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Abstract—Federated Learning (FL) enables collaborative
model training without sharing raw data, preserving partici-
pant privacy. Decentralized FL. (DFL) eliminates reliance on
a central server, mitigating the single point of failure inherent
in the traditional FL paradigm, while introducing deployment
challenges on resource-constrained devices. To evaluate real-
world applicability, this work designs and deploys a physical
testbed using edge devices such as Raspberry Pi and Jetson Nano.
The testbed is built upon a DFL training platform, NEBULA,
and extends it with a power monitoring module to measure
energy consumption during training. Experiments across multiple
datasets show that model performance is influenced by the
communication topology, with denser topologies leading to better
outcomes in DFL settings.

Index Terms—Testbed, Federated Learning, Resource Con-
sumption

I. INTRODUCTION

With the proliferation of advanced sensors, enhanced pro-
cessing capabilities, and widespread connectivity, edge de-
vices now generate vast amounts of data, offering significant
opportunities for Machine Learning (ML) [1]. However, the
distributed nature of data from IoT devices makes traditional
centralized ML approaches impractical due to privacy con-
cerns, communication overhead, and regulatory constraints [2].
Federated Learning (FL), first introduced by [3], addresses
these issues by enabling devices to collaboratively train a
shared model without sharing raw data, exchanging only
model updates instead. FL can be categorized into Centralized
Federated Learning (CFL), where a central server coordinates
training and aggregation, and Decentralized Federated Learn-
ing (DFL), where nodes interact directly without a central
authority. While CFL is widely used, DFL offers better scal-
ability, fault tolerance, and eliminates single points of failure
and trust bottlenecks [2].

Training FL models on resource-constrained devices, such
as smartphones, IoT devices, and edge computing nodes,
introduces significant challenges due to their limited computa-
tional power, memory, and energy capacities, complicating the
implementation of privacy-preserving methods and efficient
model training [4]. Current DFL platforms, such as NEBULA
[5], primarily rely on simulation-based or virtualization tech-
niques, like Docker containers, for development and testing.
However, these approaches fail to adequately reflect the con-
straints and complexities encountered when deploying FL on

heterogeneous, resource-constrained hardware, using diverse
datasets and varying overlay networks.

This work addresses this research gap by designing and
implementing a realistic, physical DFL testbed utilizing het-
erogeneous resource-constrained devices, including multiple
models of Raspberry Pi and NVIDIA developer kits such
as the Jetson series, to replicate real-world deployment sce-
narios closely. The testbed supports experimentation across
multiple topological configurations, enabling comprehensive
evaluations with diverse datasets. Compared with simulation-
based or virtualization-based platforms, the proposed physi-
cal testbed achieves comparable model training performance
while accurately reflecting device heterogeneity, hardware con-
straints, and network topologies, thus providing a robust and
realistic environment for evaluating decentralized federated
learning frameworks. Additionally, the designed testbed incor-
porates mechanisms to record energy consumption throughout
the model training process, laying a foundation for subsequent
research on DFL systems’ sustainability and energy efficiency.

II. TESTBED DESIGN

This section details the construction of a physical testbed de-
signed to evaluate DFL under realistic hardware and network
conditions. Rather than relying on simulated or virtualized
setups, the testbed is built upon actual, heterogeneous edge
devices with constrained resources. It incorporates Raspberry
Pi 4 Model B units (two with 4GB RAM and one with
2GB RAM, running Debian GNU/Linux 12) and an NVIDIA
Jetson Nano Developer Kit (running Ubuntu 18.04.6 LTS),
interconnected via a local Ethernet network.

A DFL platform, i.e., NEBULA, serves as the underlying
infrastructure for model training, aggregation, and inter-device
communication within the testbed. Originally, NEBULA em-
ploys Docker containers to emulate DFL nodes, necessitating
several modifications for physical hardware deployment:

o Deploying lightweight HTTP servers on each device to
securely receive FL configurations from a controller.

o Implementing periodic HTTP-based transmission of real-
time metrics (e.g., CPU, memory usage) from nodes to
the controller, facilitating continuous frontend visualiza-
tion.

« Extending monitoring capabilities to track energy con-
sumption using JT-TC66C USB multimeters.
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Fig. 1. System architecture showing FL configuration and metric transmission.

Figure 1 depicts the testbed architecture. The controller
receives configuration files from the frontend and distributes
them to participant nodes. Each node hosts a local HTTP
server to accept the configuration, followed by the server’s
termination to release the port. Nodes then establish TCP con-
nections with their neighbors and begin decentralized training.

Figure 2 presents the scenario execution sequence: the
frontend initiates the experiment by sending configuration
parameters to the controller, which bootstraps node instances
and distributes configuration files. During the training process,
nodes periodically transmit training metrics to the controller,
which are then visualized on the frontend. Additionally, if
energy monitoring is enabled, nodes log power consumption
throughout the training cycle and transmit a summary at
the end of the scenario. The JT-TC66C multimeters measure
power consumption in real time and provide both periodic
metric updates and post-training batch reports. This dual-
reporting mechanism enables accurate sustainability assess-
ments without interrupting model training.

III. SETUP AND DEMONSTRATION

To evaluate the performance and feasibility of the proposed
DFL testbed, a series of experiments were conducted under

TABLE I
COMPARISON OF VALIDATION SCENARIOS.

Characteristic =~ Physical Scenario Virtualized Scenario
Participant 3 Raspberry Pi 4, 4 Docker containers
1 NVIDIA Jetson Nano
Dataset MNI.S T MNI.S T
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Fig. 2. Sequence diagram of configuration distribution, model training, and
metric reporting.

two deployment scenarios: Physical Scenario and Virtualized
Scenario.

A. Experiments Setup

Table I provides an overview of the experimental con-
figuration in both settings. The physical testbed includes
four edge devices: three Raspberry Pi 4 Model B boards
and one NVIDIA Jetson Nano. This configuration introduces
heterogeneity in terms of CPU and GPU capabilities. The
Jetson Nano features a 128-core Maxwell GPU and a quad-
core Cortex-A57 CPU (1.43GHz), whereas the Raspberry Pi 4
uses a Cortex-A72 CPU (1.5GHz). In contrast, the virtualized
setup uses Docker containers deployed on a machine with an
AMD Ryzen 7 5825U processor, 16GB RAM, and 512GB
SSD, ensuring consistent and stable performance.

Both scenarios use MNIST [6] and FashionMNIST [7],
two widely recognized benchmarks for image classification. A
simple multi-layer perceptron (MLP) model was used across
all experiments, and the FedAvg [3] algorithm was trained
over 10 federation rounds with one local epoch per round.
To simulate realistic data heterogeneity, all datasets were
partitioned independently and identically distributed (IID).



TABLE II
SUMMARY OF EXPERIMENTAL RESULTS FOR PHYSICAL AND VIRTUALIZED SCENARIOS

Scenario Avg. F1-Score | CPU Usage (%) | RAM Usage (%) | Net Traffic (MB) | Power (W) | Energy (J)
Fully Conn. MNIST (Phys.) 82.0 25.7 333 30 33 1404
Fully Conn. Fashion (Phys.) 81.0 28.7 333 30 3.5 1350
Star MNIST (Phys.) 76.0 25.8 32.8 PO: 30, Oth: 10 3.0 1251
Star Fashion (Phys.) 75.0 29.1 33.9 PO: 30, Oth: 10 3.5 1324
Ring MNIST (Phys.) 78.5 26.0 32.9 20 3.05 1249
Ring Fashion (Phys.) 68.8 28.3 33.1 20 345 1404
Random MNIST (Phys.) 74.7 26.1 334 Varied 3.1 1305
Random Fashion (Phys.) 64.9 28.7 33.0 Varied 3.5 1368
Fully Conn. MNIST (Virt.) 82.0 26.8 7.4 30 N/A N/A
Fully Conn. Fashion (Virt.) 81.0 34.4 7.4 30 N/A N/A

To assess the testbed’s flexibility and DFL’s sensitivity
to communication structures, the physical setup tested four
topologies: fully connected, star, ring, and random. Each topol-
ogy was evaluated using both datasets. The virtualized baseline
used only the fully connected topology due to simplicity and
consistency constraints.

B. Experimental Results

The evaluation metrics include model F;-score, CPU and
RAM usage, network traffic, power draw, and energy con-
sumption. Results from all physical experiments were com-
pared against a virtualized baseline to assess both performance
and resource efficiency.

As shown in Table II, the fully connected topology con-
sistently achieved the highest average F;-scores (81-82%) on
both MNIST and Fashion-MNIST datasets. In contrast, sparser
topologies like ring and random exhibited more variability
and generally lower average performance. The star topology
showed that central nodes benefited from higher communica-
tion loads, often yielding higher accuracy than edge nodes.

Resource consumption reflected the underlying training cy-
cles. Average CPU usage ranged from 25% to 29%, with peak
usage exceeding 40%. Power consumption followed similar
patterns, ranging from 3 to 3.5 watts, and total energy use var-
ied between 1251 and 1404 joules. RAM utilization remained
consistent across experiments, with one Raspberry Pi (2 GB)
showing higher usage due to memory constraints. Bandwidth
usage aligned with topological structure: fully connected and
star topologies generated higher traffic per node, while ring
and random topologies maintained lower and more localized
communication overhead.

The virtualized scenario matched physical F;-scores but
completed training significantly faster, highlighting the compu-
tational limits of edge devices. Despite lower training speeds,
the physical testbed effectively replicated learning behavior,
validating its feasibility for DFL research under realistic
conditions.

IV. CONCLUSION

This work presents a realistic, energy-aware testbed for
evaluating DFL on heterogeneous, resource-constrained edge
devices. Built on top of the NEBULA platform, the testbed in-
tegrates REST-based communication and real-time monitoring,

including power and energy tracking using JT-TC66C mul-
timeters. Experiments conducted across multiple topologies
and two benchmark datasets (MNIST and Fashion-MNIST)
demonstrate that accurate models can be trained on physical
devices with limited computational resources, achieving per-
formance comparable to virtualized environments. Resource
usage, CPU, memory, bandwidth, and energy, remained within
practical limits, confirming the testbed’s suitability for realistic
DFL research. Future extensions include scaling to larger
federations, exploring more advanced topologies, optimizing
training efficiency, and testing deployment in real-world IoT
and mobile scenarios.
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