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A B S T R A C T

The rapid expansion of the Internet of Things (IoT) and Edge Computing has presented challenges for
centralized Machine and Deep Learning (ML/DL) methods due to the presence of distributed data silos that
hold sensitive information. To address concerns regarding data privacy, collaborative and privacy-preserving
ML/DL techniques like Federated Learning (FL) have emerged. FL ensures data privacy by design, as the local
data of participants remains undisclosed during the creation of a global and collaborative model. However,
data privacy and performance are insufficient since a growing need demands trust in model predictions.
Existing literature has proposed various approaches dealing with trustworthy ML/DL (excluding data privacy),
identifying robustness, fairness, explainability, and accountability as important pillars. Nevertheless, further
research is required to identify trustworthiness pillars and evaluation metrics specifically relevant to FL models,
as well as to develop solutions that can compute the trustworthiness level of FL models. This work examines the
existing requirements for evaluating trustworthiness in FL and introduces a comprehensive taxonomy consisting
of six pillars (privacy, robustness, fairness, explainability, accountability, and federation), along with over 30
metrics for computing the trustworthiness of FL models. Subsequently, an algorithm named FederatedTrust
is designed based on the pillars and metrics identified in the taxonomy to compute the trustworthiness
score of FL models. A prototype of FederatedTrust is implemented and integrated into the learning process
of FederatedScope, a well-established FL framework. Finally, five experiments are conducted using different
configurations of FederatedScope (with different participants, selection rates, training rounds, and differential
privacy) to demonstrate the utility of FederatedTrust in computing the trustworthiness of FL models. Three
experiments employ the FEMNIST dataset, and two utilize the N-BaIoT dataset, considering a real-world IoT
security use case.
1. Introduction

The last decade has been a revolutionary time for Artificial Intel-
ligence (AI). IBM Watson, ImageNet, and AlphaGo were some of the
first successful AI solutions that defined the path towards the recent
ChatGPT, DALL⋅E 2, or Tesla Autopilot, among many others. This
journey has allowed Machine and Deep Learning (ML/DL) models to
learn how to play, see, speak, paint, drive, and do many other things,
almost like humans. The AI hype has traditionally focused on achieving
ever-higher accuracy and performance. However, performance is no
longer sufficient. In recent years, we have heard more mishaps and
situations in which wrong AI-based decisions negatively affect human
lives. Some examples are (i) ML/DL-based systems supporting judges
in pretrial recidivism scoring racially biased [1], (ii) ML/DL mod-
els of autonomous vehicles not prepared nor trained for uncommon
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fatalities [2], or (iii) AI-powered chatbots giving wrong answers to
straightforward questions and problems [3]. These situations erode
the trustworthiness of AI and raise concerns about Responsible AI
(RAI) [4].

Trustworthy AI is an emerging concept towards RAI that embraces
several existing terms such as explainable AI (XAI), ethical AI, robust
AI, or fair AI, among others [5]. In 2021, the European Commission
proposed the AI Act [6] with high-level foundations, principles, and
requirements that AI systems should fulfill to be trustworthy [7].
According to these guidelines, three main foundations should be met
throughout the AI system life cycle. First, AI should be lawful and
comply with existing regulations. Second, it should ensure adherence to
ethical principles. Last but not least, AI should be robust from technical
and social perspectives. Under these three foundations, respect for
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human autonomy, prevention of harm, fairness, and explainability are
ethical principles that trustworthy AI systems must respect. Finally,
the European Commission translated these principles into the follow-
ing seven requirements to achieve trustworthy AI: (i) human agency
and oversight, (ii) technical robustness and safety, (iii) privacy and
data governance, (iv) transparency, (v) diversity, non-discrimination,
and fairness, (vi) societal and environmental wellbeing, and (vii) ac-
countability. In parallel to the European Commission, researchers have
also developed specific approaches and techniques that AI systems
should adopt to be trustworthy. In this context, the systematic reviews
on Trustworthy AI conducted in [5,8] identified robustness, privacy,
fairness, explainability, and accountability as the five key pillars of
trustworthy AI.

Trustworthiness is a critical aspect influencing AI, but nowadays, it
is not the only one, and data privacy and protection are also highly
demanded by our society. In this context, new laws and regulations
have been drawn in response to this necessity. The General Data
Protection Regulation (GDPR) in the European Union and the California
Consumer Privacy Act (CCPA) in the state of California (USA) are well-
known examples of new data protection regulation [9]. As expected,
these changes affect AI systems since most ML/DL models are trained
with data belonging and maintained by stakeholders in different silos.
Therefore, to deal with the challenge of preserving data privacy in AI,
Federated Learning (FL) [10] was proposed in 2016 by Google as a
decentralized ML paradigm. FL builds collaborative models between the
federation members while keeping sensitive data within the premises
and control of each participant. In summary, FL is one solution to
data silo and fragmentation issues caused by the new legislation that
prohibits the free sharing of data and forces data to be maintained by
isolated data owners [11].

In summary, trustworthiness is critical in FL to address privacy
concerns, maintain model integrity, secure the aggregation process,
encourage participant cooperation, enable accountability and auditing,
and build user trust. By upholding these principles, FL can unlock
the potential for collaborative and privacy-preserving ML in various
domains while maintaining the highest trust and privacy protection
standards. Trustworthiness in federated learning (FL) must be stud-
ied and compared to centralized ML/DL. Both approaches share risks
such as algorithmic bias, adversarial attacks, privacy breaches, and
reliability issues with centralized ML/DL. However, FL introduces addi-
tional complexities due to its diverse stakeholders, actors, information
exchanges, communication infrastructures, and attack surfaces, ne-
cessitating an assessment of trustworthiness. FL also presents unique
challenges related to architectural designs, privacy-preserving stan-
dards, fairness, and explainability beyond the ML/DL models [12].
Currently, there is a need for more research on trustworthiness pillars,
metrics specific to FL, and tools to assess the trustworthiness of FL
models. Moreover, there is a need for solutions that seamlessly integrate
into existing FL frameworks to compute the trustworthiness of FL
models.

To cover the previous literature gaps, the work at hand presents the
following contributions:

• The creation of a novel taxonomy with the most relevant pillars,
notions, and metrics to compute the trustworthiness of FL models.
To create such taxonomy, crucial aspects used to evaluate the
trustworthiness of classical and federated ML/DL models were
studied, analyzed, and compared. More in detail, the following
six pillars and more than 30 metrics were identified as the main
building blocks of the taxonomy: privacy, robustness, fairness,
explainability, accountability, and federation. All pillars present
novel metrics compared to the literature.

• The design and implementation of FederatedTrust, an algorithm
quantifying the trustworthiness of FL models based on the pillars,
notions, and metrics presented in the proposed taxonomy. Fed-
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eratedTrust computes global and partial trustworthiness scores
by aggregating metrics and pillars dynamically and flexibly de-
pending on the validation scenario. An algorithm prototype has
been implemented in Python (available in [13]) and deployed in
a well-known FL framework called FederatedScope. Then, three
experiments classifying hand-written digits in a cross-device FL
context using the FEMNIST dataset were performed to assess the
trustworthiness of FL models. Experiments introduced differences
in the number of participants in the federation, training rounds,
sample rates, and countermeasures against attacks. Finally, two
experiments leveraged the N-BaIoT dataset to show how differ-
ent design choices can impact the trustworthiness score in a
cybersecurity use case.

The remainder of this paper is structured as follows. Section 2
contains findings from the literature review on trustworthy FL. Sec-
tion 3 identifies and presents a detailed analysis of the following six
trustworthy FL pillars and their metrics: robustness, privacy, fairness,
explainability, accountability, and federation. Section 4 presents the
design detail of the proposed algorithm, while Section 5 focuses on
its implementation and deployment on a real FL framework. Section 6
validates the algorithm in a use case and presents the results of the
performed experiments. Finally, Section 7 provides conclusions and
future work.

2. Related work

This section reviews existing solutions focused on trustworthy FL
and well-defined pillars relevant to trustworthy AI, such as robustness,
privacy, fairness, explainability, and accountability [8]. It is important
to mention that a large body of literature on trustworthy centralized
ML/DL has emerged in recent years. However, trustworthy FL is a
nascent research field.

FedEval [14] is the closest solution to the one proposed in this
paper because it combines several aspects relevant to trustworthy AI.
More in detail, FedEval is an open-source framework for FL systems
that evaluates the accuracy, communication, time efficiency, privacy,
and robustness of FL models to compute their trustworthiness level.
Regarding accuracy, it compares the performance of FL and the cen-
tralized training. The communication metric relies on the number
of communication rounds and the total amount of data transmission
during training. The time efficiency metric measures the overall time
needed for getting a converged model. The privacy metric considers
state-of-the-art inference attacks and their impact. Finally, robustness
metrics compute the performance of different aggregation mechanisms
under non-IID data. Another solution focused on quantifying the trust-
worthiness of AL models is presented in [15,16]. The authors propose
an extensible, adaptive, and parameterized algorithm to quantify the
trustworthiness level of supervised ML/DL models with tabular data ac-
cording to their robustness, explainability, fairness, and accountability.
The main limitation of this work is that it is not suitable for FL models.

Privacy is the central point of FL since its main objective is to
protect data privacy among the federation participants. Therefore, it
is crucial to preserve and quantify data privacy effectively to trust
FL model predictions. In this context, several works and techniques
can be categorized into three main families: (i) encryption-based, (ii)
perturbation-based, and (iii) anonymization-based. In the encryption-
based category, [17] designed a privacy-preserving protocol against
a semi-honest adversary by combining Ternary Gradients with secret
sharing and homomorphic encryption. [18] designed a secure aggre-
gation by leveraging secure multiparty computation to perform sums
of model parameter updates from individual users’ devices. In the per-
turbation category, [19] demonstrated that global differential privacy
offered a strong level of privacy when protecting sensitive health data
in an FL scenario. In addition, [20] proposed a procedure using differ-
ential privacy to ensure that a learned model does not reveal whether a
client participated during decentralized training. Unlike perturbation-
based techniques, anonymization-based techniques can provide privacy
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Table 1
Comparison of related work.

Solution (year) FL Privacy Robustness Fairness Explainability Accountability

[17] (2020), [18] (2017) ✓ Encryption ✗ ✗ ✗ ✗

[19] (2019), [20] (2017) ✓ Perturbation ✗ ✗ ✗ ✗

[21] (2021) ✓ Anonymization ✗ ✗ ✗ ✗

[22] (2020) ✗ ✗ Poisoning and Inference ✗ ✗ ✗

[24] (2019), [25] (2021) ✗ ✗ Poisoning ✗ ✗ ✗

[26] (2022) ✗ ✗ Assessment ✗ ✗ ✗

[27] (2021), [28] (2022) ✓ ✗ ✗ Clients Contributions ✗ ✗

[29] (2021), [30] (2020), [31] (2020) ✓ ✗ ✗ Client Selection ✗ ✗

[32] (2019), [33] (2017), [34] (2022) ✓ ✗ ✗ ✗ Feature Importance ✗

[35] (2022) ✓ ✗ ✗ ✗ ✗ FactSheet
[36] (2021), [37] (2020), [38] (2019) ✓ ✗ ✗ ✗ ✗ Blockchain
[14] (2020) ✓ Inference Evaluation Aggregation ✗ ✗ ✗

[16] (2022), [15] (2023) ✗ ✗ Poisoning Data Distribution Features and Algorithms Factsheet
FederatedTrust (this work) ✓ Perturbation Poisoning and Inference Federation Algorithms and Statistics Factsheet
defense without compromising data utility. In this category, to measure
privacy in FL, [21] proposed a novel method to approximate the mutual
information between local gradient updates and batched input data
during each round of training.

Although FL provides a first level of data protection by not sharing
training data, the FL paradigm is still vulnerable to adversarial at-
tacks affecting data privacy (inference attacks) and model performance
(poisoning attacks) [22]. Therefore, robustness is an important pillar
to consider in trustworthy FL. To improve the FL robustness against
adversarial attacks affecting data privacy and model performance, the
authors of [22] proposed the usage of differential privacy, robust
aggregation, and outlier detection as primary defenses. [23] showed
empirical evidence that differential privacy could defend against back-
door attacks and mitigate white-box membership inference attacks in
FL. [24] introduced Adaptive Federated Averaging (AFA), a Byzantine-
robust FL algorithm that detects and discards malicious client updates
at every iteration by comparing the similarity of the individual updates
to the one for the aggregated model. From a similar perspective, [25]
proposed Robust Filtering of one-dimensional Outliers (RFOut-1d), a
new FL approach resilient to model-poisoning backdoor attacks. Fi-
nally, regarding mechanisms and metrics able to evaluate the robust-
ness of FL, the literature has focused on methods to quantify robustness
once the model is trained. Some examples of these metrics are loss
sensitivity, empirical robustness, or CLEVER score [26].

Fairness is another essential pillar for trustworthy FL, as multiple
parties contribute data to the model training and are eventually re-
warded with the same aggregated global model. In this sense, [27]
provided a survey and overview of fairness notions adopted in FL-based
solutions. The notions include (i) accuracy parity, which measures
the degree of uniformity in performance across FL client devices;
(ii) selection fairness, which aims to mitigate bias and reduce under-
representation and never representation; and (iii) contribution fairness,
which aims to distribute payoff proportionately to the contributions
of clients. Apart from that, the authors of [29] proposed GIFAIR-FL.
This framework imposed group and individual fairness to FL settings by
penalizing the spread in the loss of clients to drive the optimizer to fair
solutions. FairFL [30] is another solution that facilitated fairness across
all demographic groups by employing a Multi-Agent Reinforcement
Learning-based scheme. This approach solved the fair classification
problem in FL by enforcing an optimal client selection policy on each
client. The authors of [31] proposed a long-term fairness constraint
that considered an expected guaranteed chosen rate of clients that
the selection scheme must fulfill. Finally, [28] proposed the Com-
pleted Federated Shapley Value (ComFedSV) to evaluate data owners’
contributions in FL based on solving a low-rank matrix completion
problem.

Even with active research on XAI, there are challenges specifically
for FL models, as most client data are private and cannot be read or
analyzed. In this context, some explainability methods, such as feature
importance, reveal underlying feature information from other parties.
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For horizontal FL models, since clients share the same feature space, the
authors of [32] suggested that predictions could be explained by calcu-
lating the Shapley value of each feature using the definition provided
by [39]. For vertical FL models, their work proposed a variant version
of SHAP [33] by combining the participant features into individual
united feature spaces. Therefore, participants do not get information
about the features of other participants. Another solution called EVFL
was proposed in [34], where authors presented a credible federated
counterfactual explanation method to evaluate feature importance for
vertical FL models and minimize the distribution of the counterfactual
and query instances in the client party.

Even though FL models are promising regarding data privacy, they
require transparency and accountability, as in the case of classical
centralized ML/DL models. In this sense, IBM introduced the Account-
able FL FactSheet framework [35] that instruments accountability in
FL models by fusing verifiable claims with tamper-evident facts. The
framework requires different actors, like the project owner, data owner,
or aggregator, to log claims about the various processes occurring dur-
ing the FL training lifecycle. They also expanded the IBM AI FactSheet
360 [40] project to account for the complex model compositions of FL.
Finally, [36,37], and [38] incorporated blockchain and smart contracts
to add different auditing and accountability mechanisms to FL models
by leveraging the immutability and decentralized trust properties of the
blockchain.

Table 1 compares the solutions covering each one of the FL trust-
worthiness pillars. In conclusion, this section has reviewed the work
done in each dimension or pillar relevant to trustworthy AI. As can be
seen, there is a lack of solutions quantifying the trustworthiness level of
FL models by combining the different pillars identified by related work.
Most solutions focus on isolated pillars and improving the pillar aspect
instead of assessing or quantifying its status, which is needed before
deploying countermeasures. In addition, there is no solution dealing
with aspects related to the architectural design of the federation.

3. Trustworthy FL: Pillars, notions, and metrics

This work identifies, introduces, and explains for the first time (to
the best of our knowledge) the most relevant pillars, notions, and
metrics for trustworthy FL. Additionally, it proposes a novel pillar
called Federation, which has not been considered in the literature. This
pillar captures complex compositions and designs of FL architectures to
compute their trustworthiness.

Fig. 1 presents a taxonomy describing the pillars, notions, and
metrics relevant to trustworthy FL. Under each pillar, the major aspects
defining it are grouped into notions. Under each notion, the specific
metrics that can be calculated to quantify the level of utility towards
trustworthiness are defined. This taxonomy serves as the baseline for
evaluating and assessing the trustworthiness level of FL models. The
mathematical symbols employed in this section are summarized in

Table 2.
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Fig. 1. Trustworthy FL taxonomy.
Table 2
Math notations employed in the document.

Symbol Meaning

𝑥 Model update
𝑝(𝑥) Probability of x satisfying a condition
𝐻(𝑥) Entropy of x
𝐾() Randomized K function
𝑤𝑡 Current model
𝑤𝑡+1 Next model
𝜎 Standard deviation
𝜇 Participation rate
𝐶𝑉 Coefficient of variation
𝛷 Discrimination index
𝐹1(𝑋) F1 score of samples in X

3.1. Privacy

Data privacy is the most prominent driving force for the develop-
ment of FL. Therefore, FL models must preserve data privacy within
their lifecycle to gain participants’ trust. Even though FL already elicits
a degree of data privacy by definition, assumptions have to be made
about the integrity of the multiple actors and parties making up the
federation. If participants are honest, but the aggregating server is
honest but curious, prevention of information leakage from model
parameter exchanges must be in place. If all federation members are
honest but curious, then information leakage prevention should focus
on secure communication. Moreover, information can still be leaked by
malicious attacks from outside.

To cover these aspects, the first notion of this pillar is the usage of
privacy-preserving approaches to add resilience to privacy attacks. The
second focuses on metrics measuring information gain/loss based on
the information leakage risk derived from the FL process. Finally, two
additional notions arise from the probability of knowledge inference
from the client updates.

Privacy-preserving approaches. This notion considers the follow-
ing main approaches to protect data privacy in FL.

• Perturbation. It adds noise to raw data, so the perturbed data are
statically indistinguishable from the raw data. The most widely
adopted schemes are local and global Differential Privacy [41].
The global approach adds noise to the parameters shared after
the local model is trained, while the local one adds noise to each
client data sample used for training.

• Encryption. It encrypts the model parameters of each partic-
ipant before sharing it. The most widely adopted scheme is
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Homomorphic Encryption, where the aggregation server does
not decrypt the parameters to aggregate them into the global
model [42]. Another popular scheme is Secure Multiparty Com-
putation (SMC) [43], which allows participants to collaboratively
calculate an objective function without revealing their data.

• Anonymization. The most widely adopted schemes in this ap-
proach are k-anonymity and l-diversity. K-anonymity is satisfied
if each sample in the dataset cannot be re-identified from the
revealed data of at least 𝑘 − 1 clients [44]. L-diversity extends
on k-anonymity so that the sensitive attributes of the samples are
protected.

Information Gain/Loss. This notion focuses on measuring the
amount of privacy lost by participants or the amount of information
gained by adversaries due to leakage or disclosure of information [45].

• Information Leakage Risk. In FL, the gradients can carry enough
information for adversaries to reconstruct the model or infer
original data. H-MINE [21] is a hierarchical mutual information
estimation metric to measure the mutual information between the
high-dimensional gradients and batched input data. The amount
of leaked information (counting the information items disclosed
by a system), relative entropy (measuring the distance between
two probability distributions), or mutual information (quantifying
the shared information between two random variables) are other
methods to compute this metric.

Uncertainty. The uncertainty of data estimation by adversaries
makes a difference in the level and effectiveness of a data privacy
breach. Under normal circumstances, high uncertainty estimation cor-
relates with high privacy. This notion considers metrics to measure
uncertainty, most of which are based on entropy.

• Entropy. In general, entropy measures the uncertainty in predict-
ing the value of a random variable. In FL, an adversary may be
interested in identifying which data samples belong to a particular
client or organization participating in the training [46]. Eq. (1)
calculates the entropy of 𝑋, where 𝑋 is a participating client and
𝑝(𝑥𝑖) is the estimated probability of this client being the target.

𝑝𝑟𝑖𝑣𝐸𝑁𝑇 ≡ 𝐻(𝑋) = −
∑

𝑥∈𝑋
𝑝(𝑥) log2 𝑝(𝑥) (1)

Indistinguishability. Some adversaries are interested in distin-
guishing between two data samples of interest. In general, privacy is
high if the adversary cannot distinguish between two outcomes of the
model.
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• Global Privacy Risk. It enables indistinguishability in the training
data by adding random noise. It is a formal statistical guarantee
that any disclosure is equally likely whether a sample is in the
dataset or not [47]. Eq. (2) describes the formal differential
privacy proof for privacy mechanism. A randomized function 𝐾
checks if the output of random variables for two datasets 𝐷1, 𝐷2
that differ at most to some extent (e.g., one row of data), differ
by at most 𝑒𝑥𝑝(𝜖):

𝑝𝑟𝑖𝑣𝐷𝑃 ≡ ∀𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒(𝐾) ∶ 𝑝(𝐾(𝐷1) ∈ 𝑆) ≤ exp (𝜖)

⋅ 𝑝(𝐾(𝐷2 ∈ 𝑆))
(2)

3.2. Robustness

Robustness is one of the three foundations of trustworthy AI, to-
gether with lawfulness and ethics, as defined by the European Com-
mission AI ethics guidelines [7]. AI systems must be technically robust
to ensure that they are not vulnerable to malicious use or bring harm
to humans. In this sense, the literature has considered three different
notions, and this work proposes a new one to assess the robustness
of FL models. According to the literature [5], FL models must be
resilient to adversarial attacks adding perturbations or erroneous in-
puts. Secondly, the hardware and software of participants training
and deploying FL models must be robust to avoid cyberattacks [48].
Thirdly, FL algorithms performance and customization must be reliable
and robust [49]. Last but not least, this work proposes adding client and
data reliability as a novel notion since reliable clients and data increase
the probability of robust and reliable FL models. More details of each
notion and its metrics are provided below.

Resilience to Attacks. FL models are susceptible to poisoning
attacks affecting model training and robustness. Poisoning attacks can
be categorized into data poisoning and model poisoning. In data poi-
soning, the integrity of the training data is compromised. Common
methods are flipping or permuting the labels and inserting backdoor
patterns or perturbations into the training data. Model poisoning at-
tacks have a broader range, and the goal is to manipulate the training
procedure. In FL, this could be gradient manipulation or model update
poisoning attack, which is performed by corrupting the updates of a
participant directly or during model exchanges. Therefore, this notion
is usually evaluated by first checking whether the FL model is equipped
with any defense mechanism and, if so, empirically verifying the model
defense capabilities against representative attacks.

• Poisoning Defense. It focuses on providing defense mechanisms
against poisoning attacks. On the one hand, Byzantine-resilient
Defense is a popular defense mechanism where various robust
aggregation methods have demonstrated their effectiveness in
detecting malicious client updates and reducing their impact [12].
On the other hand, Outlier Detection explicitly identifies and de-
nies negative influence as a more proactive defense against poi-
soning attacks. Existing approaches include rejecting updates with
too large error rates, measuring the distribution of parameter
updates, or looking for dormant neurons that are not frequently
activated [50].

• Empirical Robustness. If small changes in the input data cause
significant output deviations, adversarial perturbations can be
used to generate undesired outcomes. It can be measured by im-
plementing a model poisoning attack, a typical poisoning attack
altering some local data (data poisoning), or the gradients (model
poisoning) [51]. A mathematical explanation of how a model
replacement attack works is provided by [50] and illustrated as
follows. It is assumed that at least one compromised client could
apply the backdoor patterns to perform a model replacement at-
tack. Eq. (3) describes how a poisoned model update is generated.
Where 𝑤𝑡 is the current model and 𝑁 is the number of clients. The
global model 𝑤 at time 𝑡+1 is an averaged mean of model updates
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from 𝑁 clients at time 𝑡+ 1, and the goal is to replace the global
model 𝑤 at 𝑡 + 1 with the attacker’s model 𝑥𝑎𝑡𝑘:

𝑥𝑎𝑡𝑘 = 𝑤𝑡+1 = 𝑤𝑡 +
1
𝑁

𝑁
∑

𝑖=1
(𝑥𝑖𝑡+1 −𝑤𝑡) (3)

Now, 𝑥𝑚𝑡+1 is the update from the malicious client 𝑚 at time 𝑡+ 1,
then rearranging Eq. (3), we have:

𝑥𝑚𝑡+1 = 𝑁 ⋅ 𝑥𝑎𝑡𝑘 −𝑁 ⋅𝑤𝑡 −
𝑁−1
∑

𝑖=1
(𝑥𝑖𝑡+1 −𝑤𝑡) +𝑤𝑡 (4)

Assuming ∑𝑁
𝑖=1(𝑥

𝑖
𝑡+1 − 𝑤𝑡) ≈ 0 as explained in [52], we have the

attacker’s update be simplified as the following:

𝑥𝑚𝑡+1 = 𝑁 ⋅ (𝑥𝑎𝑡𝑘 −𝑤𝑡) +𝑤𝑡 (5)

• Certified Robustness. It defines the least amount of perturbation re-
quired for the attacker to succeed (change the model prediction).
In other words, a model is certifiably robust for an upper-bounded
amount of perturbations. The CLEVER (Cross Lipschitz Extreme
Value for nEtwork Robustness) metric [53] using the local Lips-
chitz constant for neural networks is one of the most well-known
metrics. CLEVER is an attack-agnostic derivation of the universal
lower bound on the minimal distortion required for a successful
attack.

System-level Robustness. This notion deals with hardware and
oftware robustness and must be considered in production environ-
ents with FL models where proper software development and deploy-
ent standards are needed. Testing coverage and system reliability are

he main metrics for this notion.

• Testing Coverage. It guarantees that clients adhere to the federa-
tion requirements, such as broadcasting messages to distributed
clients, client selection, and model aggregation. This metric can
be implemented using different methodologies, such as robust sys-
tem delivery, ranging from code review, unit testing, integration
testing, system testing, and acceptance testing [54].

• System Reliability. It deals with the probability and the duration of
time of failure-free operation [55]. It is measured based on error,
timeout, and dropout rates. The error rate is normally calculated
as the number of failures over a given amount of time. The maxi-
mum timeout measures the time the server should wait to receive
client model updates. Finally, the dropout rate is the number of
clients leaving the federation (to speed up convergence, optimize
resources, or due to errors) divided by the total amount of clients.
A high dropout rate can also indicate a less reliable FL system.

Algorithm-level Robustness. This notion deals with the perfor-
ance and generalization of FL algorithms. Performance is widely used

o showcase how good an ML/DL model is. However, good performance
oes not necessarily imply generalization. Generalization is a major
hallenge in FL because each client has different local data hetero-
eneity, and the aggregated global model might not be able to capture
ndividual data patterns. Non-IID data [56] may cause severe learning
ivergence to parametric models. Therefore, metrics are desirable to
easure the performance and generalization of FL [57].

• Performance. In FL, there are two approaches to measuring per-
formance. One is reserving a set of test or validation data on the
server side for global model evaluation. The other is by evaluating
test accuracy at each client’s device and aggregating the test
accuracy. This metric considers these two aspects.

• Personalization. Several methods have been proposed for this cat-
egory of metrics. Regularization is one of the personalized FL
approaches aiming to minimize the disparity between global and
local models. Multi-tasking Learning is a method where multiple

learning tasks are solved simultaneously. This benefits FL models
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since multiple organizations participating in the FL models can
train their personalized models to achieve better performance. For
example, MOCHA [58] generates separated but related models
on local client devices using data of related tasks. Clustering is
another personalization approach where clients are allocated into
clusters based on their similarity [59]. Personalized Layer is a
metric for neural network models that introduces custom layers
for each client in the model. FedPer [60] is an example that uses
the base layers as the shallow layers and personalized layers as
the deep layers while keeping everything else the same as the
baseline FedAvg algorithm.

Client and Data Reliability. This novel notion of robustness deals
with client and data reliability. In this sense, metrics like federation
scale, clients’ reputation, and data quality are essential for robust and
trustworthy FL models.

• Federation Scale. The number of clients impacts the reliability of
the system. In FL, the number of clients determines the number
of devices, network connections, and model parameters that must
be considered to train FL models. The higher the number of
clients, the network stability, computation power, and availability
of clients, the higher the reliability of the FL system [61].

• Client Reputation. In [49], a novel reputation metric was proposed,
and a subjective logic model was used to calculate the reputation
score for each client interaction. After each training iteration, the
server uses a poisoning attack detection scheme and the elapsed
time to determine if the local update from the client is reliable.
Reliable updates are treated as positive interactions and improve
the reputation value, and vice versa. The client is treated as
malicious and unreliable when the reputation value is below a
threshold.

• Data Quality. It compares, in each training round, the local up-
dates with the current global model to see if the new local updates
are better or worse than the global model [62]. If a round of
training at one client improves the performance of the global
model, then the data from that client has a high-quality score.

3.3. Fairness

One primary source of unfairness in AI is coming from the data.
In FL, different clients might contribute with heterogeneous amounts
and quality of data. When data are not representative of the wider
federation, participant selection bias is propagated into the model. The
selection bias can be manifested by feature distribution skew or label
distribution skew [12], both of which are major challenges in FL. There-
fore, Client Selection Fairness is the first notion of this pillar. Apart
from that, in fair AI [63], fairness is broken down into group-level and
individual-level fairness. Group-level fairness means that members of a
particular group should not be subject to discrimination. Individual-
level fairness means that similar individuals should receive similar
treatment regardless of their membership group. These requirements
do not change when moving to FL. Therefore, the Group-level Fairness
notion deals with the group-level aspects, and the Performance Fairness
and Class Distribution notion covers individual-level ones. More in
detail, Performance Fairness ensures that each client’s reward should
be proportional to their data contribution. Finally, Class Distribution
looks at the label imbalance in the dataset of each participant.

Client Selection. Usually, in FL, only a fraction of clients are
selected to participate in the training process of each round. In practice,
there are several criteria for selection, such as availability, network
speed, computation power, or battery level, among others. In the worst
case, clients in regions with low network speed or models with weaker
computation power could never be selected and represented in the
training data. Therefore, under-representation is a source of selection
bias that could lead to unfair model outcomes.
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• Participation Variation. In statistics, the Coefficient of Variation
(CV) measures how far the data values from a set are dispersed
from the mean. This metric analyzes the distribution of partici-
pation rates among all clients. With similar clients, the more dis-
persed the distribution of participation rate, the less fair the client
selection mechanism is, and vice versa [64]. Eq. (6) calculates
the CV in the participation rate, where 𝜎 represents the standard
deviation, and 𝜇 represents the average of the participation rate.

𝐶𝑉 = 𝜎
𝜇

(6)

Performance. Even though performance fairness already exists in
AI, in FL, another grouping needs to be considered, which is client-level
fairness. [64] suggests a definition that a model provides a more fair
solution to the FL learning objective on the clients if the performance
is more uniform than that of another model.

• Accuracy Variation. This metric considers the test accuracy as a
representation of performance. More in detail, the aggregated
global model and test data from each client are used to measure
the test accuracy. The more uniform the test accuracy among the
clients, the more fair the model performance is.

Group-level. Evaluating and mitigating demographic bias in FL is
more difficult than in centralized learning. First, raw training data, la-
bels, and sensitive demographic information of each participant cannot
be revealed. Second, in centralized learning, all the training data can
be analyzed and pre-processed to balance the class distribution before
training. In contrast, different clients pre-process their data locally in
FL, so additional mechanisms are needed to adjust the global data
distribution in a secure and protected manner.

• Discrimination Index. The discrimination index metric [30] mea-
sures the difference in the F1 score between a particular demo-
graphic group (𝜎) and the rest of the population. The metric value
falls between [−1, 1], where the ideal discrimination index should
be as close to 0 as possible. Calculating this index globally would
reveal sensitive attributes and statistics of the demographic group
in the client data. Eq. (7) calculates the discrimination index,
where 𝐹1(𝑋+

𝜈 ) represents the F1 score of all the samples from the
protected group and 𝐹1(𝑋−

𝜈 ) represents the F1 score of the rest of
the samples.

𝛷𝜎 = 𝐹1(𝑤(𝑋+
𝜎 )) − 𝐹1(𝑤(𝑋−

𝜎 )) (7)

Class Distribution. Analyzing the class distribution of the training
data used in an ML/DL model provides insight into whether the data
samples are selected properly to reflect a fair representation of the
wider group. In theory, this should also apply to FL models, except that
in practice, this often requires access and analysis of the raw training
data, which goes against data privacy. However, in [65], an estimation
scheme was proposed to reveal the class distribution without accessing
raw data. Furthermore, secure aggregation can also be considered for
aggregating class distribution information among clients.

• Class Imbalance. Two approaches can be used to evaluate the
class imbalance. One is the estimation scheme using a well-
balanced auxiliary dataset and the gradients of a neural network
model [65]. Another general way to get the class imbalance
information in FL is to ask every client to submit their class dis-
tribution to the server. The secure aggregation method combines
all the class distributions into one unified distribution. Then,
the coefficient of variation of the class distribution can be used
to calculate the level of variation of the class sample sizes to
determine the class imbalance.
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3.4. Explainability

Nowadays, the explainability of ML/DL/FL models is an open chal-
lenge. In this context, AI guidelines demand transparent AI processes,
with the capabilities and purpose of AI systems openly communicated
and decisions explainable to those directly and indirectly impacted.
Transparency is often expressed as interpretability, which is often
wrongly mistaken as interchangeable with explainability. Interpretabil-
ity is the first notion of this pillar and can be described as a passive
characteristic of a model referring to the level of understandability for
humans. In contrast, explainability is the ability to describe AI systems’
technical processes. Interpretable models can be explained by analyzing
the model itself, but Post-hoc methods can enhance their interpretabil-
ity, being the second notion of this pillar for non-interpretable models.
For FL, since ML/DL models are also used in the training process, the
requirement of explainability for the algorithmic model also applies.
However, privacy constraints make accessing and analyzing raw data
difficult.

Interpretability. This notion combines the algorithm transparency
and the model size to evaluate the FL model interpretability. As already
identified in the literature, some ML/DL models are interpretable by
design, and some are not. In addition, model size is also widely used
as a metric of interpretability. More details about these two metrics are
provided below.

• Algorithmic Transparency. A model is considered transparent if it is
understandable by itself. This definition could be very subjective
to different levels of intellectual grasp. However, algorithmi-
cally transparent models must first be fully explorable through
mathematical analysis and methods. Then, the assessment con-
siders model complexity (in terms of the number of variables
and interactions) and decomposability (in terms of the inter-
pretability of each component of the model) [66]. In summary,
the recognized interpretable models are linear regression, lo-
gistic regression, decision trees, decision rules, k-nearest neigh-
bors (KNN), and Bayesian models. Even within the interpretable
models, the level of interpretability slightly varies. The non-
interpretable models include tree ensembles, support vector ma-
chines (SVM), multi-layer neural networks (MNN), convolutional
neural networks (CNN), and recurrent neural networks (RNN).

• Model Size. Different algorithms have diverse definitions of model
size. For instance, it could be the number of decision rules, the
depth of a decision tree, the number of features in a linear/logistic
regression model, or the number of trainable parameters in a
neural network [67]. The larger the model size, the harder it is
to understand and explain the causal relationship between input
and output.

Post-hoc Methods. The three most common Post-hoc Methods
re simplification, feature importance, and visualization [66]. This
otion complements the previous and contributes to assessing the
xplainability of interpretable and non-interpretable FL models.

• Simplification. The idea of simplification lies in reducing the num-
ber of architectural elements or parameters in a model. One of the
main techniques applied for model simplification is knowledge
distillation [68].

• Feature Importance. Most model explanation methods can be di-
rectly used for horizontal FL because all participants share the full
feature space in their local data [32]. However, exposing feature
information to the server for calculating feature importance score
is not ideal. For vertical FL, methods like SHAP cannot be directly
used because parties do not share the full feature space. The vari-
ant version of SHAP for Vertical FL combines one party’s features
into a federated feature space when referenced by another party
for the feature importance calculation [32].
89
• Visualization. A lifecycle dashboard that visualizes server informa-
tion, from client registration to training, validation, and deploy-
ment, was proposed in [69]. The dashboard shows which clients
participated in which training round and the model current status.

3.5. Accountability

Accountability is another of the seven critical requirements of Trust-
worthy AI defined by the EU guidelines [7]. The first main notion about
accountability is FactSheet Completeness. IBM Research was the first to
propose a document called FactSheet in charge of recording facts about
the overall ML/DL pipeline [70]. Another important notion of account-
ability is Monitoring. Even with complete and detailed documentation,
every participant has to make an effort to ensure that FL models are
built strictly following the intended architecture, development, and
deployment processes.

FactSheet Completeness. IBM extended the FactSheet approach
to enable accountability in FL [35]. The accountable FL FactSheet
template is a comprehensive document that contains meta-information
about the project, participants, data, model configurations, and per-
formance. Since FL is more complicated in architecture and more
privacy-preserving, the FactSheet should contain information about the
additional layer of configurations and avoid sensitive information about
participating clients. Below, more details about the aspects considered
in FactSheets are provided.

• Project Specification. This section of the FactSheet documents the
project overview, purpose, and background. The overview ex-
plains what the project is about. The purpose details the goals,
and the background elaborates on the relevant information and
knowledge motivating the project.

• Participants. It contains the participants of the FL process. The
template considers the participants’ names and their organization
unit names for identity verification.

• Data. It documents the information regarding the data used in
the FL process. Two aspects are included: data provenance and
pre-processing procedures. Data provenance helps trace the data
origin and flow to access validity and reputation. Before training
the model, pre-processing steps can tell how the raw data have
been handled.

• Configuration. It deals with the information about the FL model
configuration. First, it contains the type of optimization algo-
rithm and the ML/DL model. Then, it indicates the global hyper-
parameters the aggregator uses, for instance, the number of
rounds, the maximum timeout, and the termination accuracy.
Lastly, it contains the local hyper-parameters used by the trainer
at each client, such as the learning rate and the number of epochs.

• System. This FactSheet section documents the system information
for the learning process. It includes the average time spent on
training, the model size, the model upload, and the download
speed in bytes. This information indicates the number of resources
expected to be utilized.

Monitoring. For AI systems, algorithmic auditing is a range of ap-
roaches to auditing algorithmic processing systems. The evaluation of
he metrics under this notion uses a checklist-based approach, verifying
f the FL system employs any external or internal algorithmic auditing.

• Algorithmic Auditing. This metric can be implemented in different
ways. For example, it could be functional testing, performance
testing, user acceptance testing, etc. It could also be system
anomaly or attack monitoring. Some organizations even invite
or hire external hackers to find vulnerabilities as a monitoring
measure. The SMACTR framework [71] is a good option for a
more systematic approach. It is an internal auditing framework
with five stages: scoping, mapping, artifact collection, testing,
and reflection. Each stage yields a set of documents that form a
comprehensive audit report.
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3.6. Federation

The major management challenges of FL deal with communication,
efficiency, resource limitation, and security. In this context, it is very
challenging to coordinate the learning process of thousands of clients
while ensuring model integrity and security. Global models might
converge slowly due to heterogeneous client data. Inconsistent clients,
networks, and limited resources might cause clients to drop out, and
training failures could impact model quality. In conclusion, although
there is active research in FL algorithms, there is still a lack of research
and guidelines on the architectural design of FL systems. In this sense,
the main notions of this pillar are Client and Model Management,
which considers how client and model information is administrated in
the system, and Optimization Algorithm, which may impact the model
performance and robustness.

Client Management. This notion proposed a Client Registry, where
participants can register themselves for training, and a Client Selector
to filter eligible clients for training. More details are provided below.

• Client Registry. It enables the system to manage client connections
and track the status of all client devices. The proposed design
pattern maintains the client registry in the central server for the
client–server architecture. The server sends a request for informa-
tion along with the initial local model to the clients when they
first connect to the system. The information requested includes
device ID, connection up and down time, or device computation
power storage.

• Client Selector. It optimizes resource usage and reduces the risk of
client dropout and communication latency. The proposed design
pattern also maintains the client selector in the central server
where the selection occurs. Before each round of training, the
client selector actively selects a certain number of clients for the
training according to predefined criteria to reduce convergence
time and optimize the model performance.

Model Management. In a distributed learning process like FL,
ultiple rounds of training and aggregation of models generate nu-
erous local model updates and aggregated global models during the
rocess. Without recording the local and global intermediary models,
here is neither traceability nor fallback when something goes wrong in
he training process. A model co-versioning registry and replacement
an help trace the model quality and improve system accountability.
lockchain has been proposed by recent works of the literature to
opulate individual models in an immutable and transparent manner,
itigating some attacks affecting FL [72].

• Model Co-versioning. It aligns the local model versions with their
corresponding aggregated global models. It can be a registry
where local model versions are stored and mapped to the as-
sociated global models. With this registry, model updates and
aggregations do not always have to be synchronous because the
server can refer to the mapping to perform asynchronous aggre-
gations. Another advantage is that it allows early stopping if a
model converges before the specified number of rounds.

• Model Replacement. It detects the global model performance drop-
ping below a certain threshold level. For that, it compares the
global modal performance in all clients to see if the performance
degradation is a global event. The new global model training task
is triggered if the degradation is global and persistent.

Optimization. According to the goal and the context of FL mod-
ls, the choice of an optimization algorithm can impact the model
erformance. Therefore, various studies have conducted performance
enchmarking of FL optimization algorithms [73]. This benchmarking
omparison serves as a reference for this metric.
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• Aggregation Algorithm. FedAvg is considered the baseline aggrega-
tion algorithm, but other optimization algorithms have been pro-
posed as an extension for various purposes [73]. In addition, the
aggregation can be done in a centralized or decentralized manner.
Decentralization reduces network bottleneck, single point of fail-
ure, and trust dependencies while increasing network overhead
in some cases [74]. This metric considers these two aspects to
evaluate the trustworthiness level of the aggregation task.

4. FederatedTrust algorithm design

This section details the design of FederatedTrust, the algorithm pro-
posed to quantify the trustworthiness level of FL models according to
the pillars, notions, and metrics presented in Section 3. To the best of
our knowledge, it is the first attempt to evaluate the trustworthiness of
FL models.

Prior to delving into the specifics of the algorithm, it is crucial to
mention that this work operates under the assumption that the central
server, which aggregates the models of the clients, is honest, maintains
data integrity, and is overseen by a dependable system administrator.
Therefore, the server does not maliciously interfere with the trust
calculation process. In addition, the following functional requirements
(FR), non-functional requirements (NF), and privacy constraints (PC)
have been considered before designing and implementing the proposed
algorithm.

FR-1: Each of the six trustworthy FL pillars must be represented in
the algorithm, meaning that at least one metric from each pillar
must be considered in the final score.

FR-2: The final trustworthiness score must be a combination of the
trustworthiness scores from all notions and pillars.

NF-1: The algorithm should add minimal computation overhead and
complexity to the server, participants, and FL model.

NF-2: The algorithm should be modular and configurable.
PC-1: The algorithm must not store any sensitive data from the FL

model.
PC-2: The algorithm must not leak or share any sensitive data from

clients, the server, and the FL model with third parties.
PC-3: The metrics calculations can occur at the client’s local devices,

the central server, or collaboratively between both.
PC-4: When metrics are calculated collaboratively between clients and

the server, the computation should be performed securely and
privately if the individual client metrics contain sensitive infor-
mation.

Once assumptions and requirements are defined, Fig. 2 shows the
overview of the FederatedTrust algorithm design. First, the proposed
algorithm considers the following input sources to compute the trust-
worthiness of FL models.

• FL Model. The FL model trained in a collaborative and privacy-
preserving way between the federation participants. This input
contains information about the model configuration and model
personalization.

• FL Framework Configuration. The configuration parameters of
the tool implementing the protocol needed to train and evaluate
the FL model. This input contains information about the num-
ber of clients, the client selection mechanisms, the aggregation
algorithm, and the model hyperparameters.

• FactSheet. As mentioned in Section 3, It provides essential de-
tails for the accountability of the training process, federation,
and the individuals involved. Specifically, it encompasses in-
formation about the overview of the task to solve, data ori-
gin, techniques used for pre-processing, and the incorporation of
differential privacy mechanisms.
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Fig. 2. Design of the FederatedTrust algorithm.
• Statistics. The statistical information extracted from the training
dataset of each client and its model performance. It does not con-
tain sensitive information. This input contains information about
the client class balance, client test performance loss, client test
accuracy, client clever score, coefficient of variation for client fea-
ture importance, coefficient of variation for client test accuracy,
coefficient of variation for client participation rate, coefficient of
variation for client class imbalance, client average training time,
average model size, average upload bytes, and average download
bytes.

These input sources are used to compute the metrics indicated in
Section 3, which output values are then normalized to have a common
range of values. It is important to mention that each metric can consider
different input sources and can be calculated in a different phase of
the FL model creation process (pre-training, during-training, or post-
training) and by a different actor of the federation (client or server).
These details regarding when and who computes each metric are
provided later. Once the normalized outputs of metrics are calculated,
they are weighted and aggregated to compute one score per notion
(see Section 3 for more information about notions). Each pillar has one
or more notions calculated according to predefined but configurable
weights per metric. Therefore, the same process is repeated to obtain
the pillar scores from weighting and aggregating notion scores. Finally,
the final trust score of the FL model is a configurable combination of
the pillar scores. The implementation details of the previous steps are
provided in Section 5.

As indicated, some metrics of the algorithm are calculated dur-
ing the training phase of the FL model. Therefore, it is necessary
to integrate the proposed algorithm into an FL framework in charge
of creating FL models. In this context, Fig. 3 shows the interactions
between the main actors involved in the computation of the trustworthy
level of FL models. As it can be seen, the central server of the federation
hosts (i) the Aggregator, in charge of combining the parameters of the
clients’ models to create the FL model, (ii) the FactSheet, accounting the
most important aspects of the FL project and participants federation,
(iii) the FL Framework Configuration, detailing aspects of the framework,
and (iv) the FederatedTrust algorithm, computing the FL model trust
score. To compute the trust score, during the pre-training phase, the
content of the FactSheet and the FL framework configuration (detailed
in Section 5) is sent to the FederatedTrust algorithm (steps 1 and 2
in Fig. 3) and metrics depending on them are calculated as previously
explained. Then, the model training process starts with the server
sharing the type of model and its characteristics with the clients of the
federation (step 3). Once clients locally train their models with their
private datasets, they send the models parameters and statistics of their
data to the server for aggregation (step 4). At that point, the parameters
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Fig. 3. Overview of the integration of FederatedTrust into an FL framework.

are aggregated, and the FL Model and statistics (about training datasets
and model performance) are sent to the FederatedTrust algorithm for
computing metrics during training (step 5). Steps 3, 4, and 5 are
repeated until the FL model converges or the training rounds are
over. At this point, the training process concludes, and FederatedTrust
computes the post-training metrics. Finally, the FederatedTrust algo-
rithm provides a score per pillar and a global one, together with a
trustworthiness report. The detailed version of the previous steps is
provided by Algorithm 1.

5. FederatedTrust algorithm prototype

This section contains the implementation details of the Federat-
edTrust algorithm when dealing with a given problem presented as a
use case. The implemented prototype is available in [13].

5.1. FL framework selection and use case

Regarding the selection of the FL framework, after careful com-
parison and analysis of the most relevant and used frameworks in
charge of training diverse FL models (TensorFlow Federated, PySyft,
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Algorithm 1 Training a FL model equipped with FederatedTrust
1: Input: clients 𝑁 , sampling size 𝑚, a central server 𝑆, number of iterations 𝑇 , initial

model 𝑤̄(0), FL Framework configuration 𝐶, FederatedTrust 𝑓𝑡, FactSheet 𝑓𝑠
2: Output: global score, pillars scores, trustworthiness report
3: 𝑆 sends the hashed IDs of all clients 𝑖 ∈ [𝑁], 𝐶, and 𝑓𝑠 to 𝑓𝑡
4: 𝑓𝑡 creates a map of hashed client IDs to values of 0, representing the initial selection

rate
5: 𝑆 sends the model metadata to 𝑓𝑡
6: 𝑆 request class distribution information from all clients 𝑖 ∈ [𝑁]
7: for clients 𝑖 ∈ [𝑁] do
8: Client 𝑖 uses 𝑓𝑡 function to calculate the sample size per class of local data
9: 𝑓𝑡 creates or updates the class distribution map of hashed labels to sample size
0: end for
1: for 𝑡 = 0 to 𝑇 do
2: 𝑆 randomly samples 𝐷(𝑡) ⊂ [𝑁] clients with size of 𝑚
3: 𝑆 sends the hashed IDs of the selected clients to 𝑓𝑡
4: 𝑓𝑡 updates the client selection rate map
5: 𝑆 broadcasts the current model 𝑤̄(𝑡) to all clients 𝑖 ∈ 𝐷(𝑡)

6: for clients 𝑖 ∈ 𝐷(𝑡) do
7: Client 𝑖 performs local training with 𝑤̄(𝑡)

8: Client 𝑖 sends new model updates 𝑤(𝑡+1)
𝑖 back to 𝑆

9: Client 𝑖 computes evaluation metrics with local test data and local model 𝑤̄𝑖
′

0: Client 𝑖 sends the evaluation results back to 𝑆
1: end for
2: 𝑆 performs secure aggregation of all updates into a new global model 𝑤̄(𝑡+1)

3: end for
4: 𝑆 aggregates the evaluation results and sends them to 𝑓𝑡
5: 𝑓𝑡 receives the evaluation results and populates them
6: 𝑆 asks 𝑓𝑡 to evaluate the trustworthiness of the model
7: 𝑓𝑡 computes the trustworthiness score and generates a report JSON and print message

Flower, FLUTE, LEAF, FederatedScope, FedEval, and FedML), Feder-
atedScope [75] was chosen as a reference tool. More in detail, the
following functionality led to the selection of FederatedScope in this
work.

1. Standalone and distributed modes to set up clients experimen-
tally or realistically.

2. Differential privacy and inference attacks.
3. Well-documented evaluation metrics.
4. Data zoo, a suite of well-known federated datasets such as

FEMNIST [76], and Algo zoo, a list of optimization algorithms
such as FedAvg, or FedProx.

5. Model zoo, a set of computer vision and language models.

Then, a basic use case was chosen for implementing and testing
the deployment of the FederatedTrust algorithm as a proof of concept.
In this context, the use case focuses on classifying handwritten digits
and numbers in a federated and privacy-preserving way. For that,
FederatedScope runs an FL training process in standalone mode with a
variable number of clients and one central server over a defined number
of iterations. The function to aggregate individual models and create
the global FL Model is FedAvg, and the model is a convolutional neural
network (CovNet2). The federated datasets that the clients hold locally
are from the FEMNIST image dataset of handwritten digits and letters.
The dataset has 62 classes (10 digits, 26 lowercase, 26 uppercase), and
the images are 28 by 28 pixels. The client selector strategy is random
sampling.

5.2. Metrics selection and FederatedTrust implementation

As seen in Section 3, not all metrics have a standardized way of
being computed, available equations, or feasible calculation methods.
Therefore, the objective is to implement a lightweight prototype with
the basic pillars, notions, and metrics that can be calculated in any FL
project created with the FederatedScope framework. The list of omitted
notions and metrics and the reasons for not including them in the
prototype implementation are the following.

• Encryption and anonymization (Privacy). The usage of these two
techniques is not documented in the configuration file of the Fed-
eratedScope framework. Furthermore, the implemented prototype
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considers differential privacy as perturbation technique to protect
data privacy.

• Information Leakage Risk (Privacy). This metric needs to be calcu-
lated during every round of the training process by running extra
neural networks, which would incur high computation overhead.

• Poisoning Defense (Robustness). It is challenging to quantify the
usage of the poisoning defense mechanism unless the information
is documented in the FL framework, which is not the case in
FederatedScope. In addition, another way to verify this metric is
to check the certified robustness against poisoning attacks, which
is considered in the implementation.

• Empirical Robustness (Robustness). This metric depends on each
attack type, and the number of possibilities and complexity is
huge. Furthermore, certified robustness could help to cover this
metric.

• Testing Coverage and System Reliability (Robustness). Neither test-
ing data nor error rates are available in the FederatedScope
framework.

• Client Reputation (Robustness). There is no clear way to measure
client reputation in a simulated environment. It requires more
inspections of the client data provenance.

• Data Quality (Robustness). It needs to be executed during ev-
ery round of the training process, creating a high computation
overhead for the FL model training process.

• Discrimination Index (Fairness). It requires knowledge of protected
sensitive features, and it is unclear how this calculation can be
done without leaking sensitive information.

• Visualization (Explainability). Graphical capabilities to show the
explainability of FL models are not included in the Federated-
Scope framework.

• Algorithmic Auditing (Accountability). It is not implemented be-
cause there are no real end users, and no attackers are present
in the environment.

• Client Registry (Federation). The FederatedScope framework sim-
ulates the clients participating in the federation. Therefore, no
client registration is required.

• Model co-versioning and replacement (Federation). Versioning and
model replacement trigger functionality is not implemented as the
validation scenario is simulated.

Once those metrics excluded for the prototype implementation are
ndicated, Table 3 describes the list of implemented metrics, with
escriptions, inputs, output values, calculation moment, and federation
ctor in charge of computing them.

In order to understand how the trust FL score is computed, it is
mportant to mention that the output value of each metric can have
ifferent ranges, as indicated in the metric definitions (Table 3). There-
ore, to combine these values into an understandable trustworthiness
core, different functions are used to translate the output values into
normalized score between [0, 1]. The logic of each normalization

unction is explained in Table 4. It shows for each metric the type of
alues it gets, the range or set of possible values, and how these values
re mapped into the final output between 0 and 1. Once all metrics
utputs are normalized, they are grouped (first by notions and then by
illars) to compute the Trust FL score. The algorithm prototype uses
he mean average of all the metrics under a notion to calculate its final
core. In the same way, the mean average of the notions of one pillar
s employed as the pillar score. Finally, the Trust Score of the entire
etup is the mean average of all the pillars. How metrics, notions, and
illars are combined can be changed to different aggregation methods
ased on the requirements of the environment, giving more importance
o some metrics, notions, or pillars. The implementation of the previous
ife-cycle is done by using the numpy, scipy, and sklearn libraries. More

n detail, FederatedTrust is designed as a third-party library.
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Table 3
Metrics implemented by the FederatedTrust algorithm prototype.

Metric Description Input Output When Who

Privacy

Differential Privacy Use of global or local differential privacy as a privacy
defense

FactSheet 0/1 Pre-training Server

Entropy Uncertainty in predicting the value of a random variable FL Framework Conf [0, 1] Pre-training Server
Global Privacy Risk Maximum privacy risk with differential privacy based on 𝜖 Client Statistics % Pre-training Server

Robustness

Certified Robustness Minimum perturbation required to change the neural
network prediction

FL Model Real Post-training Server

Performance Test accuracy of the global model Statistics, FL Model % During-training Clients
Personalization Use of personalized FL techniques FactSheet 0/1 Pre-training Server
Federation Scale Number of clients representing the scale of the federation FactSheet Integer Pre-training Server

Fairness

Participation Variation Uniformity of distribution of participation rate among clients FL Framework [0, 1] Post-training Server
Accuracy Variation Uniformity of distribution of performance among clients Client Statistics, FL

Model
[0, 1] During-training Clients

Class Imbalance Average class imbalance estimation among clients Client Statistics [0, 1] Pre-training Clients

Explainability

Algorithmic Transparency Interpretability of the model by design FL Model [1, 5] Pre-training Server
Model Size Model Features dimensionality, depth of decision tree, or

number of parameters in neural networks
FL Model Integer Post-training Server

Feature Importance Average variance of feature importance scores FL Model [0, 1] Post-training Server

Accountability

Project Specification Project details and purpose FactSheet 0/1 Pre-training Server
Participants Participants number, identifiers, and their organizations FL Framework Conf 0/1 Pre-training Server
Data Contains Data origin and data-preprocessing steps FactSheet 0/1 Pre-training Server
Configuration Information about the FL model FL Framework Conf,

FactSheet
0/1 Pre-training Server

System Contains training time, FL model size, and network
performance

FL Framework Conf,
Statistics

0/1 Post-training Server

Federation

Client Selector Use of a client selector scheme rather than random selection FactSheet 0/1 Pre-training Server
Aggregation Algorithm Selected aggregation function FL Framework Conf % Pre-training Server
s
p
s
s
g
r

i

p
v
g

6. Experiments

This section shows how the FederatedTrust framework can be inte-
grated and employed with FederatedScope to evaluate trustworthiness
in FL applications during model generation. The demonstration experi-
ments are organized into two groups. The first set of three experiments
using the FEMNIST dataset shows how the number of clients and their
configuration impact the trustworthiness. Then, a second set of two
experiments leveraging the N-BaIoT dataset about IoT network security
shows how different training configurations affect a real-world use
case.

6.1. Trustworthiness scores for experiments with FEMNIST

The previously defined setup combining FederatedTrust and Feder-
atedScope was used to perform the following three experiments, which
consist of training FL models that classify hand-written digits using the
FEMNIST dataset.

• Experiment 1: The experiment considers a federation of 10 clients
with a selection rate of 50% clients per training round (5 out of
10 are randomly selected in each round). The training of the FL
model runs 5 rounds.

• Experiment 2: It considers 50 clients, and in every iteration, the
server randomly selects 60% of clients. The experiment runs 25
training iterations. The main novelty of this experiment lies in the
inclusion of differential privacy with 𝜖 of 20.

• Experiment 3: This experiment consists of 100 clients with a 40%
client selection rate and 50 rounds of training. The 𝜖 value of
differential privacy is set to 6.
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In all experimental setups, the same configuration of the project
pecifications, data, and participants were employed. The specific pur-
ose and background information of the FL project were not explicitly
tated within the model. Furthermore, all models implemented a client
election method based on random sampling, and the FedAvg aggre-
ation algorithm was utilized. As a result, the federation pillar score
emained constant across all three experiments.

As seen in Fig. 4, the trustworthiness score for both first experiments
s 0.56. However, there are differences in terms of pillars and metrics.

Starting from the privacy pillar, its score increased from 0.31 (Ex-
eriment 1) to 0.64 (Experiment 2) because of using differential pri-
acy. However, the effectiveness of the privacy mechanism was not
ood enough because of the large value of 𝜖 chosen (20). It can be

seen in the indistinguishability notion (covered by the global privacy
risk metric), with a score of 0 in both experiments. In this context,
the larger the 𝜖 value, the less noise was added to the data, and
therefore, the higher the probability of being identified by adversaries.
Dealing with the fairness pillar, its score from Experiment 1 to 2
was also increased from 0.25 to 0.47. It was mainly due to a signifi-
cant increment in the selection variation metric (from 0.08 to 0.83),
which resulted from the overall increase in the number of clients, the
client sampling rate, and the number of rounds. The selection fairness
improved with more clients participating and more training rounds.
However, the performance variation metric (Fairness pillar) dropped
from 0.58 to 0.50 from Experiment 1 to 2. It could also be due to
the increased number of clients. More clients with different levels of
heterogeneity in their data could influence the global model’s gener-
alizability, affecting the individual test accuracy at the client level.
Furthermore, personalization techniques were not used, so the global
model was not adapted to the clients. Regarding the explainability
pillar, its global score increased from 0.59 (Experiment 1) to 0.67
(Experiment 2), increasing the feature importance metric score from
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Table 4
Normalization of the metrics outputs.

Metric Type Output Normalized output

Privacy

Differential Privacy True/False 0/1 0/1
Entropy Uncertainty [0, 1] [0,1]
Global Privacy Risk Percentage [0, 100] [0, 1]

Robustness

Certified Robustness CLEVER Score [0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4,
1.6, 1.8, 2, 2.2, 2.4, 2.6, 2.8, 3,
3.2, 3.4, 3.6, 3.8, 4.0]

{0, 0.05, 0.1, . . . 1}

Performance Accuracy [0, 1] [0, 1]
Personalization True/False 0/1 0/1
Federation Scale Number of clients [10, 102, 103, 104, 105, 106] {0, 0.2, 0.4, . . . 1}

Fairness

Participation Variation Coefficient of Variation [0, 1] [0, 1]
Accuracy Variation Coefficient of Variation [0, 1] [0, 1]
Class Imbalance Balance Ratio [0, 1] [0, 1]

Explainability

Algorithm Transparency Random Forest, K-Nearest Neighbors, Support Vector
Machine, GaussianProcessClassifier, Decision Tree,
Multilayer Perceptron, AdaBoost, GaussianNB, Quadratic
Discriminant Analysis, Logistic Regression, Linear
Regression, Sequential, Convolutional Neural Network

{4, 3, 2, 3, 5, 1, 3, 3.5, 3,4, 3.5,
1, 1}

{0, 0.2, 0.4, 0.5, . . . 1}

Model Size Number of Model Parameters {1, 10, 50, 100, 500, 1000, 5000,
10000, 50000, 100000, 500000}

{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 1.0}

Feature Importance SHAP Importance [0, 1] [0, 1]

Accountability

Project Specification True/False 0/1 0/1
Participation True/False 0/1 0/1
Data True/False 0/1 0/1
Configuration True/False 0/1 0/1
System True/False 0/1 0/1

Federation

Client Selector True/False 0/1 0/1
Aggregation Algorithm FedAvg, FedOpt, FedProx, FedBN, pFedMe, Ditto, FedEM {0.8493, 0.8492, 0.8477, 0.8548,

0.8765, 0.8661, 0.8479}
{0.8493, 0.8492, 0.8477, 0.8548,
0.8765, 0.8661, 0.8479}

[] denotes a continuous range and {} denotes a list of values.
0.67 to 0.92. It is impacted by the different numbers in terms of clients
and the differences between their datasets. Finally, the robustness pillar
score dropped from 0.36 (Experiment 1) to 0.33 (Experiment 2). It was
mainly due to the decrement in the certified robustness metric (from
0.48 to 0.19) and the performance reduction from 0.96 to 0.93. The
drop in the certified robustness metric could be related to the increase
in the number of clients and the number of rounds. In theory, more
aggregating parties provide more entries and surfaces for adversaries
to insert backdoor perturbations for poisoning attacks. There are also
higher chances for parties to collude when they are more in number.
The higher number of rounds also means that adversaries have more
chances to attack. The federation scale metric for both experiments has
a similar score since both have less than 50 clients.

Before comparing Experiments 2 and 3, it is important to mention
that the main difference between them is the privacy pillar (due to the
𝜖 change). Focusing on Experiments 2 and 3, from the robustness pillar
perspective, its overall score only increased from 0.33 (Experiment 2) to
0.35 (Experiment 3), even though there was a significant increase in the
federation score from 0.2 to 0.4. It was mainly due to the less relevance
of that metric in the pillar than the rest. Furthermore, the certified
robustness score decreased from 0.19 to 0.05. The privacy pillar score
increased from 0.64 (Experiment 2) to 0.71 (Experiment 3) due to
the global privacy risk metric. The increase in the number of clients
caused an improvement in the indistinguishability notion (covered by
the previous metric). Assuming that random guessing was used in
Experiment 3, it was twice as challenging to guess the correct target
among 100 clients compared to 50 clients (used in Experiment 2).
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Regarding explainability, the score remained constant in Experiments 2
and 3 as no changes were made in the factors impacting these metrics.
Finally, the fairness score was almost identical for both experiments
(0.47 and 0.5). It might be because the ratio between the increase in
the number of clients and the increase in the number of rounds was the
same, while the clients’ sampling rate remained the same as well.

6.2. Trustworthiness scores for experiments with N-BaIoT

To perform a more exhaustive comparison, two more experiments
were performed. In this case, the N-BaIoT [77] dataset was leveraged.
It contains benign and attack network traces from nine different IoT
devices. In the two experiments done with this dataset, the number of
clients is nine, one per IoT device. Besides, the same configuration of
project specifications, data, and participants was employed.

• Experiment 4: It employs FedAvg as the aggregation algorithm and
does not use Differential Privacy. Additionally, the client selection
ratio is 70%

• Experiment 5: It leverages Federated Median as an aggregation
approach and employs local Differential Privacy with 𝜖 equal to
4. The client selection ratio is 90%, and local dataset balancing is
applied in each client, leaving a 50/50 balance per class. In this
case, the neural network contains four hidden layers of 100, 80,
70, and 50 neurons.

Fig. 5 shows the different trustworthiness metrics in Experiment 4
(up) and 5 (bottom). Comparing Experiments 4 and 5, it can be seen
that even though the overall performance slightly decreases from 0.99

to 0.98, the final trust score increases from 0.57 to 0.68. The decrease
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Fig. 4. Experiment comparison with FEMNIST dataset.
Fig. 5. Experiment comparison with N-BaIoT dataset.
in the performance is caused by the usage of a different aggregation
algorithm and the usage of differential privacy, as adding noise to the
training data can decrease the final model performance. The increase in
the trust score is happening due to the increase in most of the evaluated
pillars due to the differences in the experiment configurations. The
privacy pillar goes from 0.31 to 0.71 due to the usage of differential
privacy and the associated increase (from 0 to 0.2) in the global privacy
risk metric. The robustness pillar is also increased even though the
overall performance decreases by 0.01. It occurs because the certified
robustness increases from 0.05 to 0.25, enhancing the pillar score
from 0.31 to 0.36. Similarly, the fairness pillar is increased from 0.49
to 0.7 due to a better client participation ratio and class imbalance
management. In contrast, the explainability pillar is decreased from
0.55 to 0.49 because the model size metric goes from 0.9 to 0.7 due
to using a larger model in Experiment 5. Finally, the federation pillar
is slightly increased from 0.92 to 0.94 thanks to median aggregation
instead of averaging.

When comparing Experiments 4 and 5, it can be seen how a real
federated application can leverage configuration optimizations during
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its design to increase its trustworthiness without losing notable per-
formance. Note that more changes could be applied according to the
metric to optimize depending on the exact use case.

6.3. Limitations

There are several limitations of the FederatedTrust prototype in
terms of quantifying the trustworthiness level of FL models. First, some
metrics, like the federation scale (robustness pillar), often have to be
considered with other factors to represent the notion well. For example,
the analysis performed in Section 3 shows that, in practice, the client
reputation metric is also an essential factor for the client reliability
notion. However, it was difficult to quantify the client reputation
in the performed experiments. Another example would be the client
selection fairness notion. Although the client participation variation
metric is easily quantifiable by computing the dispersion of selection
rate among the clients, this variation metric alone might not be the
best representation of fairness for client selection in FL.
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Another standalone limitation concerning the evaluated pillars is
explainability. Most models employed in real scenarios are pure black-
box setups, making it difficult for FederatedTrust to evaluate and show
how these models make decisions. Besides, bias and AI explainabil-
ity are intrinsically correlated. In this sense, AI explanations can be
misleading or incomplete due to training data bias, leading to trust in
biased models. Therefore, biased decisions by AI are hard to identify by
FederatedTrust, even with the considered explainability metrics. These
limitations also open the field for developing metrics and standard
frameworks for better explainability evaluation.

Another limitation pertains to the algorithm scoring and metric
aggregation systems. First, the logic of the scoring functions greatly
impacts how the trust score of each metric is calculated. Based on the
pillar analysis in Section 3, there were general directions of how every
metric should impact the overall trustworthiness level. However, the
concrete scoring maps and ranges were created based on knowledge
from other studies, and their generalizability to other systems was not
fully evaluated. Second, although FederatedTrust provides a flexible
approach to deciding the importance of each metric and pillar, selecting
optimum values is challenging because it presents a trade-off between
pillars. In this context, multi-objective optimization techniques [78]
could be integrated into FederatedTrust to optimize the weight selec-
tion according to the needs of each scenario where the algorithm is
deployed.

Some challenges dealing with resource consumption, data leakage,
governance, compliance, and scalability might appear when deploying
FederatedTrust in real scenarios. For example, implementing metrics
evaluated by FederatedTrust requires careful design and consumes com-
putational resources that might not be available in resource-constrained
devices. In addition, it is critical to guarantee data privacy while
computing the trustworthiness score of FL models [79]. FederatedTrust
must also adhere to regulatory and legal requirements, so maintaining
transparency, accountability, and auditability is challenging. Finally,
implementing scalable and distributed mechanisms (like Blockchain) to
populate metrics outputs while maintaining privacy, integrity, and trust
poses a significant challenge [80].

Another key limitation arises when comparing the proposed solution
with other frameworks in the literature. The unique comparison could
be made on an individual pillar basis with solutions that calculate
the trustworthiness of traditional ML/DL models (privacy, robustness,
explainability, and accountability). However, it is important to note
that this represents a completely different scenario, lacking the privacy-
preserving capabilities provided by Federated Learning. Therefore, such
a comparison would not be fair and relevant in assessing the superiority
of the FederatedTrust algorithm. Finally, it is important to remark that
the proposed solution also covers the metrics implemented by works
dealing only with particular pillars, so this comparison would show the
same outputs.

7. Conclusions and future work

This work presents a comprehensive taxonomy encompassing the
most relevant aspects of trustworthy FL. The proposed taxonomy ex-
pands upon the pillars previously identified by prior research, namely
privacy, robustness, fairness, explainability, and accountability, by in-
troducing a novel called federation. This new pillar quantifies the
trustworthiness of FL models from both participant and FL model
perspectives. Moreover, the existing pillars recognized in the literature
have been augmented with various notions and novel metrics that
address FL models. Based on the proposed taxonomy, a trustworthi-
ness evaluation algorithm for FL models, named FederatedTrust, has
been devised to be extensible, configurable, and flexible. To assess
the effectiveness and viability of the FederatedTrust prototype, it was
implemented and tested within the FederatedScope FL framework. Five
experiments were conducted to validate the FederatedTrust prototype,
utilizing distinct FL configurations that involved varying the number of
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clients, datasets, training rounds, differential privacy parameters, nor-
malization and data balancing approaches, and model configurations.
Throughout these experiments, the trustworthiness levels of each pillar
and metric were compared and analyzed while classifying handwritten
digits using the FEMNIST dataset and detecting IoT malware using the
N-BaIoT dataset. The experiments demonstrated the intricate nature of
quantifying the trustworthiness level of FL models, with the Federat-
edTrust algorithm representing the initial endeavor to comprehensively
assess an FL model based on a holistic trustworthiness taxonomy.
Finally, limitations of the current version of the algorithm prototype
have been discussed.

As future work, it is planned to extend the prototype by implement-
ing new metrics identified in the taxonomy. It is also intended to deploy
the algorithm on FL frameworks, training FL models in a decentralized
fashion. Furthermore, multi-objective optimization techniques will be
analyzed and evaluated to help aggregate metrics while computing the
global trust score.
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