
ior, when it is infected by malware. In this sense, Machine
and Deep Learning (ML/DL) techniques play a key role in
achieving this goal and obtaining a promising performance
while reducing the false positive rate. In particular, the life-
cycle of ML/DL-based device behavioral fingerprinting starts
with the data collection process, when the device is working
normally (assuring that it is not attacked). This data is used
to train ML/DL-based models. If the detection mechanism
pretends to detect anomalies produced by unseen attacks
(zero-day attacks), only the normal behavior is needed to
train the models. However, if the detection approach follows
aclassification approach, the behavior under attack must also
be modeled and labeled properly during the training phase.
Finally, the device is infected with malware during a test-
ing phase, and the behavior under attack is evaluated against
previous models.

Behavioral fingerprinting benefits from the simplicity,
repetitive behavior, and reduced functionality of devices.
However, in the field of IoT Spectrum sensing, the following
open challenges need more investigation effort.

— There is a lack of related work analyzing the suitability
and performance of device fingerprinting techniques to
detect attacks affecting IoT Spectrum sensors. Existing
literature focuses on network traffic analysis to detect [oT
malware. However, it is not always possible in crowd-
sensing platforms where sensors are connected to private
networks. Furthermore, some malware behaviors are not
detectable through the network.

— There is a lack of solution considering and evaluating the
suitability of the usage of kernel events as data source to
create stable and precise fingerprints for IoT devices in
general and spectrum sensors in particular.

— There is a lack of fingerprinting solutions designed
and evaluated in real crowdsensing platforms that use
resource-constrained and single-board sensors affected
by different families of recent malware.

— Most of the fingerprinting solutions are focused on
generic devices without limitations in terms of data
sources and resources. These approaches have not been
evaluated (and might not be deployed) on IoT spectrum
sensors because selected data sources and events are not
available in such devices.

— There is a need for fingerprinting solutions for IoT
evaluating their detection performance with recent and
ToT-oriented malware families, such as botnets, rootkits,
backdoors, ransomware, and cryptojackers.

— There is a necessity of comparing the detection perfor-
mance of fingerprinting solutions detecting anomalies
and classifying recent malware affecting IoT spectrum
sensors under different network conditions.
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Therefore, the key contribution of this work is the design
and implementation of an intelligent and modular detec-
tion framework that uses device behavioral fingerprinting
and ML to detect anomalies and classify different bot-
nets, rootkits, backdoors, ransomware, and cryptojackers
affecting IoT spectrum sensors. The framework has been
implemented as a Proof-of-Concept (PoC) composed of
two main modules. The first module is deployed on the
resource-constrained spectrum sensor that will be secured.
It monitors kernel events, from seven different data sources
(CPU, memory, network interface, file system, scheduler,
random number generation, and device drivers). The second
module is allocated on an external server and is in charge
of (i) pre-processing behavioral data, (ii) training ML-based
models for anomaly detection and classification tasks, and
(iii) evaluating them to detect cyberattacks. ElectroSense
has been selected as a crowdsensing platform to validate the
usefulness of the proposed framework. In particular, a Rasp-
berry Pi 4 acting as an ElectroSense sensor has been infected
with two botnets (Bashlite [13] and Mirai [14]), three rootk-
its (Diamorphine [15], Beurk [16], and Bdvl [17]), three
backdoors (HttpBackdoor [18], Backdoor [19], and TheT-
ick [20]), one Ransomware (Ransomware_PoC [21]) and one
Cryptojacker (Linux.MulDrop.14 [22]). Finally, two experi-
ments were performed to evaluate the detection performance
of the framework from anomaly detection and classification
prisms and with different network configurations (with more
and less network packet overhead and stability). Promising
results across these experiments prove that the main contri-
bution of this work, the framework, is valid and applicable
in spectrum sensors.

The remainder of this paper is organized as follows. While
Sect. 2 reviews solutions using device behavior fingerprinting
to detect cyberattacks, Sect. 3 provides key design details
of the ML-oriented framework detecting malware affecting
spectrum sensors. Based on Sect. 4, depicting the scenario
and conditions where the proposed solution will be deployed
and tested, Sect. 5 outlines the deployment of the proposed
framework and its performance experiments. Then, Sect. 6
summarizes and discusses the advantages and limitations of
the proposed framework. Finally, Sect. 7 draws conclusions
and outlines next steps.

2 Related work

Device fingerprinting and its applicability to malware detec-
tion was proposed for a few years in the scientific community.
Table 1) summarizes the main aspects of the reviewed solu-
tions, which details are provided below.

One research area of device fingerprinting focuses on
the usage of Hardware Performance Counters (HPCs) to
detect cyberattacks affecting devices. In this context, the

authors of [24] focused on modern microprocessors and
demonstrated the importance of ML Classifiers and the
trade-off between the type and number of HPCs, and the
malware detection performance. The authors proposed an
ensemble learning classifiers to boost the performance of
general ML classifiers. Results when testing against 100
malware from VirusTotal showed that boosting achieved a
performance improvement of up to 17%. [25] trained Hid-
den Markov Models and Long Short Term Memory neural
networks (LSTM) with HPCs of embedded devices for clas-
sification, offline anomaly detection, and online anomaly
detection tasks. The authors achieved promising detection
results with both algorithms and detection scenarios. Cronin
and Yang [26] proposed a solution detecting malware in
mobile devices. In such a context, HPCs modeling the entire
device behavior were modeled using Multi-layer Neural Net-
works (MLP). In particular, 25 malware (trojans, adware, and
kalfere) from VirusShare were used to test the performance
with known and zero-day attacks. Pudukotai Dinakarrao
et al. [27] combined the ML-based malware identification
with a confinement policy, where devices suspected of being
infected are separated from the rest of the network. The
authors reported 87% accuracy. Only few approaches in the
literature discuss APIs for accessing HPCs, e.g., [29]. In par-
ticular, the authors criticized other approaches, exposing and
explaining selected flaws. They concluded with experiments
to prove inter-process noise impact on performance and non-
determinism in HPC measurements, which are the two main
problems highlighted. Kadiyala et al. [30] address the pre-
viously mentioned non-determinism by applying ANOVA
(Analysis of Variance) on available hardware and hardware
cache events per system call. Later, this solution applies
ML-based classification algorithms to identify 332 ARM-
based malware from VirusShare and OpenMalware. From
another perspective, [28] combined the use of HPCs with
other sources of data such as memory dumps as greyscale
images and API call sequences to classify malware.

System calls are another type of data source considered in
behavior fingerprinting to detect cyberattacks affecting het-
erogeneous devices. De Lorenzo et al. [32] presented VizMal,
a solution using system call invocations and images with
boxes to detect malware on Android. Each box represents one
execution interval, with its color indicating the malicious-
ness of that interval, and the size is the activity level in terms
of system calls. After training a Long Short-Term Memory
(LSTM) Neural Network with samples labeled as malware
or non-malware, the results showed a promising direction
toward malware detection. VMGuard [33] is another intelli-
gent security architecture that used system calls and ML to
detect malware in a cloud scenario with Virtual Machines
(VM). VMGuard monitors the processes and system calls of
VMs to create a ‘Bag of n-grams (BonG)’ integrated with
the Term Frequency-Inverse Document Frequency (TF-IDF)
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method. The results obtained by a Random Forest demon-
strate the applicability of VMGuard to classify intrusions.
Zhou and Makris [31] proposed a system to detect intru-
sions in microprocessors. The validity of system call routines
executed in response to a system call was evaluated using
a Bloom filter. Perfect detection performance was reached
with five different rootkits. Finally, [40] presented a hardware
solution to achieve better security and performance in gen-
eral computers. They considered hardware events and used
different ML classifiers to obtain 99% detection accuracy.

The usage of internal resources is another data source
used to create fingerprints. In this sense, [34] presented an
anomaly detection mechanism that detects Denial-of-Service
(DoS) attacks affecting cloud scenarios. This work used CPU
resource statistics of micro-services running on cloud archi-
tectures and auto-regressive statistical models to detect DoS
attacks. The authors concluded that the models accurately
detect anomalous behaviors for applications with cyclical
trends. RADS (Real-time Anomaly Detection System) [35] is
another work that used resource usage fingerprinting to detect
DDoS attacks affecting cloud data centers. This solution
considered one class classification algorithm and a window-
based time series analysis to detect VM-level anomalies
due to DDoS and crypto-mining attacks. Evaluation results
demonstrated that RADS achieves 90-95% accuracy with a
low false-positive rate of 0-3%.

Kernel events are another data source of behavioral finger-
printing used to detect attacks. The authors of [39] proposed
Peeler, a novel ransomware detection system relying on
behavioral characteristics such as stealth operations per-
formed before the attack, file I/O request patterns, process
spawning, and correlations among kernel-level events. The
experimental results of Peleer achieved more than 99% detec-
tion rate with 0.58% false-positive rate against 43 distinct
ransomware families. AIDIS [41] is an Advanced Intrusion
Detection and Interpretation System capable of explaining
anomalous behavior within a network-enabled user session
by considering kernel event anomalies identified through
their deviation from a set of baseline process graphs. The
authors implemented anomaly classification through a set of
competency questions applied to graph template deviations
and evaluated the approach using both Random Forest and
linear kernel support vector machines. Finally, DAIMD [38]
is a solution for IoT that monitors memory, network, virtual
file system, process, and system calls to detect [oT Malware.
Using this data, DAIMD creates images used to train a convo-
lution neural network (CNN) model to classify images into
benign and malicious. Although not focused on malware,
[42] and [43] worked on the detection of spectrum sensing
attacks in IoT spectrum sensors using kernel events. In [42],
the authors employed an autoencoder, achieving 0.6—-1 TPR
and 0.9-0.98 TNR. In contrast, [43] applied a robust Feder-

@ Springer

ated Learning perspective both for classification and anomaly
detection.

Regarding rule-based intrusion detection in IoT, [36] pro-
posed the generation of a state-machine during the testing
and debugging phase of Medical IoT devices. In other work
[37], the same authors improved their previous proposal
by adding a 2-layer Fuzzy-based hierarchical context-aware
aspect-oriented model for misbehavior detection. However,
these solutions are focused on the sensor/actuator parts of a
CPS and not on the running software processes and operating
system.

As one of the main conclusions from this review, there
is no fingerprinting solution detecting cybersecurity issues
in IoT Spectrum sensors, which is the main contribution
of this work. Furthermore, there is no solution analyzing
the suitability of ML techniques to detect recent malware
samples affecting [oT spectrum sensors. Also, it can be
appreciated that there is a preference for solutions applicable
to computers, servers, and devices without computational
limitations. However, the suitability of these solutions for
resource-constrained IoT devices is not analyzed. Besides,
there is a need for solutions calculating the performance of
fingerprinting when detecting malware in real IoT platforms,
a key factor that motivates the present work.

3 Framework design

The main objective of this work is to create a framework that
applies device fingerprinting and ML to detect heterogeneous
malware affecting IoT spectrum sensors. In such a context,
the design details of the proposed framework address single-
board spectrum sensors, but they are generic enough to cover
other devices with similar capabilities. A general diagram of
the proposed solution is depicted in Fig. 1, which covers the
behavioral data acquisition (implemented in the spectrum
sensor) to the analysis and detection tasks (implemented in
a server). At this point, it is important to mention that the
reaction module is out of the scope of this work.

The main functionality of these framework modules can
be summarized as follows:

— Data gathering It periodically monitors different
behavioral-based kernel events of the CPU, virtual mem-
ory, file system, network interface, scheduler, device
drivers, and random number generation families.

— Data sending & data receiving These two modules are
deployed on the sensor and server, respectively, allowing
the sensor to send behavioral data to the server and the
server to receive those.

— Data pre-processing It removes constant and noisy
behavioral data that does not provide relevant informa-
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Fig.1 Framework design

tion. It also normalizes data and extracts any additional
features.

— Anomaly detection & anomaly classifier These two mod-
ules are focused on detecting anomalies produced by
zero-day attacks, and classifying well-known malware
samples. Both modules implement the training and eval-
uation functions of a typical ML-based detection system.
Their main differences rely on the data used for training,
and the ML algorithms. In terms of data, the anomaly
detection approach (semisupervised) is trained only with
normal data to enable the detection of any malware (zero-
day attack) affecting the device behavior. Regarding the
classification approach (supervised), both normal and
under-attack data are used during training.

3.1 Data gathering

The selection and acquisition of events belonging to differ-
ent data sources are essential aspects of solutions based on
behavioral fingerprinting, as they heavily influence the sys-
tem detection performance.

In this work, the main criteria to select the final list of
events was to cover every device area while keeping the
events as generic as possible (e.g., a network usage event is
more general than a TCP usage one). Covering every device
area such as network, memory, or CPU helps generate a fin-

gerprint more complete and adaptable to zero-day attacks. In
this sense, a solution detecting rootkits due to CPU usage but
missing network data might be useless against botnets even if
the network events are highly affected. The reason behind the
preference for general events is the reduction of specific or
low-level events tracked while maintaining as much behav-
ioral information as possible. It also improves compatibility
across heterogeneous devices. Finally, it was considered as
not a good practice to detect zero-day attacks the fact of
building the list of monitored events according to the behav-
ioral analysis of a reduced number of attacks affecting the
sensor (as done in many works of the literature), since the
behavior of other families is forgotten. Considering all the
previous aspects, the proposed framework built a list of ker-
nel events belonging to the following seven families of data
sources: CPU, virtual memory, network, file system, sched-
uler, device drivers, and random number generation.

3.2 Data sending and receiving

On the one hand, the Data Sensing module is deployed on
the spectrum sensor, and it is in charge of periodically send-
ing the behavioral data acquired by the previous module. On
the other hand, the Data Receiving module is allocated in a
server (or servers) and receives the previous data for subse-
quent data pre-processing and analysis. The data may be sent
to a single centralized server that concatenates all available
data. Still, it is also possible to implement the platform in a
distributed way by deploying several servers on the Edge and
interconnecting them to share data and the generated mod-
els. In this way, processing time can be reduced, bringing
the processing closer to the sensors and reducing network
latency.

3.3 Data pre-processing

The Data Pre-processing module filters erroneous data,
aggregates, and normalizes the data sent from the spec-
trum sensors. After performing these tasks, the datasets with
sensor behavioral data are ready for the model training. In
addition, this module is in charge of performing possible
operations to extract additional features to those sent by the
sensors, such as applying statistical or time series techniques.
Itis worthy to note that this module works both for the genera-
tion of the behavioral dataset and for evaluating the real-time
behavioral data that need to be detected as normal or not.

3.4 Anomaly detection and classification
The proposed framework considers both anomaly detection
and classification algorithms but for different purposes. Once

the Anomaly Detection module detects an anomaly, the data
is sent to the Anomaly Classifier, which infers the type of
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attack, if it has been previously seen. It could be done as pre-
cisely as to recognize the specific malware or just its family
or any other information that might be helpful. No specific
algorithms for any of the two approaches are chosen from the
design point of view because the best-performing ones might
vary from a scenario to another. As has been extensively
demonstrated in the literature, in general, the performance of
anomaly detectors based on ML is worse than well-trained
classifiers. For this reason, choosing the sooner for the most
critical decisions (deciding if the device is under an anomaly
is considered more critical than inferring the type of anomaly)
might seem counter-intuitive. Nonetheless, anomaly detec-
tors are more realistic as the first detection mechanism in real
environments with zero-day attacks.

3.5 Reaction

The Reaction module is in charge of triggering the neces-
sary actions to mitigate the attacks occurring in the sensors.
Despite the functionality and implementation of this mod-
ule is out of the scope of this work, it would be able to take
diverse actions ranging from the removal of suspicious soft-
ware running on the sensor to the isolation or shutdown of
Sensors.

4 Scenario: ElectroSense sensors

This section introduces ElectroSense, the real crowd-sensing
platform used to evaluate the detection capabilities of the
proposed framework. After that, it provides the details of the
scenario setup as well as the malware families and samples
that have been used to infect a real ElectroSense sensor and
test framework suitability.

4.1 ElectroSense description and scenario setup

ElectroSense is a crowd-sourcing initiative for collecting
radio frequency spectrum data worldwide and making it
accessible for any interested user. To achieve it, a multitude of
resource-constrained spectrum sensors are deployed across
the world. The sensors implementation relies on Raspberry
Pis running open-source code and connected to Software
Defined Radio (SDR) kits with an antenna to measure the
spectrum. Sensors periodically send spectrum data to a back-
end platform in charge of controlling some functionalities
of sensors are well as collecting spectrum data. Further-
more, the back-end platform provides a website where
end-users can monitor the spectrum occupancy and con-
sume services decoding the following seven transmissions:
FM and AM Radio, Automatic Dependent Surveillance-
Broadcast (ADS-B), Automatic Identification System (AIS),
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Fig.2 Scenario used for experiments

Aircraft Communication Addressing and Reporting System
(ACARS), and Long-Term Evolution (LTE).

In such a platform, this work has deployed a fully operative
ElectroSense sensor with the following main hardware and
software specification:

— Raspberry Pi 4 Model B.

— CPU: Broadcom BCM2711, Quad-core Cortex-A72
(ARM v8) 64-bit SoC @ 1.5GHz.

— RAM: 2GB LPDDR4-3200 SDRAM.

— Gigabit Ethernet.

— Raspbian with spectrum sensing functionality, avail-
able in [5].

— RTL-SDR Blog V3 R820T2 RTL2832U.

The sensor has been connected to the internet through
a local area network (LAN) which topology can be seen in
Fig. 2. In particular, the LAN is composed of a router (whose
IP address is 192.168.0.1), the ElectroSense sensor (Rasp-
berry Pi with IP address: 192.168.0.111) connected the SDR
kit and antenna, and a laptop (IP address: 192.168.0.121)
that acts as command and control (C&C), or any other entity
needed to run botnets ,rootkits, and backdoors, e.g., Mirai
needs an extra Report Server and Loader.

4.2 Malware affecting ElectroSense sensors

As already stated, loT-based scenarios such as ElectroSense
are very interesting for malicious parties due to the lack of
security implementation, the number of devices intercon-
nected, the broad scope they constitute, and their usefulness
for pivoting to others. Although every malware type is rel-
evant when protecting the ElectroSense platform, rootkits,
botnets, backdoors, ransomwares, and cryptojakers are the
most representative and dangerous for ElectroSense. Rootk-
its are perfect for hiding viruses and malicious behaviors.
Botnets take advantage of the number of ElectroSense sen-
sors to launch distributed denial of service (DDoS) attacks.
Backdoors are suitable for controlling sensors functionality
and stealing sensitive spectrum data. Ransomware is per-
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fect for getting money from ransoms required to decrypt
data. Finally, cryptojakers have been proved dangerous for
Raspberry Pis because they can use the CPU to mine cryp-
tocurrencies such as Monero.

4.2.1 Rootkits

Rootkits are a type of malware that allows the control of a
system by a malicious party while remaining hidden. Their
main features are related to obfuscation and stealth. Two dif-
ferent types of rootkits are available for Linux-based systems:
LD_PRELOAD and Loadable Kernel Module (LKM) based.
To better understand the differences between the two types,
a brief explanation is given below:

— LD_PRELOAD is an optional environmental variable
containing one or more paths to shared libraries or objects
that the loader will load before any other shared library. It
fits perfectly into the functionality of a rootkit since cus-
tom shared object libraries can easily be used to hijack
library calls in the specific binary running. These rootk-
its, also referred to as preload rootkits, operate in the
user-space. Instead of using the environmental variables,
they take advantage of a global file to make the loader
preload the shared object library into every process it
starts, including services and daemons that run as root.
Their most significant limitation is that it only works for
dynamically loaded ELF binaries.

— LKM rootkits are loaded as any other module into the ker-
nel, which grants them the same execution privileges as
any other part of the code integrated into it. It means they
operate in kernel-space. While the objective of user-space
rootkits is to intercept calls from binaries to libraries, a
kernel-space rootkit tries to intercept system calls. This
can be done by syscall hooking or by interrupt hook-
ing. Those rootkits have two main drawbacks. First, high
privileges are needed to add a kernel module, and sec-
ond, they heavily depend on the kernel version and the
underlying architecture of the device.

Among the publicly available rootkits affecting ARM-
based architectures, Beurk, Bdvl and Diamorphine have been
selected to infect the ElectroSense sensor of the scenario pre-
sented in Fig. 2. More in detail, the first two belong to the
LD_PRELOAD class, and the third one to the LKM one. A
brief summary of them is given below:

— Beurk [16]. Preload rootkit heavily focused on anti-
debugging and anti-detection. Its features range from
hiding pseudo-terminal backdoor clients, files, direc-
tories, and real-time log cleanup (on utmp/wtmp) to
concealing processes, logins, and bypassing unhide, Isof,
ps, ldd and netstat analysis.

— Bdvl [17]. Preload rootkit based on Vlany [44]. Some of
its main objectives are to provide a more clean, robust,
and manageable rootkit. Its functionality is immense, and
it ranges from hidden backdoors that allow multiple con-
nection methods to keylogging and stealing passwords
and files.

— Diamorphine [15]. LKM rootkit for ARM 64b proces-
sors and relatively modern Linux-based operating system
versions. Since Raspbian is 32b, this malware had to be
modified to make it compatible. The module starts invis-
ible when loaded, and its functionalities are (i) sending
any process the signal 31 to hide/unhide it, (ii) the signal
63 to make the module invisible, and (iii) the signal 64
to gain execution root privileges as well as hiding files or
directories that contain a specific prefix.

4.2.2 Botnets

Botnets are another type of malware that allows the control of
the device by an attacker. There are many differences between
a botnet and a rootkit. One of them is that the botnet only
infects devices connected to a network, generally with lower
capabilities and looser security implementations. Another
difference is that botnets try to infect as many devices as
possible, and their running privileges do not need to be
exceptionally high since they are usually utilized to perform
Distributed Denials of service (DDoS).

The most basic architecture of a botnet comprehends the
devices infected (bots) and the entity controlling and send-
ing malicious commands across all infected devices (C&C).
Below, the details of the two botnet samples used in this work
to infect the ElectroSense sensor are provided.

— Bashlite [13]. Its original version dates from 2014, and in
the next 2 years, it gained popularity, infecting over one
million devices by 2016 [45]. The botnet is composed of
two files: “client.c” and “server.c”, the first is the payload
needed to infect the device, and the second is the C&C
to control every bot. Regarding the functionality, bots
can spread the payload to other devices, brute-forcing
weak telnet credentials, which helps grow the botnet to
the point that DDoS is possible.

— Mirai [14], which is a much more sophisticated botnet
that was supposedly first found in 2016 and is well-known
for being used for one of the largest and most disrup-
tive DDoS attacks [46]. Along with the expected botnet
behavior, it also has a “worm” or “spreading” module,
depicted in steps 1-4 of Fig. 3. In those steps, the bot
tries to spread to other devices by brute-forcing weak tel-
net credentials and, if successful, it reports back to the
Report Server, who commands the loader to infect that
new device.
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4.2.3 Backdoors

Backdoors create access points in systems for unauthorized
third parties. Backdoors are composed of two elements, a
client and a server. Furthermore, they do not attack the device
or system directly but act like a gateway for other malicious
activity. In this sense, malware implementations exhibit and
combine attributes from many different malware types. Back-
doors also present different functionalities according to their
complexity and type. In this work, we highlight the following
main behaviors implemented by backdoors.

— Execution This behavior consists of running basic com-
mands of the sensor.

— Download This behavior downloads new files and mal-
ware onto the sensor.

— Removal It deletes sensitive data and files on the infected
Sensor.

— Data leak This behavior leaks confidential information
from the sensor.

— DNS resolves domain names at the sensor side.

— Privilege This behavior changes the access flags of sensor
files.

In order to execute the previous behaviors, this work have
selected the following three backdoor samples to infect the
ElectroSense sensor are provided.

— HttpBackdoor [18], is the simplest and purest form of
backdoor of the selected ones. It creates a Web server
on the IoT spectrum sensor (Raspberry Pi) to which the
attacker (client) sends HTTP requests. This backdoor
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implements the three first behaviors (execution, down-
load, and removal) of the previous list and shows two
basic functionalities. Firstly, the attacker can extract basic
system information such as OS version and name or saved
SSH keys by sending a GET request. Secondly, by send-
ing a POST request, the attacker can execute command
line commands on the Raspberry Pi.

— Backdoor [19] consists of two parts, the client and the
server-side. The server-side sends commands to a speci-
fied IP address and port on which the client side (deployed
on the Raspberry Pi) listens. Backdoor implements exe-
cution, download, removal, and data leak functionality.
Furthermore, the most notable feature of this backdoor
is the possibility of opening a shell on the IoT spectrum
sensor. Additionally, the backdoor offers the functional-
ity to pull the contents of a file on the Raspberry Pi onto
the attackers’ machine.

— TheTick [20] is the most complete of the selected back-
doors because it implements the six behaviors indicated
in the previous list. Similar to the previous backdoor,
it relies on a Command & Control (C&C) server struc-
ture, with the difference that TheTick can have multiple
clients connected at the same time and switch between
them seamlessly. In other words, several IoT spectrum
sensors could potentially be infected and act as simulta-
neous clients. Finally, the attacker can send commands
to each client individually.

4.2.4 Ransomware

Ransomware is a malware type in charge of restricting or
blocking access to a device or its data, asking for a ransom to
remove such restriction. It uses cryptographic algorithms to
encrypt sensitive and critical files of the device and demands
aransom to re-gain access to the encrypted files. Usually, ran-
somware is composed of four stages [47]. The first phase is
when the infection occurs. Then, during the second phase, the
ransomware generates the encryption keys or retrieves them
from a central server. In the third phase, the encryption phase
starts. As the name suggests, it encrypts the device files using
known symmetric encryption algorithms such as AES with
a randomly generated key. Once all files are encrypted, the
ransomware sends a ransom note with the attacker’s contact
information. It usually contains the coordinates for a pay-
ment, typically a cryptocurrency wallet. After the ransom is
paid, the fourth stage occurs, where the attacker sends to the
victim the key needed for the data decryption.

This work has considered Ransomware_PoC to infect the
ElectroSense sensor due to its functionality.

— Ransomware_PoC [48]. This ransomware has the encryp-
tion functionality of a typical one, except that it is not
controlled by a C&C server. Therefore, encryption keys
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are embedded into the source code. Ransomware_PoC
uses an AES 256-key to encrypt the content of all files
contained in the Raspberry Pi. The AES 256-key is sub-
sequently encrypted via an RSA public key, and the
encryption algorithm traverses directories on the system
and encrypts the content of every file with a valid exten-
sion.

4.2.5 Cryptojacker

Cryptojackers are malware allowing attackers to illicitly
mine cryptocurrencies in third parties. This malware type
can target different types of devices, from servers to IoT
devices. GPUs are naturally more efficient when performing
cryptomining tasks. However, there are still cryptocurrencies
that rely on CPU mining such as Monero[49]. It makes min-
ing accessible even to resource-constrained devices such as
Raspberry Pis. Monero (also called XMR) was introduced
in 2014 and is a good example of cryptocurrency mined on
ARM CPUs. Although cryptojackers can execute different
behaviors (some of them already considered by the previous
ransomware), this work focuses on the mining task.

In particular, Linux.MulDrop.14 has been selected to
infect the ElectroSense sensor since it is a real and recent
cryptojacker affecting ARM architectures.

— Linux.MulDrop. 14 [22]. This cryptojacker is also known
as UNIX_PIMINE and appeared in 2017 to transform
Raspberry Pis into mining devices. Its functionality
consists of scanning the local network to establish con-
nections via an SSH server. Once the device is infected,
it writes a copy of itself in a random directory, kills
competing malware, downloads the cryptominer with its
dependencies, installs them, and initiates the mining pro-
cess.

5 Framework implementation and
experiments

This section provides the details of the framework PoC imple-
mentation in the previously defined scenario, together with
a set of experiments conducted to measure its performance
when detecting the previous samples of botnets, rootkits, and
backdoors affecting an ElectroSense sensor.

5.1 Framework implementation

The proposed framework relies on the hypothesis that the
behavioral data collected should allow ML algorithms to
infer that a device has been infected by different malware.
In this sense, this section pretends to demonstrate if that
hypothesis is correct through implementing a PoC. Below,

the implementation details of the sensor and server sides of
the framework are discussed.

5.1.1 Sensor

Regarding the Data Gathering module, it was developed an
script to monitor the selected kernel events. In this sense,
the script uses perf [50], which is also one of the most used
along the works reviewed. Apart from perf, some of the other
options considered were LIKWID [51] and PAPI [52]. On the
one hand, LIKWID was discarded due to the lack of official
testing for ARMv7 processors. On the other hand, PAPI did
not meet the necessities for this work since it only measures
events that occur in the user-space and only tracks hardware
events. In addition, perf also has several advantages. The first
one is that it is included in the Linux kernel, and it is avail-
able in the package linux-tools-common for Debian-based
systems such as the Raspberry Pi used by ElectroSense sen-
sors, making it easily accessible. Another advantage is that
it uses multiple sources for the measurements, combining
hardware, hardware cache, Kernel PMU, software, and trace-
point events, making it perfect for this work since the initial
idea was to use all of them. The command perf allowed
to track 1149 different events in the Raspberry Pi 4 used
for testing. These kernel events are divided into 80 families,
except for 63 events that do not belong to any specific family.
After many iterations to refine the list, it was reduced to 75
events. The reasons for the selection of events have already
been explained in Sect. 3.1. Table 2 shows the families of the
selected events and the monitored resources.

Regarding the use of HPCs and despite their importance
in this field, they are not monitored because they did not give
enough information (results showed almost no feature rele-
vance in them). While this justification might seem in contrast
to the design statement of not discarding events solely based
on correlation or results, it was also taken into considera-
tion that no device area would remain unmodelled after their
removal. Once selected the list of events, the monitoring rou-
tine was implemented as a Bash script for commodity, but it
is expected to be moved to C for any implementation outside
of a PoC to achieve even lower overhead. As shown in Fig. 4,
the monitoring window used in the PoC is of 5 s, after which
perf needs around 6.8 s to pre-process and calculate the val-
ues of the selected 75 events. In this extra time, as well as in
the connectivity test (which can take up to 1.5 s if there is
no connectivity, but usually takes much shorter), there is no
monitoring of the behavior of the device. The connectivity
test was implemented to achieve more reliability in networks
with unstable internet. Nevertheless, to the best of our knowl-
edge, the extra time needed by perf to calculate the events
values can only be reduced by reducing the number of events
to be monitored, which impacts the solution performance.
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Table2 Monitored resources

. Monitored resource
and event families

Perf event families (kernel)

Network
Virtual Memory
File System
Scheduler

CPU

Device Drivers

Random Number Generation

tep:, upd:, net:, qdisc:, skb:, sock:, fib:

writeback:, kmem:, page-faults, pagemap:

jbd2:, block:, cachefiles:, filemap:

sched:, signal:, task:, alarmtimer:, cpu-migrations, cs
clk:, rpm:, ipi:

irq:, mmc:, preemptirq:, gpio:, dma_fence:

random:

Connec-
Initial | tivity Perf event computation
setup| test ~6.8s
<1.5s

Monitoring Loop

Fig.4 Temporal view of monitoring script implemented

Parallelism was discarded to avoid noise in the monitoring
window.

5.1.2 Server

From the Server perspective, once received the behavioral
data from the Sensor, the Data Pre-processing module was
implemented using Python. Apart from basic pre-processing
(data cleaning and normalization), the datasets were bal-
anced, allowing for a maximum of a 10% difference between
them. The samples removed were selected randomly (with
a constant seed to achieve repeatable results). For feature
normalization, both the StandardScaler and MinMaxScaler
were tested, but the latter was discarded due to worse results
in every test.

In terms of ML algorithms used by the Anomaly Detec-
tion and Classifier modules, sklearn [53] was the library
used to train and evaluate multiple algorithms. For classi-
fication, experiments were performed using Random For-
est (RF), Support Vector Machines (SVM), K-Nearest
Neighbors (KNN), Gaussian Naive Bayes (GNB), XGBoost
(XGB) (from xgboost library), and Decision Tree (DT).
For anomaly detection, the algorithms used were One-Class
SVM, Isolation Forest (IF), and Local Outlier Factor (LOF).
Table 3 shows the hyperparameters tested for each algo-
rithm. Although the selected anomaly detection algorithms
are unsupervised, since hyperparameter tuning is performed
with attack data, it is considered “semi-supervised”. More in
detail, despite not using the abnormal data to train the algo-
rithms, the results of the evaluation of that data are also used
to decide the best configuration. More details regarding the
methodology followed to train and evaluate the models are
provided in the next section.
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5.2 Experiments

The framework detection performance (from anomaly detec-
tion and classification perspectives) is measured through two
experiments using different network configurations to obtain
robust results. The specifics of each experiment are explained
in the correspondent subsection, and common aspects are dis-
cussed below to avoid redundancy.

An important detail is that the five samples of the installed
rootkits and botnets remain completely passive when collect-
ing data. For rootkits, no connection or any other functional-
ity other than the active by default is used. It is what is defined
as passive behavior. In the botnet case, the sensor is infected
and connected to the C&C, but no malicious command is
sent or executed by the bot. It has two main advantages: (i)
testing becomes much simpler and uniform, and results are
easily reproducible and (ii) if the solution is able to detect
passive malware behavior, it should also detect it when it
is doing more work, so this would be considered testing it
in a worst-case scenario. The three backdoors executed in
the Raspberry Pi acting as an ElectroSense sensor are able
to show the following behaviors. HttpBackdoor runs Execu-
tion, Download, and Removal behaviors; Backdoor focuses
on the same three plus Data Leak, and TheTick executes all
the six behaviors explained in Sect. 4.

During the data acquisition process, for each network
configuration (explained below), the following types of
behaviors were collected in the sensor:

— Normal: Sensor running a by-default spectrum monitor-
ing campaign.

— NormalModel: Sensor running the FM radio decoder ser-
vice.

— NormalMode2: Sensor running the AM radio decoder
service.

— NormalMode3: Sensor running the ADS-B service.

— NormalMode4: Sensor running the AIS service.

— NormalMode5: Sensor running the ACARS service.

— NormalMode6: Sensor running the LTE service.

— Mirai: Sensor running Mirai in a passive way.

— Bashlite: Sensor running Bashlite in a passive way.
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— Beurk: Sensor running Beurk in a passive way.

— Bdvl: Sensor running Bdvl in a passive way.

— Diamorphine: Sensor running Diamorphine in a passive
way.

— DiamorphineSSHS5s: Sensor running Diamorphine and
receiving an ssh connections from the laptop every 5 s.

— Execution: Backdoor executing basic commands on the
Sensor.

— Download: Backdoor creating a new directory, and
cloning a repository on the sensor.

— Removal: Backdoor deleting files of a selected directory
of the sensor.

— Data leak: Backdoor pulling a file from the sensor to the
server.

— DNS: Backdoor deploying a Domain Name Server (DNS)
on the sensor.

— Privilege: Backdoor changing files privileges on the sen-
SOr.

— Ransomware_PoC: Sensor running Ransomware_PoC
while encrypting files on the sensor.

— Cryptojaker_Linux.MulDrop.14: Sensor running the
Linux.MulDrop.14 cryptojaker to mine Monero.

After monitoring each behavior type, a dataset was created
and the sensor image was restored to a clean one to avoid per-
manent changes that would affect the sensor behavior. The
total time monitored for each dataset had a minimum dura-
tion of 7 h. Datasets were normalized and balanced during
pre-processing, allowing for a maximum of 10% extra length
between the shortest and the longest ones. In each experi-
ment, 75% of data is divided for training and cross-validation,
and the remaining 25% for testing. The metric used to mea-
sure the detection performance is F'1-score, which is based
on Precision and Recall.

pth € [None, 5, 10, 15, 20], min_samples_split € [2, 3,4, 5]
number_of _trees € [50, 1000] max_depth € [None, 5, 10, 15, 20] min_samples_split € [2, 3,4, 5]
ighbors € [3,25]

n_nei

o TruePositives
Precision = — — (1)
TruePositives + FalsePositives

TruePositives

loss € [log, modified_huber, squared_hinge, perceptron], penalty € [[2,11], alpha € [0.0001, 0.1], learning_rate = optimal

Ir € [0.01, 0.30], max_depth € [3, 15] colsample_bytree € [0.3,0.7], gamma € [0, 0.5], min_child_weight € [1,7]
gamma € [0.001, 100], kernel € {'rbf’, linear',’ sigmoid’',’ poly'}, degree € [2, 5)(only poly kernel)

C €[0.01, 100], gamma € [0.001, 10] kernel € {'rbf’, linear', sigmoid’,’ poly'}
Number_of _trees € [50, 1000]

No hyperparameter tunning required

Hyperparameters tested
k € [3,20]

max_de,

Recall 2)

TruePositives + FalseNegatives

2 x precision x recall
Fl-score

3

precision + recall
5.2.1 Fiber to the home (FTTH) experiment

In this experiment, a monitoring campaign for all types of
behaviors was performed. Its main particularity is that the
network connection for both the sensor and the auxiliary lap-
top is based in Fiber to the Home (FTTH). It provides a robust
bandwidth of up to 300 Mbps with a latency of around 30ms
and no major instabilities. It would act as the ideal setup for
the sensor. It is essential to mention that DiamorphineSSH5s
was monitored in such a scenario because it is not detected
when working passively, as shown in the subsequent results.

Table 3 ML algorithms and hyperparameters tested

OCSVM

Algor.
GNB
KNN
SVM
SGD
XGB
IF

DT
RF
LOF
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Table 4 Anomaly detection results for FTTH experiment across all
algorithms tested

Class Metric OC-SVM IF LOF
Normal TNR 0.96 0.28 0.89
Abnormal TPR 0.84 0.70 0.84
Average 0.90 0.56 0.86

The bold text highlights the model providing the best results

Normal - 0.03

Normall - 0.04

Normal2 - 0.04

Normal3 - 0.04

Normal4 - 0.06

Normal5 - 0.04

Normal6 - 0.04

Beurk 0.99

Diamorphine - 0.03

Bdvl 0.48

Bashlite 0.02

Mirai

Diamorphine5S
HttpBackdoor_Execution
HttpBackdoor_Download
HttpBackdoor_Removal
Backdoor_Execution
Backdoor_Download
Backdoor_Removal
Backdoor_Dataleak
TheTick_Execution
TheTick_Download
TheTick_Removal
TheTick_Dataleak
TheTick_DNS
TheTick_Privilege
Ransomware_PoC
Cryptojacker_Linux.MulDrop.14

o

O OOl w ©O O OO O O oo o o o

1
Normal

Abnormal

Fig. 5 OC-SVM confusion matrix for anomaly detection in FTTH
experiment

This is due to the negligible activity of this rootkit, which
is not harmful on its own; its passive behavior is reduced to
getting loaded as a kernel module and hiding itself. If this
rootkit were employed to control the sensor secretively, a
simple approach would be to launch an SSH and hide the
implied processes.

From the anomaly detection approach, and given its semi-
supervised nature, the algorithms are only trained using 75%
of the normal behavior datasets. The testing is performed
against their remaining 25% and all the attack datasets. The
results for all three algorithms tested can be seen in Table
4, with OC-SVM obtaining the best average TNR and TPR:
0.90.

Figure 5 shows the confusion matrix for the best per-
forming algorithm (OC-SVM), which also had the highest
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true negative rate, with a noticeable difference. The hyper-
parameters explicitly set are { kernel’: rbf, ’gamma’: 0.02,
'nu’: 0.01). The results show that more than 95% of sam-
ples belonging to the different normal behaviors are correctly
detected as "normal." Looking at the rootkits, the passive and
innocuous behavior of Diamorphine is not detected, but when
itestablishes an SSH connection every five seconds, itis iden-
tified as malicious. In the case of passive behavior of Bdvl,
it is detected only half of the time. In terms of Backdoors,
34% of the samples belonging to Data Leak behavior exe-
cuted by TheTick are not detected correctly. Furthermore, the
DNS behavior only is detected 27% of the time. Regarding
Ransomware and Cryptojacker, their vector samples are per-
fectly detected. At this point, it is important to mention that
those two behaviors have a minimum impact on the sensor
integrity and data confidentiality, as the leaked data is only
a few Kb of sensitive data. To conclude, it is important to
highlight that the rest of the malicious behaviors are detected
in an almost perfect fashion.

From the malware classification perspective, after pre-
processing the 25 datasets and using 75% for training and
25% for testing, the obtained results are shown in Table 5.
The best performing algorithms are RF and XGB, obtain-
ing an Fl-score of 0.96. The resulting confusion matrix,
focused on RF, can be seen in Fig. 6. It shows that the
results are almost perfect except for (i) Diamorphine, which
is sometimes confused as Normal, (ii) TheTick_Datal eak,
where 25% of samples are confused with Normal behavior,
and (iii) TheTick_DNS, with the 12% of samples wrongly
classified as Normal. The hyperparameters used for RF
are {’bootstrap’: False, 'max_depth’: 20, ’max_features’:
sqrt’,  ‘min_samples_leaf’: 2, ’min_samples_split’: 2,
'n_estimators’: 10].

5.2.2 4G mobile network experiment

In this experiment, the same methodology as the previous
one is followed. The unique difference is that a new set of
25 datasets was created (one per behavior) in a new moni-
toring campaign. This second campaign is performed in the
same conditions as the first one except for the router, which
provides the internet connection via 4G. The usual band-
width of this connection was about 12—-18 Mbps, and the
latency would fluctuate between 70 and 130 ms, with peaks
of more than 200 ms. This experiment is performed to test if
the behavior of the device remains stable when the internet
connection conditions are not so good.

The algorithms for anomaly detection are trained and eval-
uated as in the previous experiment (trained using 75% of the
normal behavior datasets and tested against their remaining
25% plus all malware datasets). The results obtained by OC-
SVM and LOF are very similar in terms of TNR and TPR,
as shown in Table 6, with IF performing worse than the oth-
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Table5 Classification results (F 1-score) for FTTH experiment across
all classifiers tested

Class RF SVM KNN GNB XGB DT

Normal 093 0.88 0.87 0.02 0.93 0.89

Normall 1.00 1.00 1.00 1.00 1.00 1.00

Normal2 1.00 1.00 1.00 1.00 1.00 1.00

Normal3 1.00 1.00 1.00 0.68 1.00 1.00

Normal4 1.00 0.98 0.97 0.95 1.00 0.98

Normal5 0.96 0.86 0.68 0.49 0.98 0.87

Normal6 0.98 091 0.78 0.01 0.99 0.91

Beurk 1.00  1.00 0.97 0.63 1.00 1.00

Diamorphine 0.68 0.00 034 040 074  0.60

Bdvl 1.00 1.00 1.00 0.87 1.00 1.00

Bashlite 1.00 1.00 0.96 0.75 0.99 0.99

Mirai 1.00 1.00 1.00 1.00 1.00 1.00

Diamorphine 1.00 1.00 1.00 1.00 1.00 1.00
SSHS5S

HttpBackdoor 0.98 1.00 0.88 0.58 1.00 0.97
Execution

HttpBackdoor 1.00 0.98 0.89 0.61 1.00 1.00
Download

HttpBackdoor 1.00 1.00 0.90 0.70 1.00 0.98
Removal

Backdoor 0.93 0.81 0.57 0.57 0.94 0.84
Execution

Backdoor 1.00 1.00 0.67 0.81 1.00 0.98
Download

Backdoor Removal  1.00  1.00 0.94 0.46 1.00 1.00

Backdoor 090 0.72 0.74 0.44 0.90 0.79
Datal.eak

TheTick Execution  1.00  0.92 0.81 0.00 098  0.89
TheTick Download 1.00  0.99 0.88 0.99 1.00  0.99
TheTick Removal 1.00 1.00 0.94 1.00 1.00 1.00
TheTick DatalLeak  0.68  0.38 0.37 0.28 0.70 0.66
TheTick DNS 0.87 0.00 047 0.13 092 072
TheTick Privilege 1.00  1.00 .00 0.19 1.00  1.00
Ransomware PoC 1.00 1.00 1.00 1.00 1.00 1.00

Cryptojacker 1.00  1.00 1.00 .00 1.00  1.00
Linux.MulDrop.14
Average 0.96 0.89 0.88 0.57 096  0.93

The bold text highlights the model providing the best results

ers. Figure 7 shows the confusion matrix for LOF, which
results are aligned with those obtained in the previous exper-
iment with optical fiber. More in detail, all normal behaviors
are still detected correctly, but with a lower TNR (2% less
than with fiber). In terms of attacks, the opposite happens
because the averaged TPR increases 2%. In particular, LOF
detects Bdvl almost perfectly (in contrast to the 52% of the
previous experiment). It can be due to the effect of the net-
work in the normal behavior (more unstable), and how it
affects the threshold of the Anomaly detector (the same % is

increased and decreased for normal and under-attack behav-
iors). Furthermore, TheTick_DatalL.eak and TheTick_DNS
are detected with a higher TPR. Finally, LOF provides sim-
ilar results as OC-SVM in the previous experiment for the
rest of the attacks. The hyperparameters selected to obtain
the previous results are: { 'n_neighbors’: 5, 'contamination’:
0.002}

The classifiers are also considered as in the previous exper-
iment (trained with 75% of all datasets and tested with the
remaining 25%). The obtained results are also very similar
to the ones of the previous experiment, as shown in Table 7.
The best performing algorithm is XGB, which performs well
but presents some problems (TPR and TNR lower than 80%)
to classify Normall, Normal2, and TheTick_Datal.eak. The
details can be appreciated in Fig. 8, which shows the results
for the best hyperparameters configuration found for XGB:
{’learning_rate’: 0.01, ’gamma’: 0.5, 'max_depth’: 10, ’sub-
sample’: 0.9, 'colsample_bytree’: 0.75).

6 Summary and discussion

This work proposes an ML-based and behavioral fingerprint-
ing framework to detect anomalies and to classify different
types of botnets, rootkits, backdoors, ransomware and cryp-
tojackers affecting IoT spectrum sensors. The framework
design is based on a distributed approach, where behavioral
data is collected on the fingerprinted sensor and analyzed,
using several supervised and semi-supervised ML-based
algorithms, on a central server. Different kernel events
belonging to the CPU, virtual memory, network interface,
file system, scheduler, generation of random numbers, and
device drivers data sources have been analyzed, selected,
and monitored to create fingerprints. The usefulness of the
framework has been validated as a PoC in a Raspberry Pi
4 (acting as a sensor) that was infected with two botnets
(Mirai and Bashlite), three rootkits (Diamorphine, Beurk, and
Bdvl), three backdoors (HttpBackdoor, Backdoor, TheTick),
one Ransomware (Ransomware_PoC), and one Cryptojacker
(Linux.MulDrop.14). A set of experiments using two differ-
ent network configurations (optical fiber with low network
traffic and 4G network with high congestion) and different
supervised and semi-supervised ML algorithms have been
performed.

Dealing with the advantages of the proposed solution,
to the best of our knowledge, this is the first work com-
bining intelligent behavioral fingerprinting into a real IoT
spectrum sensor to detect and classify malicious behaviors
of recent and real heterogeneous malware. The IoT Spec-
trum sensing scenario is one of the most important parts
of this work. Therefore, a physical IoT spectrum sensor
(Raspberry Pi equipped with an SDR kit) belonging to the
real-world crowdsensing platform, called ElectroSense, has
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Fig.6 RF confusion matrix for classification in FTTH experiment
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Table 6 Anomaly detection results for 4G experiment across all algo-
rithms tested

Class Metric OC-SVM IF LOF
Normal TNR 0.94 0.14 0.91
Abnormal TPR 0.82 0.38 0.86
Average 0.88 0.26 0.88

The bold text highlights the model providing the best results

Normal - 0.08
Normall - 0.1295
Normal2 - 0.0766
Normal3 - 0.0967
Normal4 - 0.0944
Normal5 - 0.0765
Normal6 -

Beurk
Diamorphine -

Bdvl 0.0149

Bashlite 0.0061
Mirai 0

Diamorphine5S 0.0004
HttpBackdoor_Execution 0
HttpBackdoor_Download 1 0
HttpBackdoor_Removal 1 0
Backdoor_Execution 1 0
Backdoor_Download 1 0
Backdoor_Removal 1 0
Backdoor_Dataleak 1 0
TheTick_Execution 1 0
TheTick_Download 1 0
TheTick_Removal 1 0

TheTick_Dataleak 0.2879

TheTick_DNS -+

TheTick_Privilege 0
Ransomware_PoC 0
Cryptojacker_Linux.MulDrop.14 0

Abnormal Norlmal

Fig.7 LOF confusion matrix for anomaly detection in 4G experiment

been selected. ElectroSense sensors can be deployed on dif-
ferent networks with heterogeneous bandwidth, congestion,
and delay capabilities. These aspects could influence the nor-
mal behavior of the sensor, its stability across time, and the
detection performance of the proposed system. Thus, this
work has evaluated the framework detection performance in
two completely different local area networks with different
capabilities, one with optical fiber and another with 4G.
After a pool of experiments in both network configura-
tions, it can be concluded that Mirai, Bashlite, Beurk, the
three behaviors of HttpBackdoor, the four behaviors of Back-
door, four behaviors of TheTick, Bdvl, Ransomware_PoC,
and Linux.MulDrop.14 are well detected from the anomaly
detection (80-100% F1-score) and classification (almost
100% F 1-score) perspectives in both network scenarios (sta-
ble optical fiber and unstable 4G network). Although Diamor-

phine is classified with acceptable performance (more than
70% F1-score) in both network scenarios by Random For-
est, it remains mainly undetected (between 3% and 22%
F1-score) across the anomaly detection experiments of both
network scenarios. However, it is essential to mention that
Diamorphine does not have a passive harmful behavior.
Finally, Bdvl, TheTick_Dataleak, and TheTick_DNS are
detected in a better way when using the 4G router. These
differences could be influenced by the threshold selected by
the algorithm (the average TNR rate for normal behavior
decreases the same % as the TPR increases for malicious
behavior), or due to unexpected incidents during the monitor-
ing campaign, such as an update from or to the ElectroSense
back-end.

When comparing the performance of the proposed solu-
tion to related work, the following aspects are critical to
performing a fair comparison: (i) device hardware and soft-
ware, (i) malware family and sample, and (iii) detection
technique.

Dealing with the first point, the hardware configuration
and the functionality of the IoT spectrum sensor strongly
affect the normal behavior fingerprints. Therefore, these
aspects should be similar in different works to compare the
performance of the proposed detection approach. As demon-
strated in Sect. 2, there is no existing solution that detects
malware attacks affecting IoT Spectrum sensors and, more
in particular, using the ElectroSense platform. Indeed, this is
one of the main novelties of this work. The malware type,
sample, and functionality are also critical aspects for a fair
comparison. In this context, as can be seen in Table 1, there
are many works detecting different malware types and fam-
ilies, some of them with excellent detection performance.
However, most of them are deployed and validated on gen-
eral computers and servers. It means these malware samples
differ in terms of implementations details and functionality
from those used for Raspberry Pis. In particular, Raspberry
Pis have ARM processor architectures, while computers and
servers consider x86 architectures. Finally, the detection
approach is also relevant when comparing the performance
and suitability of different detection solutions. In this sense,
Sect. 2 compares a relevant number of related work using
ML-based approaches like the ones considered in this work.

Despite the contributions of this work, it is also impor-
tant to mention its most relevant limitations. In this context,
a greater variety of IoT spectrum sensors should be consid-
ered to generalize the obtained results to other crowdsensing
platforms. In this sense, one of the main objectives of this
work was to consider real-world IoT spectrum sensors and
platforms, and ElectroSense is one of the most suitable
alternatives due to its public availability, open-source, and
crowd-sourcing nature. However, this platform currently
only supports Raspberry Pis as spectrum sensors. Another
limitation is the lack of networks with different conditions
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Fig.8 XGB confusion matrix for classification in the 4G experiment
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Table 7 Classification results (F 1-score) for the 4G experiment across
all classifiers tested

Class RF SVM KNN GNB XGB DT
Normal 090 0.75 079 0.04 0.92  0.87
Normall 0.73 0.69 061 0.67 0.76  0.62
Normal2 070 047 058 02 0.72  0.62
Normal3 1.00 1.00 099 0.99 1.00  1.00
Normal4 1.00 1.00 098 0.60 1.00 1.00
Normal5 099 099 089 0.55 1.00  0.99
Normal6 1.00 099 091 0.00 1.00  0.99
Beurk 1.00 1.00 096 0.0.11 1.00 1.00
Diamorphine 0.80 0.58 034 050 0.82 0.71
Bdvl 1.00 1.00 099 094 1.00  1.00
Bashlite 1.00 1.00 098 0.99 1.00  1.00
Mirai 1.00 1.00 1.00 1.00 1.00 1.00
Diamorphine SSH5S  1.00 1.00 1.00  1.00 1.00  1.00
HttpBackdoor 1.00 1.00 0.85 0.54 1.00 098
Execution
HttpBackdoor 1.00 1.00 095 0.58 1.00 1.00
Download
HttpBackdoor 1.00 1.00 0.86 0.68 1.00  1.00
Removal

Backdoor Execution 091 0.82 056  0.65 0.90 0.87
Backdoor Download 1.00 1.00  0.81 0.81 1.00  1.00
Backdoor Removal 1.00 1.00 095 042 1.00  1.00
Backdoor DatalLeak ~ 0.84 0.71 0.73 041 0.85 0.80
TheTick Execution 098 0.88 0.81 0.06 0.95  0.90
TheTick Download 1.00 1.00 093 097 1.00  1.00
TheTick Removal 1.00 1.00 090 1.00 0.98  1.00
TheTick Datal.eak 0.65 039 037 0.27 0.78  0.67
TheTick DNS 075 0.00 047 0.13 0.80 0.74
TheTick Privilege 1.00 1.00 098 0.21 1.00  1.00
Ransomware PoC 1.00 1.00 1.00 1.00 1.00  1.00

Cryptojacker 1.00 1.00 1.00 1.00 1.00  1.00
Linux.MulDrop.14
Average 094 0.88 0.87 0.64 095 0091

The bold text highlights the model providing the best results

to see how the number of devices connected to the same
network, the management tasks of the network, and the
bandwidth and latency, to mention a few aspects, affect the
fingerprints of different sensors.

7 Conclusions and future work

The conclusions of this work can be synthesized in the
following four statements: (i) the detection capabilities of
classifiers (supervised approach) are almost perfect across
all experiments (stable optical fiber and unstable 4G net-
works), showing an average F'l-score of 0.96, where most
missed predictions are between Diamorphine (acting pas-
sively and harmlessly), TheTick with two low impact attacks,

and the device normal behavior; (ii) the anomaly detec-
tion approach shows very promising results, when detecting
anomalies produced by most of the attacks Beurk, Bash-
lite, Mirai, HttpBackdoor, Backdoor, Ransomware_PoC, and
Linux.MulDrop.14, and four of the six behaviors of TheT-
ick), except for the passive behavior of Diamorphine and
Badvil (both of them harmless), TheTick_DatalLeak and TheT-
ick_DNS (with a low impact on the sensor integrity and data
confidentiality; (iii) in general, the experiments show few
rates of false positives (normal samples evaluated as attack),
which is particularly important in this type of solution; and
(iv) these results obtained are consistent, robust, and reli-
able, since they have been analyzed with data obtained under
different network conditions.

Future work will analyze the performance of the frame-
work upon monitoring other types of devices apart from
Raspberry Pis is foreseen. Finally, further reviews of the
monitored event list are expected, along with further experi-
mentation with the monitoring window size.
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