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Given the need for efficient high-performance computing, computer architectures combining central process-
ing units (CPUs), graphics processing units (GPUs), and field-programmable gate arrays (FPGAs) are currently
prevalent. However, each of these components suffers from electrical-level security risks. Moving to hetero-
geneous systems, with the potential of multitenancy, it is essential to understand and investigate how the
security vulnerabilities of individual components may affect the system as a whole. In this work, we provide
a survey on the electrical-level attacks on CPUs, FPGAs, and GPUs. Additionally, we discuss whether these
attacks can extend to heterogeneous systems and highlight open research directions for ensuring the security
of heterogeneous computing systems in the future.
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1 INTRODUCTION

A recent trend in high-performance computing is to combine various computing units to achieve
better performance. These include central processing units (CPUs), graphics processing units
(GPUs), and field-programmable gate arrays (FPGAs). Each of these computing units is better
suited for some workloads than others, thus allowing the versatile high-performance computing
workloads to exploit the full potential of a heterogeneous computing system (HCS).
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Fig. 1. Timeline of the evolution of computing systems, highlighting the introduction of various compute
units, their integration, and their availability to cloud users. CPU milestones are highlighted in red (full
circles), GPU milestones are highlighted in green (full rhombi), and FPGA milestones are highlighted in
violet (full squares). Heterogeneous milestones are distinguished by the multiple colors (hollow rhombi),
while the DRAM milestone is highlighted in grey (full triangle).

In the most generic terms, a heterogeneous system includes a variety of computing platforms
with numerous interconnect methods and integration levels between the components. With their
chip-level integration, embedded system-on-chip (SoC) and multiprocessor system-on-chip (MPSoC)
platforms are among the most notable examples of HCSs. Besides these plateforms, today’s cloud
computing architectures are another notable representative of heterogeneous architectures, as
they provide the users with a combination of CPUs, GPUs, and FPGAs.

While the concept of heterogeneous computing has been studied for more than two decades [52],
with the recent advances in FPGAs and GPUs, the HCSs themselves have greatly evolved. HCSs
have become a platform of choice for a multitude of highly parallel tasks, commonly not executed
efficiently by CPUs alone, for example, image processing and machine learning (ML) algorithms.
The large-scale adoption of heterogeneous systems has, in turn, led to the development of pro-
gramming standards for hybrid architecture platforms (e.g., OpenCL [201]) and standardization
of the architectures (e.g., heterogeneous system architecture (HSA) [90]). Furthermore, as shown
in Figure 1, a number of commercial heterogeneous platforms have recently become available,
both in the cloud and in embedded form.

However, the security of HCSs is still neither fully investigated nor understood. Not surprisingly,
researchers in system security have mostly been focusing on attacks on CPUs; vulnerabilities in
CPU software have long been analyzed, starting with the Morris worm in 1988 [51]. Code injection
and return-oriented programming are other well-known classes of software attacks [184, 221].
More recently, attacks taking advantage of the processor microarchitecture (e.g., Spectre [104]
and Meltdown [119]) have drawn considerable attention, together with the famous disturbance
error-based attack on dynamic random access memories (DRAMs), known as RowHammer [102].
The observable side effects of code execution on CPUs—at the electrical level, there are power
consumption and electromagnetic (EM) emanations and, at other levels, sound waves—have been
used for side-channel analysis (SCA) attacks [188]. CPUs are also subject to fault-injection attacks,
either via physical access to the device or, as recently shown, remotely [13, 99, 157, 173, 174]. Fault
injection can rely on the EM field, voltage, or frequency, but it can also be optical or temperature
based [13].

We can observe a similar trend for FPGAs, which have only recently been integrated into a
number of cloud infrastructures [6, 7, 91]. FPGAs are known to be vulnerable to fault injection
and side-channel attacks when the attacker has physical access to the device [88, 241]. Not long
ago, researchers have shown that these attacks on FPGAs can even be controlled and executed
remotely [73, 236]. Finally, GPUs, being similar to CPUs in many respects, share a number of their
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vulnerabilities; microarchitecture-based side channels [96] and power side-channel analysis [124]
have been demonstrated on GPUs. Furthermore, FPGAs and GPUs can help accelerate some of the
attacks on CPUs— notably, microarchitectural and RowHammer exploits [58, 224].

When CPUs, FPGAs, and GPUs are brought together in a heterogeneous system, the result-
ing system-level security vulnerabilities are no longer limited to the existing and known exploits
of each individual component—new exploits may arise due to the component integration. While
not as extensively researched as the attacks focusing on individual computing units, security of
HCSs has been looked into. Researchers have demonstrated covert channels, side channels, and
RowHammer attacks across the system components [58, 68, 77, 224]. However, more research is
necessary to identify, understand, and overcome the security risks brought up or aggravated by
the close integration of diverse processing units.

In this article, we present a survey of the attacks on CPUs, GPUs, and FPGAs. In particular,
we focus on electrical-level attacks because, unlike microarchitectural or software-based attacks,
their underlying mechanism is typically not platform-dependent. Hence, they have the potential
to affect all considered processing units. We examine RowHammer, fault injection, and SCA at-
tacks. Unlike other surveys, which focus on only one compute unit, one exploit type, or one
threat model [15, 158, 179, 188, 211, 232, 233, 237], we include in our examination all three com-
puting units and take into consideration the heterogeneous system architecture and deployment
models.

The rest of this article is organized as follows. We start by presenting the heterogeneous system
architectures and the associated threat models in Section 2. We then provide a classification of
the attacks in Section 3. We survey and discuss the known attacks on CPUs, FPGAs, and GPUs
in Sections 4, 5, and 6, respectively. In Section 7, we discuss whether the electrical-level attacks
described previously can affect heterogeneous systems and which new attacks may be feasible in
a heterogeneous setting. We present our conclusions in Section 8.

2 HETEROGENEOUS SYSTEMS AND THREAT MODELS

We begin a thorough analysis of the electrical-level vulnerabilities of heterogeneous systems by
examining their common architectures and variations. Widely deployed embedded heterogeneous
platforms include the SoCs by Xilinx and Intel, which tightly integrate CPUs with FPGAs [8]. Xil-
inx even offers an MPSoC option with GPUs [242]. In the cloud market, both Intel and Xilinx
have their share, with the accelerator cards deployed in AWS [7], Microsoft [142], Alibaba [6],
and Huawei [91] cloud instances. Of course, GPUs are available as well. In this section, we dis-
tinguish heterogeneous systems by their integration style: chip level and system level. We show a
generic heterogeneous architecture in Figure 2 and highlight the differences between the two inte-
gration styles in the following subsections. We end this section with the explanation of the threat
models.

2.1 Chip-Level Heterogeneity

Chip-level heterogeneity is heterogeneous integration inside the device package. As a generic ex-
ample, we choose here the Zynq UltraScale+ MPSoC from Xilinx [242], which combines an ARM
processor with a GPU and an FPGA. It has an application processing unit—the CPU of the system—
and a real-time processing unit. The components communicate via the advanced extensible inter-
face (AXI) [242] (communication buses in Figure 2), common in Intel SoC platforms as well (e.g.,
Cyclone V [45] and Arria 10 [8]).

Access to the main memory is often shared among components; on heterogeneous CPU-GPU
platforms, both components can access the main memory, and the GPU can use both coherent and
noncoherent communication [32]. In the Xilinx UltraScale+ MPSoC device, all three components
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Fig. 2. A representative example of a heterogeneous system architecture. Optional parts are shown with
dashed lines. The connections between components serve for communication or power delivery (thick lines).

can access the external DRAM through the memory controller, which exposes the system
to the risk of RowHammer exploits. Additionally, the memory can be partitioned to provide
isolation between multiple users or applications [140], which may provide some protection.
Memory-to-memory and memory-to-IO transfers take advantage of the direct memory access
(DMA)—common in Intel Cyclone V and Arria 10 SoCs as well [8, 45]—with the number and rate
of access requests handled by the transaction control mechanism [242].

The ARM processor supports the trusted execution environment (TEE) called TrustZone, a
target of recent attacks, and frequency scaling, a facilitator of recent attacks [8, 45, 242]. Software
interfaces allow the CPU cores to communicate the desired frequency to the dynamic voltage
and frequency scaling (DVES) control via the power management bus (PMBus). Sometimes, GPUs
allow frequency scaling (controlled from the CPU side [63], and known as adaptive voltage and
frequency scaling (AVFS)), but that is not the case in the UltraScale + MPSoC. For FPGAs in general,
the clock management resources—phase-locked loops (PLLs) and mixed-mode clock manager
modules—can be configured by the FPGA applications or by the CPU. While FPGA voltage scaling
is typically not supported, if the on-board voltage regulators support it, the PMBus may be used
to control the voltage supplied to the FPGA [186]. Since the programmable logic (PL) shares the
power distribution network (PDN; the FPGA grid in Figure 2), the result is free propagation of volt-
age disturbances across the die and, consequently, a number of electrical-level attacks on FPGAs
(Section 5).

In the SoCs with an ARM processor (e.g., Intel Cyclone V), it is possible to poll the CPU power
and temperature from software [45]. On the other side, Xilinx UltraScale+ MPSoC is equipped
with a system monitor, which reports the voltage and temperature at various on-chip locations (in
the processing system and the PL). This MPSoC is divided into power-gated islands for turning
off unused parts of the system—a feature not unique to Xilinx SoCs [45]. The existence of power-
gated islands could suggest that different system components require different voltage levels; in
reality, this is often not the case. As a consequence, the PDN design is simplified (the number
of voltage regulators reduced), but the risk of electrical-level attacks is increased (as discussed in
Section 7).
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2.2 System-Level Heterogeneity

Datacenters (and the cloud) are a typical example of system-level heterogeneity. In datacenters,
GPUs and FPGAs lie on their respective accelerator cards, plugged into the server racks and
connected with the CPUs through peripheral component interconnect express (PCle), quick
path interconnect (QPI), or ultrapath interconnect (UPI). The last two are common to Intel Xeon
+ FPGA platforms, available to researchers through the Intel Hardware Accelerator Research
Program (HARP) [38]. Even though the coupling through the common power supply is lower
than for chip-level integration, it is not fully eliminated, because all of the cards in one rack share
a common power supply unit.

Besides having access to the CPU’s main memory, FPGAs and GPUs can also have their own
memory modules (Figure 2). In that case, for performance reasons, data are typically moved in bulk
between the CPU main memory and the accelerator memory [38]. The specifics of voltage and fre-
quency scaling largely depend on the CPU and GPU used. As far as FPGAs are concerned, the
clock management resources can be configured by the users. Access to voltage and frequency scal-
ing interfaces can sometimes be hindered by virtualization: CPUs are typically virtualized, while
GPUs can be virtualized, for example, using rCUDA [48] or the NVIDIA virtual GPU [217]. While
many virtualization proposals exist for FPGAs [176], the hardware of cloud FPGAs is currently not
abstracted away. Finally, despite the number of research works on voltage and frequency scaling
on FPGAs [4], these techniques are not yet supported in heterogeneous settings.

2.3 Threat Models

Regardless of the integration level, various assumptions can be made on how an adversary may
have access to the platform and what the adversary can do depending on the deployment scenario.
From appliances to Internet-of-Things (IoT) devices, embedded systems are everywhere. Many of
the embedded devices (e.g., IoT sensor nodes) are connected to the network for sending their data
to the users or providing access to the device itself. In this case, the heterogeneity is typically at the
chip level. Even though multitenancy is typically not considered in embedded scenarios, hardware
Trojan horses from third-party intellectual property or malicious chip manufacturers, as well as
malicious software, can create covert communication channels or interfere with the operation of
the device. Both an attacker with direct access to the hardware (with the possibility of removing
the integrated circuit (IC) package or probing and measuring the external signals) as well as an
attacker with remote access are valid threat model assumptions. Furthermore, both chip-level and
system-level heterogeneous devices may be the attack targets.

In the cloud deployment scenario, a malicious user with remote access may be assumed to ei-
ther have user privileges or to have gained (legally or not) root privileges. For FPGAs, a typical
assumption is that each device has a soft programmable shell that manages the use of FPGA re-
sources. At the same time, the FPGA users can share the logic and hardened resources temporally
or spatially. In the case of spatial cotenancy, the roles are assumed to be logically separated, while
the PDN remains common. It is interesting to note that, even though there are a number of pro-
posed solutions for FPGA virtualization [214] (driven by the benefits of multitenancy and low
implementation effort, thanks to the partial reconfiguration feature of FPGAs), due to the recently
discovered electrical-level security risks that FPGA multitenancy creates, no cloud service provider
(CSP) allows it yet.

If an adversary has physical access to the datacenter rack or root privileges, then some threat
models assume the availability of TEEs-for example, ARM TrustZone or Intel software guard
extensions (SGX)—for isolating the execution of users’ code. However, TEEs do not provide full
protection against all adversaries with physical access [37]. In the case of FPGAs, physical access
means control over the shell and, consequently, over the clock or data.
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3 BACKGROUND AND TAXONOMY

Electrical-level attacks are common to all system constituents, albeit the exact interface exploited
to carry them out may differ depending on the target. These attacks can have an active or a pas-
sive influence on the target. A passive attack simply observes the target, without affecting it. An
active exploit, however, requires interfering with the target’s functionality. Figure 3 illustrates the
taxonomy of electrical-level attacks common to CPUs, FPGAs, and GPUs. Figure 4 highlights the
current state of research (approximated by the number of publications addressing new or enhanced
attacks that we cite in this article) and, in a way, applicability of a particular type of attack to either
a specific processing unit or a heterogeneous system. The figure shows that CPUs and FPGAs have
so far been the most attractive attack targets. In the following subsections, we introduce the three
main attack types and further explain the taxonomy.

3.1 RowHammer

We consider RowHammer as a distinct type of active software-based electrical-level attacks. The
goal of RowHammer attacks is to induce errors in DRAM, with consequences affecting the entire
system.

DRAM process technology is continuously scaled to pack a larger number of smaller cells in one
module. However, this comes at a cost of reduced memory reliability, as the smaller cell size and
the tighter spacing between the cells favor EM coupling effects, which can affect the leakage rate
of the charge stored in each cell, representing one bit. Other scaling effects include the reduced
noise margins and higher variation in process technology [102].

If a cell leaks more charge than its noise margin, a fault occurs [102]. To avoid the leakage,
DRAM rows of cells are regularly refreshed. Nonetheless, attackers can leverage a phenomenon
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known as disturbance to exploit the leakage in DRAM cells and induce faults. This phenomenon
occurs when neighboring cells interfere with each other’s operation; when a cell is disturbed be-
yond its noise margin, it malfunctions, resulting in a disturbance error. In 2014, Kim et al. showed
that repeatedly accessing a row in the DRAM can interfere with neighboring cells, resulting in dis-
turbance errors [102]. DRAM manufacturers employ circuit-level design techniques (to improve
the isolation between cells) and post-production testing to ensure that chips arriving to the users
do not suffer from disturbance errors. However, with the continued scaling of DRAM cells, these
mitigations are no longer sufficient. Kim et al. highlight this insufficiency by showing that DRAM
modules manufactured after a specific date are prone to RowHammer-induced faults [102].

Inducing bitflips in the target DRAM requires the adversary to be able to access it. This access
is possible when the adversary resides on the same system or can use DMA over the network
(e.g., Throwhammer [207]). The feasibility of inducing RowHammer bitflips mainly depends on
the target DRAM, but researchers keep demonstrating the feasibility even on DRAM modules
previously assumed to be immune [59]. As will be discussed later, a successful attack also requires
the bitflips to be induced in an exploitable location, which can be ensured through some knowledge
of the target, physical addresses, or the electrical or microarchitectural side channels. Bitflips in
other locations may either crash the system or not prove useful to the attacker. Since the adversary
does not need to access the victim row, access to the part of the memory belonging to the victim
is not required. However, in some cases, memory deduplication is useful for enabling the attack
by sharing pages between the victim and the adversary [180]. The RowHammer attack vector
is particularly dangerous because it is entirely software controlled, not requiring access to the
hardware. Moreover, RowHammer has been used in realistic scenarios, where the CPU was the
intended victim. Most of the exploits were initiated from (and targeting) the CPU, but a few were
launched from an FPGA, a GPU, or the network [58, 207, 224].

3.2 Side-Channel Analysis

For decades, it has been known that computing systems leak information through side channels
(e.g., power consumption or electromagnetic emanations) [208]. This leakage has been exploited
as an attack vector for reverse engineering [39, 175] and for breaking the security of cryptographic
primitives [105].

Electrical side channels are created by the existence of mutual information between the code
being executed and the data being processed on the one side and the resulting power consump-
tion and EM emanations on the other side. The most common techniques for extracting the in-
formation are simple power analysis [179], differential power analysis (DPA) [105], correlation
power analysis (CPA) [29], template attacks [36], mutual information analysis [70], and machine
learning [84]. Machine learning approaches are particularly adapted for side-channel disassem-
bly (reverse-engineering of the executed code, mainly on a CPU), as the dimensionality of the
problem and the size of the data to be recovered is much higher than in the case of side-channel
cryptanalysis [166].

SCA can be seen as a passive attack, as the main requirement is the observation of the side effects
of the code execution. The side-channel information may be obtained through hardware access or
through a software interface (recent research trend for FPGAs). When an adversary has access
to the hardware, the SCA may be invasive if, for instance, the IC package needs to be removed
or manipulated. Most commonly, it is noninvasive. In a laboratory, researchers may opt for the
invasive model, adding resistors for measuring the power consumption or decapsulating the IC
for observing EM emanations. In realistic settings, depending on where the victim is deployed and
how it is protected, a noninvasive attack may be more appropriate (leaving no trace of the attack).
If the adversary resides on the same system as the victim, then software-based exploits are feasible
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through power monitoring interfaces or the ability to reconfigure FPGA logic to act as a sensor. If
the victim provides a public interface through which the adversary may send input data, then the
attacker can fix the input to a predefined value and collect leakage traces to learn the secret (i.e.,
known plaintext attack). EM-based side channel exploits (except for crosstalk coupling on FPGAs)
require hardware access to the victim. However, unlike hardware power-based SCA, EM-based
SCA does not require adding a resistor for measurements or connecting a voltage probe to one of
the IC’s pins. Rather, it requires only an EM probe positioned near the IC.

3.3 Fault Injection

The clock frequency and power supply voltage govern the correct operation of digital circuits, in-
cluding the ones inside a processor. For a specific frequency value, there exists a minimum voltage
value, known as the critical supply voltage, to ensure correct operation of the circuits. If these
values are not respected, the circuit experiences errors.

In 1997, Boneh et al. introduced the threat of fault injection to cryptographic circuits, high-
lighting how to use hardware faults, leading to random transient bitflips, to break Rivest—Shamir—
Adleman (RSA) and Rabin signatures [23]. Such transient faults can be injected in many ways;
if the clock frequency is too high or the clock signal contains glitches, inputs to registers in the
circuit may not arrive early enough to be processed by the register, resulting in early latching or
metastability. Even if the clock frequency is within limits, lowering the supply voltage results in
longer signal delays, which again can lead to computational faults. The number and distribution
of faults depends on whether the voltage has fast (glitches) or steady changes [97]. Low-power
applications pushed for the emergence of DVES techniques, which, as it turns out, can be abused
for remote fault-injection attacks against CPUs and GPUs [173, 185, 206].

Fault-injection exploits are active attacks, because they require interfering with the target op-
eration. They can be carried out via software access only (e.g., by controlling the DVFS interfaces
of the CPU or by programming the FPGA). If available, hardware access may give the adversary
direct control over the power supply or the clock, thus simplifying the fault injection. In a lab set-
ting, to facilitate the attack, the on-board capacitance could be manipulated or the chip connected
to the attacker-controlled power supply [209]. Even though such changes may not be possible in
all realistic scenarios, they allow researchers to assess the susceptibility of the victim to the ex-
ploit. Attack success can sometimes be facilitated by prior observations of side-channel leakage
to determine when precisely to inject the faults. Exploiting the injected faults typically requires
the attacker to be able to observe the output (e.g., for differential fault analysis) or run a software
process on the victim device to gain special privileges thanks to the injected faults.

4 ELECTRICAL-LEVEL ATTACKS ON CPU-BASED SYSTEMS

Let us begin the survey of attacks (and the corresponding defenses) focusing on the CPU-based
systems. Figure 5 shows their simplified architecture and highlights both the components and
interfaces vulnerable to fault and side-channel attacks. In the following subsections, we discuss
them all, following the taxonomy introduced in the previous section.

4.1 RowHammer Attacks

Kim et al. were the first to exploit the DRAM memory sensitivity to disturbance faults for creating
bitflips [102]. In what they named a RowHammer attack, @ in Figure 5, disturbance errors were
induced by repetitive opening of a DRAM row, access (read or write), and closing.

Depending on the location of the bitflip, various effects can occur: for example, bypassing the au-
thentication carried out by cryptographic codes, application crashing, persistent loss of data, or file
system damage [207]. Modern DRAMs, with their increased density and without mitigations, are
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more vulnerable than older DRAMs to RowHammer [101]. On recent DDR4 modules, which were
previously considered immune to RowHammer, Frigo et al. demonstrated a many-sided RowHam-
mer attack (with as many as 19 aggressor rows). They uncovered how to bypass the target row
refresh countermeasure, deployed in DDR4 [59].

RowHammer attacks can be combined with cache or memory deduplication side channels to
cause more harm to the system. Seaborn and Dullien were the first to achieve privilege escalation
from a process running locally on the victim machine by flipping bits in the physical page number
of page table entries [192]. Privilege escalation from an unprivileged Android app was also demon-
strated on ARM mobile devices by van der Veen et al., who relied on the predictability of memory
allocation patterns to ensure that the victim will allocate its page table entries in RowHammer-
vulnerable memory locations [215]. TEEs are also affected by RowHammer bitflips, which can be
leveraged by a remote attacker with no system privileges for denial-of-service (DoS) attacks on
SGX enclaves [94].

While the requirement for main memory access suggests the need for a flush instruction (to
bypass the cache), recent works have demonstrated successful RowHammer exploits without it:
Qiao and Seaborn used x86 nontemporal instructions to bypass the cache [171], Aweke et al. used
eviction sets [10], useful for remote exploits by unprivileged adversaries as well [80], while Van
der Veen et al. used DMA on ARM mobile devices [216].

Coupling the RowHammer attack with a website with JavaScript makes for a remotely
controlled attack, allowing the adversary to gain memory access, or break the memory isolation
and access another virtual machine on the same CPU [25, 80, 180]. An adversary can also use
network packets to induce bitflips in the memory [120], and remote DMA can allow a foe to
gain code execution rights on a key-value server application [207]. Most recently, Cojocar et al.
formalized the method for determining whether a cloud server is vulnerable to the RowHammer
attack and designed a fault injector that enables reverse engineering the row adjacency map of
DDR4 modules [41].

4.1.1 Countermeasures. Given that decreasing the refresh interval of DRAM modules can im-
pede and, at a certain point, stop RowHammer attacks, the first proposed countermeasure was to
increase the refresh rate. This was implemented by some of the memory manufacturers, for exam-
ple, Apple and HP [158]. However, the refresh rate increase comes at the cost of higher energy con-
sumption, lower system performance, and a degradation in the quality of service. Kim et al. found
that a refresh rate increase by a factor of at least 7.8x was needed to eliminate all RowHammer-
induced errors [102]. Other countermeasures can be classified as software- or hardware-based.
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ANVIL is an example of a software-based countermeasure, which makes use of the hardware
performance counters to determine whether a memory access pattern indicative of a RowHammer
attack is occurring and, if needed, refreshes the affected DRAM cells [10]. Alternatively, one can
modify the page allocation to ensure that an attacker cannot impact important memory pages [28].
Guardlon takes a similar approach, isolating the DMA buffers on ARM devices to prevent DMA-
based RowHammer [216]. ZebRAM does this as well—it isolates every row containing data with
guard rows, which can be filled with other data and protected using integrity checks [106]. Vig
et al. proposed using a dynamic skewed hash tree to quickly detect RowHammer exploits [218]. It
has been found that static code analysis can help identify malicious software (e.g., MASCAT [93]).
However, all software-based solutions are costly, as they require modifications to the system soft-
ware, incur performance or memory overheads, or interfere with system operation [158].

Turning to the hardware-based solutions, some are quick to implement—for example, remap-
ping or retiring vulnerable cells in the DRAM. While not requiring significant hardware changes,
discarding the unsafe cells requires first their dynamic identification, resulting in time, effort, and
storage overhead [102]. Other short-term options make use of the error-correcting code modules,
if available. However, error-correcting codes incur considerable overhead and often correct only
single-bit errors, while RowHammer can induce multiple bit flips [102]. On the other hand, some
hardware solutions focus on long-term protection. Modifications to the memory controller or to
the memory module—such as the probabilistic adjacent row activation (PARA) mechanism pro-
posed by Kim et al. [102] and the probabilistically managed table by Son et al. [198]—provide
good security guarantees. Some versions of probabilistic defenses are already deployed in recent
Intel memory controllers [158]. Other possibilities include adding hardware counters (e.g., counter-
based tree [196] and time window counters [116]) in the memory controller. More recently, Yaglik¢i
et al. proposed BlockHammer, which throttles the rate at which a single DRAM row can be accessed
to avoid bitflips [227]. BlockHammer also limits memory requests by suspicious threads, ensuring
that benign threads can still benefit from a good memory bandwidth. EM side channels, which we
discuss in the following subsection, have also been proposed as detection methods for RowHammer
attacks [235]. While many countermeasures are discussed, the deployment of effective defenses is
still underway, as new research demonstrates persisting vulnerabilities.

4.2 Side-Channel Attacks

CPUs have long been a target of side-channel attacks [105], with the goal of breaking the secu-
rity of cryptographic algorithms or, more recently, reverse-engineering the code running on the
CPU (i.e., side-channel disassembly). SCA attacks typically require hardware access to the device,
but recent works have shown the feasibility of software-based exploits via power management
interfaces [118]. Here, we discuss both hardware- and software-based exploits.

4.2.1 Hardware Side-Channel Attacks. An adversary with physical access to a device can gain
information about the code executing on that device, often sufficient for compromising secure data
and proprietary code. In what follows, we examine the use of that information for side-channel
cryptanalysis and disassembly. While we focus on the malicious exploitability of side-channel
disassembly, it is worth noting that it can also be used for system protection [83, 165].

Power. From the first efforts to develop a power-based SCA [105], @ in Figure 5, the hardware
security research community has shown significant interest in these exploits. Since the works
showing the dangers of variable latency of cryptographic operations [79], algorithms have im-
proved to overcome obvious vulnerabilities. Yet, researchers are continuously bringing to light
new exploits [179, 237]. Genkin et al. underscored the extent of the threat of power SCA by ex-
tracting 4096-bit RSA keys and 3072-bit EIGamal keys from personal laptops, using power and EM
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measurements at the chassis and at the end of a USB or an HDMI cable [65]. Surely, design choices
play an important role in side-channel resistance: Biryukov et al. analyzed the factors that render
a cryptographic implementation more secure against a CPA attack and validated their findings on
eight different lightweight ciphers and an 8-bit ATmega2561 processor [22].

A successful side-channel attack typically requires multiple measurements (i.e., traces) [40]. To
overcome this limitation, Clavier et al. proposed horizontal correlation analysis, which, with one
known message to encrypt, exploits the similarity of operations and data within one algorithm
execution [40]. They used a single power trace from an exponentiation process of the RSA algo-
rithm on a RISC processor. Even though their method does not work against all implementations
(e.g., RSA with Chinese remainder theorem), it demonstrates that there are approaches that help
optimize the exploit. Batina et al. used a single trace to learn the input to a publicly available
multilayer perceptron (MLP), relying on the sequential computations in an ARM Cortex-M3 [18].
Given that in the first layer of a neural network (NN) multiple weights (known in this scenario)
are all multiplied by the same input (the secret), the side-channel traces during multiplication en-
able the recovery of the secret. While ML models can be targets of exploits, they can also help
facilitate the attacks [85, 89] or decrease the number of required traces [223]. Masure et al. proved
that the optimization that takes place during ML training is equivalent to maximizing the obtained
side-channel information [136].

Parallel to works using side-channel leakage to reveal secret information processed by a CPU,
researchers began to investigate whether this leakage could disclose more secrets, notably the
executed instructions. On a Zilog Z80 processor, Quisquater and Samyde were the first to demon-
strate automated instruction reverse-engineering using power and EM traces [175]. Their use of a
Kohonen NN was indicative of the observed trend of employing ML in subsequent research on side-
channel disassembly. Eisenbarth et al. instead relied on hidden Markov models to build a power
side-channel disassembler targeting a PIC microcontroller and resulting in a recognition rate of
up to 70% [50].

Recent works continue the trend of ML-assisted disassembly [113, 166, 212]. Park et al. focused
on attacks on IoT devices, conducting experiments on the AVR ATmega328p processor and ana-
lyzing 112 instructions and 64 source and destination registers [166]. Taking advantage of con-
tinuous wavelet transform to observe differences between instructions not observable in the time
domain, Park et al. then applied a feature selection method to reduce the required number of sam-
ples. They examined a number of classifiers: linear discriminant analysis, quadratic discriminant
analysis, naive Bayes, and least squares support vector machine (LS-SVM) and developed a full dis-
assembler for monitoring the code execution on embedded processors, with security as the main
aim. They used hierarchical classification, thus reducing the computational complexity, and a co-
variate shift adaptation to overcome the effects of changes in the measurement environment. With
quadratic discriminant analysis, the classification accuracy reached 99.03% [166].

When the number of clock cycles per instruction (CCPI) varies, disassembly becomes more
complicated. Krishnankutty et al. found the optimal sequence of clock-cycle lengths on a general-
purpose pipelined processor (MSP430G2553) using empirically created templates together with
dynamic programming [113]. Once the CCPI is known, the next step is to find the correct instruc-
tion among those with the given CCPI. Between the two steps, one can resort to a coarse-grained
classification according to hardware usage, which Krishnankutty et al. implemented using an
SVM (92%-100% accuracy). In comparison, the fine-grained classifier tested on real instruction
sequences (advanced encryption standard (AES) and proportional-integral-derivative controller)
resulted in about 86% accuracy. Similarly, Vafa et al. used a hierarchical framework for instruction
recognition on an 8-bit PIC and a 32-bit ARM Cortex-M3 microcontroller, with both static and
dynamic power measurements, achieving an 80% to 93% recognition rate [212].
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EM Field. Power traces are not the only side channel, as EM emanations, ® in Figure 5, can
provide even more information about the code execution on different parts of a CPU [175]. Similar
to their power SCA attack on laptops, Genkin et al. used EM traces to extract encryption keys [64].
Sehatbakhsh et al. found the number of characters typed and even entire passwords typed on com-
puters [193]. SoCs are also at risk; Longo et al. focused on the AM335x SoC’s CPU, cryptographic
coprocessor, and the NEON single instruction multiple data (SIMD) coprocessor and addressed
the challenges of collecting CPU traces while accounting for interrupts and synchronization is-
sues [123]. Their analysis highlights the difference in leakage among the SoC components while
demonstrating the feasibility of the attack.

Understanding and quantifying information leakage can enable more effective attacks and
facilitate the quest for countermeasures [229]. In their work on side-channel-aware software
engineering, McCann et al. described a technique for modelling data-dependent leakage from
instructions [139]. The knowledge of the sources of leakage permitted Primas et al. to break the
security of a lattice-based encryption scheme running on an ARM Cortex-M4F CPU, using only
a single trace obtained by combining the leakage of the entire decryption process [168].

Neural networks are also not immune to EM-based SCA. Assuming an attacker who can send
inputs to the target device, Batina et al. used correlation analysis to recover the weights of an NN,
along with a combination of simple and differential analysis to find the number of its layers and
weights. Their targets were a decapsulated ATmega328P processor and an ARM Cortex-M3. For
inferring the activation function, however, they relied on a timing side channel [17]. Soon after,
Takatoi et al. showed how to find the activation function using simple EM analysis [205]. Robyns
et al. used convolutional neural networks (CNNs) for another purpose—to classify EM traces
corresponding to various encryption instructions of a NodeMCU device [183]. In SCANDALee,
Strobel et al. chose to attack PIC16F687, in which most of the instructions take four clock
cycles to be executed, making the task of identifying the boundaries between them significantly
easier [204]. Polychotomous linear discriminant analysis was used for preprocessing to emphasize
the particularly distinctive features in the observed data, classified by a k-nearest-neighbors
classifier. The authors reported recognition rates of 96% on test data and 88% on real code.
However, their measurement setup required decapsulation of the target device, leaving physical
traces of the attack. Decapsulation is not always a requirement; e.g., Vaidyan and Tyagi collected
the EM emanations from an Atmega328 processor without decapsulating the IC [213].

4.2.2  Software-Based Side-Channel Attacks. For power efficiency, modern CPUs typically pro-
vide users with software access to power consumption information and control of the associated
parameters. This leads to software-based side-channel exploits, @ in Figure 5. Yan et al. collected
power information from the battery management unit (BMU) on smartphones, allowing applica-
tion identification, user interface inference, password length guessing, and geolocation estimation,
all of which constitute user security breaches [225]. Qin and Yue proposed a power estimation
method based on SVMs and requiring no root privileges. They used it for website fingerprinting
on Android 7 [172].

It is important to note that side-channel security is not guaranteed by TEEs: O’Flynn and De-
war successfully leveraged the on-board analog-to-digital converter on a Cortex-M processor, with
TrustZone, for remote SCA across security domains [164]. Intel devices are similarly vulnerable:
By reading the Intel running average power limit (RAPL), Mantel et al. could distinguish between
different RSA keys [134]. Lipp et al. showed the feasibility of power SCA on x86-powered laptops
and servers based on unprivileged access to the RAPL [118]. Their PLATYPUS exploits compromise
the security of Intel SGX enclaves, as an unprivileged adversary can leak AES-NIkeys while a privi-
leged one can recover RSA keys. Even the less expected interfaces can facilitate exploits; Gravellier
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et al. demonstrated the risks associated with allowing software access to delay-line components on
SoCs [76]. They used delay-locked-loops and programmable delay-blocks, implemented in mem-
ory controllers for the alignment of the sampling clock and the data signals, to carry out a CPA
attack, ® in Figure 5, against OpenSSL AES-128 on two SoCs (both with ARM processors).

4.2.3 Countermeasures. An effective software countermeasure involves automated code mod-
ification. However, it comes at a cost of decreased performance and increased memory re-
quirements [19, 219]. Alternatives are lightweight cryptographic primitives, more efficiently
masked [78, 167], or random code injection for obfuscation [225].

Decreasing leakage from the hardware itself typically requires its redesign. De Mulder et al. in-
tegrated defenses into the hardware architecture of a soft-core RISC-V processor and validated
them on a Zynq FPGA. To reduce leakage, they implemented masking in the CPU and added pro-
tection for the memory accesses [156]. PARAM is another instance of a side-channel hardened
microprocessor, implemented and evaluated on a SASEBO-GIII FPGA [56]. The authors first an-
alyzed the RTL of a RISC-V processor to identify leaky modules and then applied obfuscation to
reduce leakage in the datapath and hide the addresses sent to the cache. Finally, restricting access
to the power-reporting interfaces or limiting their measurement resolution (time or energy) can
hinder software-based exploits [118].

4.3 Fault Injection

Instead of monitoring the emanations from a CPU, an attacker with hardware access can inject er-
rors in the operation of the CPU. Moreover, recent efforts to reverse-engineer the DVFS interfaces
on modern processors opened the way for fault injection via software access only. In what follows,
we present exploits with both access models (see Figure 3).

4.3.1 Hardware-Based Fault Injection. An attacker with physical access to the victim can
change the voltage supply or the clock frequency, or inject glitches. The goal may be to fault CPU
operations or crash the software, for example, through a fault injected into the opcodes of the
executed instructions. Alternatively, the attacker may want to gain information from the results
of the faulty computations, in which case access to the victim’s output is typically required.

Voltage. Manipulating the supply voltage to affect the operation of processors, ® in Figure 5,
has long been investigated. Barenghi et al. studied the effects of undervolting an ARM9 CPU with
a 5-stage pipeline [14]. They found that only the LOAD instructions were affected due to their long
datapaths, resulting in two possible errors: instruction swapping and errors in data loading. In the
first case, the fault occurs during the instruction load or the evaluation of a branch condition, re-
sulting in a wrong instruction being loaded. In the second case, the loaded data are faulty. Barenghi
et al. used undervolting against AES, knowing that the faults would be injected in the values loaded
from memory and leveraging them for a differential fault analysis (DFA) attack [14]. Additionally,
they attacked the RSA signature and encryption primitives, managing to recover the private key
through a single faulty signature and enable decrypting of an RSA message when in possession of
one faulty and one correct encryption of the same unknown message [14].

Carefully choosing the fault injection parameters—that is, the glitch amplitude, duration, and
number of occurrences—can make the difference between a successful and failed exploit. Carpi et al.
tested various strategies for finding successful attack parameters on smart cards [35]. Bozzato et al.
proposed a new voltage fault-injection setup to generate arbitrary voltage glitches [27] and used
it to extract the firmware of six different microcontrollers by attacking the commands that give
read access to the adversary.
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Voltage-based fault injection can be exploited for other purposes as well. Timmers and Mune
injected glitches into the power supply line to fault the U-Boot of an ARM processor and load
attacker-controlled values into the program counter register [209]. With glitch-injected faults, they
also managed to access physical memory addresses and escalate privilege levels. Spruyt et al. pro-
posed using fault injection in a manner similar to SCA. They injected faults into the victim circuit
and turned the observed faults into probability traces, which are correlated with the power con-
sumption [199]. Cojocar et al. showed that some of the common countermeasures—for example,
instruction duplication and n-plication—are not effective against fault injection attacks on ARM
Cortex-M4 processors [42].

Most recently, hardware fault injection was used against a “full-fledged Intel CPU”: Chen et al.
reverse-engineered how the voltage level is controlled on Intel processors [37]. In their so-called
Voltpillager attack (@ in Figure 5), the authors used the serial voltage identification (SVID) bus, on
which they connected a microcontroller-based system, to send the required voltage value to the
voltage regulator. Chen et al. demonstrated some faults in the elementary operations (e.g., delaying
writes from the memory to the cache) and showed the same proof-of-concept attacks as the remote
Plundervolt attack (discussed later in this section). Intel’s current mitigations against Plundervolt
are ineffective against Voltpillager, as the latter has a stronger access model. TEEs are not effective
either, as they do not provide tight-enough security guarantees in such a threat model [37].

Frequency. Fault injection is possible by changing the frequency of the processor’s clock, ® in
Figure 5, or by injecting clock glitches. Bar-El et al. showed that clock glitches can be leveraged
to skip instructions and, hence, to execute a subset of program instructions, as well as to corrupt
the processed data [13]. Korak and Hoefler studied the effects of clock glitches on an ARM Cortex-
MO and an ATxmega 256, and proposed the combination of voltage and clock glitches to improve
the reproducibility of the injected faults [107]. For a higher success rate and to get a larger time
window for the fault injection, Korak et al. combined heating with clock glitches [108]. Injected
faults are not always easy to exploit; looking at 8-bit microcontrollers, Balasch et al. highlighted the
complexity of exploiting injected faults because they may affect two stages of the pipeline at the
same time, whereas which stages are affected depends on the parameters of the clock glitch [12].

The design of a glitch injector is essential for the attack success. Kazemi et al. proposed two
clock glitch generators, both implemented on an FPGA, and used them to fault an ARM Cortex-
M3 microcontroller running an AES encryption [98]. Obermaier et al. proposed a fuzzy glitch
generator based on ring oscillators (ROs) and used it to inject faults into an ARM Cortex-M0 mi-
crocontroller [160]. Using PLLs to generate the clock signal from an external clock source does
not provide enough protection against clock glitches; Selmke et al. managed to force the PLL to
overclock using high-frequency signals [195]. Since the PLL generates the internal clock signal by
modifying the input clock signal (multiplying or dividing the frequency by a factor), changing the
frequency of the external clock for enough clock cycles will result in the PLL also adjusting its
output clock signal.

EM Field. Instead of manipulating the voltage supply to inject faults, an attacker can channel
high-amplitude voltage pulses through an EM probe, @ in Figure 5. The generated EM pulses can
lead to timing constraint violations or (re)setting of flip-flops [161]. Manipulating the IC itself can
affect the fault injection; Schmidt and Hutter compared the errors induced in a microcontroller
when it is encapsulated, front-side decapsulated, and back-side decapsulated [191]. For a nearby
probe, front-side decapsulation resulted in the highest injected current. For a probe further away,
no difference among the three scenarios was observed. Dehbaoui et al. confirmed that EM fault
injection can work without tampering with the victim device by carrying out a DFA attack against
an AVR microcontroller running AES encryption [46].
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Moro et al. built a basic fault model for an ARM-Cortex M3, while investigating the effects of the
probe’s position and the timing of the pulses [151]. Trouchkine et al. used EM pulses to characterize
fault-injection effects on a BCM2837 (ARM) and an Intel Core i3 to determine which type of fault
occurs (memory corruption, register corruption, or bad fetch) and which microarchitectural block
is affected (the registers, cache, pipeline, memory management unit, or the bus) [210]. Maldini
et al. went one step further and optimized the parameters of the exploit with an evolutionary
algorithm [132]. Menu et al. exploited the localized effects of the EM-fault injection (against data
transfers from the flash memory to the data buffer of a Cortex-M microcontroller) to (re)set key
bytes, carry out a DFA attack, and inject faults that persist until reboot, ultimately recovering the
secret AES key [141].

EM fault injection can be used for a variety of attacks: Riviere et al. targeted the instruction cache
of an ARMv7-M architecture to steer its control flow, achieving a high reproducibility rate [182].
Elmohr et al. demonstrated multiple instruction faults and skips on a RISC-V processor and an
ARM Cortex MO [53]. Cui and Housley proposed leveraging second-order effects of EM fault in-
jection, in which a fault in one component can affect other components, to overcome the inability
to use first-order effects (EM field injects faults into a specific component due to proximity) in
modern processors, which run at frequencies higher than 1 GHz [44]. Their approach caused soft-
ware execution to enter into a data-dependent fault condition that is normally unreachable on a
TrustZone-equipped Internet protocol phone. Dehbaoui et al. employed EM-induced faults against
the round counter of an AES implementation on an ARM Cortex-M3 processor, to induce another
execution of the penultimate round. This allowed for a DFA attack with only two pairs of correct
and faulty ciphertexts [47].

4.3.2  Software-Based Fault Injection. Until recently, manipulating the voltage or frequency sup-
plied to a processor required having physical access to the device. This no longer holds, because
researchers have reverse-engineered and discovered how to use DVFS interfaces of modern Intel
and ARM CPUs to carry out software-based attacks. These attacks take advantage of the separa-
tion of energy management from security, as DVES interfaces can allow a user to lower the voltage
or increase the frequency to a point where correct operation can no longer be guaranteed. The re-
search we survey here targets TEEs, which can protect against other attacks (e.g., RowHammer
attacks) [157]. In this subsection, we focus on the attacks that do not lead to DoS. However, it should
be noted that the incorrect CPU operation resulting from these exploits may still be manifested as
device unresponsiveness or lock (e.g., for a ransom) [159]. The five generic steps of DVFS-based
attacks are as follows [173, 174, 206]:

(1) Environment setup: Setting up the initial voltage and frequency (which cause no faults) and
clearing the residual states, which could affect the attack. These states include the cache and
the branch prediction table contents, cleared by flushing the cache and running the target
threads (the victim and the attacker) multiple times. The system interrupts can be disabled
to avoid any external interference.

(2) Profiling for an anchor: Determining when the victim code starts executing, through soft-
ware monitoring or cache side channels.

(3) Pre-fault delaying: Delaying the fault injection until the execution of specific victim instruc-
tions, to carefully tune the fault injection for exploitable hard-to-detect errors. The delay
depends on the processor frequency (known to the attacker) and the executed instructions
(known when targeting a standard encryption algorithm).

(4) Fault injection: Lowering the voltage or increasing the frequency to inject the desired fault.

(5) Restoring the original voltage and frequency: Restoring the normal operation of the victim.
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Frequency. In 2017, Tang et al. demonstrated the first DVFS-based attack on ARM Trust-
Zone [206]. In this so-called CLKSCREW attack, @ in Figure 5, the adversary increases the fre-
quency of the processor beyond the correct operation limits. The resulting faults were used to
extract secret cryptographic keys from TrustZone and to escalate the privileges of a malicious ker-
nel driver on an ARMv7 processor inside an Android mobile device. The authors created a custom
kernel driver, which launches separate threads for the attacker and the victim codes, and pins each
thread to a separate core. On ARM processors, different cores can have different frequencies. Hence,
the attack frequency is not restricted by the effects it may cause to the adversary core. No similar
attacks have been demonstrated on Intel CPUs, as many of them do not support overclocking [174].

Voltage. DVFS interfaces control the frequency and the voltage, @ in Figure 5. Targeting an
ARMvV7 processor with TrustZone, the Voltjockey attacker extracts cryptographic keys and faults
the RSA signature verification using a malicious kernel module [173]. Even though the voltage
is the same for all cores, given that the frequency can be different, it is possible to ensure that only
the victim core experiences faults. The vendor-specified operating performance points (OPPs)—
specific voltage and frequency combinations to guarantee correct operation of the processor—
pose no restriction for the attack, as the frequency and voltage regulator drivers can modify the
frequency and voltage at the request of the top-level software. To avoid the limitation of the de-
fined voltage threshold in the regulator property description file, the VoltJockey authors mod-
ify the voltage probe function in the voltage regulator driver. As an extension of their work on
ARM TrustZone, Qiu et al. demonstrated the VoltJockey attack on Intel SGX [174]. Similarly, Mur-
dock et al. and Kenjar et al. presented the Plundervolt and VOltpwn exploits [99, 157]. The three
works targeted some cryptographic code as part of their proof-of-concept (AES for Plundervolt and
VoltJockey). The adversary requires root privileges over the system, which is not inconsistent with
the use of SGX enclaves, which normally protect against processes at a higher privilege level. The
main difference with respect to the TrustZone exploit is that the voltage and frequency are shared
among the cores. If not carefully controlled, the low voltage may result in a kernel panic, leading to
the system freezing or rebooting [174]. The voltage is controlled through an undocumented Intel
model-specific register (MSR); bits of MSR 0x150 can be changed, representing the desired voltage
offset, and specifying to which planes the voltage change is applied (CPU core, GPU, cache (core),
uncore or analog I/0) [157]. Techniques such as SGX-Step [31] can be used to carefully control the
fault injection against the enclave [157]. Murdock et al. investigated the voltage decline time, the
possibility of faulting multiplications inside the enclave, overvolting, and differences among CPUs.
Plundervolt was also used to cause the memory safety violations through faulty imul instructions
leveraged to redirect the trusted white list into the attacker-controlled memory [157].

Kenjar et al. added an offline analysis step to test the operational limits of a processor similar
to the target [99]. They also added a step to analyze the cores of the target system to determine
the fault pattern and find an advantageous placement for the victim. The environment setup step
included disabling the operating system drivers that communicate with the hardware interfaces
for changing the voltage and disabling the automatic hardware-based selection of the voltage and
clock frequency. Finally, Kenjar et al. introduced the concept of stressors—pieces of code running on
the logical partner of the victim’s core to increase the resource contention and the core temperature
for an improved likelihood of fault injection. Hadjilambrou et al. [82] and Kim and John [103]
show that highly effective stressors can be automatically generated using genetic algorithms for
the purpose of an attack or voltage noise characterization on CPUs.

4.3.3 Countermeasures. Processors typically handle load transients by detecting core voltage
droops and then decreasing the working frequency [57]. Razor latches inserted in the pipeline are
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Fig. 6. An illustrative FPGA-based system, with highlighted electrical-level vulnerabilities.

also helpful; they sample the output with two phase-shifted clocks to detect discrepancies and
repeat computations to fix them [55].

Checking for faults and attempting to recover from them works regardless of how the fault was
injected (software or hardware interfaces). Aumtiller et al. developed a software countermeasure
for the RSA signature on a smart card with no hardware countermeasures [9]. They relied on the
fact that voltage spike-induced faults can be injected into any value except those from a read-only
memory, which can be used to check computation correctness. Redundancy is one of the most
common fault detection and recovery defenses. Moro et al. evaluated two software-based counter-
measures against EM-fault injection, both aiming to detect or tolerate single faults, or specifically
those which can cause instruction skipping [152]. One countermeasure repeats the instructions,
while the other executes an instruction twice, storing the results in different registers and then
comparing them. Both defense strategies improve the security for their specific use cases (a subset
of instructions to protect or only protecting against instruction skipping) but do not render the exe-
cuted code fully secure. Making the exploitation of the fault-injection interfaces (e.g., DVFS) more
difficult for the adversary is also a possibility. In response to the software-based fault injection
against SGX, Intel has disabled the overclocking mailbox interface configuration [157]. The per-
fect countermeasure does not exist, but system designers and programmers can choose to deploy
some of the available countermeasures for security-sensitive code.

5 ELECTRICAL-LEVEL ATTACKS ON FPGAS

The FPGA, being both a prototyping platform and an acceleration platform, has received consider-
able attention from the hardware security community. Similar to CPUs, electrical-level attacks are
applicable to FPGAs. In particular, the low-level programmability of FPGAs allows adversaries to
exploit electrical phenomena for their attacks [144]. We denote here the attacks carried out via the
bitstream (i.e., FPGA configuration file) as software-based; the bitstream file is used to program
the basic hardware blocks of the FPGA and have them obtain desired functionality. In addition to
software-based attacks, we survey and discuss the attacks that target soft processors, common in
embedded FPGAs. We show an example of an FPGA-based system, with highlighted vulnerable
interfaces, in Figure 6.

5.1 RowHammer

While the experimental setup by Kim et al. for studying RowHammer bitflips was based on
FPGAs [102], for a long time, it was CPUs that RowHammer attacks were targeting. Recently,
however, Weissman et al. examined whether FPGAs could be used for accelerating RowHammer
exploits [224]. To that purpose, they used an Intel Arria 10 programmable acceleration card [8].
Their FPGA-based RowHammer attack, termed JackHammer, turned out to be significantly faster
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than the RowHammer exploit launched from the CPU, because FPGAs do not need to flush the
memory addresses. The attack targeted a WolfSSL RSA application, running on the host CPU.
While in JackHammer the FPGA acts only as the enabler of the exploit, the fact that it can induce
faults in the shared memory means that FPGAs can also be the victims of JackHammer attacks.
We underscore this exploit as @ in Figure 6.

5.1.1 Countermeasures. The most effective countermeasures against RowHammer, which
would protect even against an FPGA-based attacker, are those implemented in the DRAM or the
memory controller. Other countermeasures that rely on the software running on the CPU are not
suitable unless they are adapted to work on the FPGA’s hardware [54]. In the absence of hard-
ware performance monitors on the Arria 10 platform, Weissman et al. proposed implementing
them on the FPGA [224]. Elnaggar et al. used a monitor on the FPGA fabric to detect attempts
to launch RowHammer exploits [54]. Weissman et al. also proposed defense mechanisms specific
to the tested platform. The current version of Open Programmable Acceleration Engine (OPAE),
used on the Arria 10 platform, makes physical addresses available to the user space, and allows
for huge pages. Disabling huge pages and virtualizing the addresses would render finding evic-
tion sets considerably harder, thus improving system security. Algorithmic-level patches may also
be useful to protect against the fault injection attacks against RSA [224]. However, without these
countermeasures actually being deployed and evaluated, the security of current systems against
RowHammer remains questionable.

5.2 Side-Channel Analysis

Many side-channel exploits have been demonstrated on FPGAs, most often relying on the attacker
having hardware access to the victim device. However, hardware-security researchers have re-
cently taken advantage of the programmability of FPGAs to carry out remotely controlled side-
channel attacks, targeting the FPGAs hosted by the cloud service providers. In the following sub-
sections, we discuss both types of exploits.

5.2.1 Hardware Side-Channel Attacks. Similar to the exploits against CPUs, an attacker with
access to the hardware can measure the power consumption or the EM emanations from an oper-
ational FPGA and gain information about the algorithm executing on the device.

Power. Power side-channel attacks against FPGAs, @ in Figure 6, were first demonstrated in
2003 [162]. Soon after, Standaert et al. examined how DPA differs when applied to FPGAs versus
CPUs [200]. Since then, many works have successfully demonstrated hardware SCA on FPGA im-
plementations of cryptographic algorithms [20], sometimes helped by hardware Trojans [114, 117].
Researchers also looked at how to optimize side-channel exploits, for example, by finding the op-
timal linear transform to apply to the traces to more easily distinguish the correct key [163]. Yao
et al. demonstrated SCA on a masked AES executing on a soft RISC-V processor, implemented on a
Xilinx Spartan-6 FPGA [226]. At first, they collected the side-channel traces to distinguish between
various algorithmic steps (e.g., mask generation or encryption). Then, with a carefully controlled
clock glitch fault injection (@ in Figure 6), they managed to disable the mask and recover the secret
key using standard first-order SCA. FPGA cryptographic circuits are not the only targets of the
power SCA attacks. The encrypted bitstreams, which should protect the confidentiality of propri-
etary designs, are vulnerable as well. Moradi et al. successfully broke the bitstream encryption of
an Intel Stratix-II and a Xilinx Virtex-II FPGA through power SCA, where power measurements
are facilitated by inserted resistors on the paths of interest [148, 149]. While power-analysis ex-
ploits focus on the dynamic power consumption, Moradi used static power consumption against
AES FPGA implementations with masking and shuffling countermeasures [147]. Even though the
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attack is feasible, the signal-to-noise ratio (SNR) of the static power is considerably smaller than
that of the dynamic power, thus requiring a particular measurement setup. Furthermore, the adver-
sary model is much stronger, assuming control over the clock signal. Finally, while not targets for
disassembly, FPGAs can be programmed to implement softcore processors. Power traces collected
in that case allow for side-channel disassembly [113].

Today, FPGAs are commonly used for accelerating ML algorithms, which are an attractive target
for attackers. Wei et al. carried out a power SCA on a CNN implemented on the SAKURA-G FPGA
board [222]. After collecting power traces, they applied a noise-removal technique and then carried
out two input-recovery exploits. The first assumed a passive adversary who tries to distinguish
pixels that are part of the input image background. The second assumed an adversary capable of
sending inputs to the target for profiling purposes who, using prebuilt power templates, tries to
recover the pixels of the input image [222]. Dubey et al. used DPA to extract the binary neural
network (BNN) model parameters (weights and biases) [49]. In addition to being the targets, ML
algorithms are enablers of the exploits: Mukhtar et al. used ML to recover the secret key of an
elliptic curve cryptography algorithm running on a Xilinx Kintex-7 FPGA [154], while Wang and
Dubrova combined several CNN classifiers to reduce the number of traces necessary to recover
the AES encryption key on Artix-7 FPGAs [220]. Ramezanpour et al. used unsupervised learning
against AES [178], while Aydin et al. leveraged deep learning for breaking the lattice-based key-
exchange protocols [11].

EM Field. EM emanations are also useful for side-channel analysis on FPGAs [34]. Carlier et al.
and De Mulder et al. used the EM SCA, ® in Figure 6, to attack an AES FPGA implementation [34]
and break the security of an FPGA implementation of an elliptic curve cryptosystem [155], respec-
tively. Similarly, Kim et al. carried out the power and EM SCA on the ARIA block cipher running on
an Intel APEX 20K FPGA [100]. Investigating the strengths and limitations of the EM SCA, Heyszl
et al. showed that the SNR changes with the location of the EM probe. Due to local leakage, better
attack results can be obtained if the probe is positioned over the target part of the design after
a profiling phase [86]. Hori et al. carried out correlation-based SCA against an AES running on
Xilinx Kintex-7 and Virtex-5 FPGAs [88]. With the smaller technology node of the Kintex-7 family,
fewer traces were required for the full recovery of the cryptographic key. The SNR of subkeys at
some locations was different than at others, indicating that the structure of the circuit does affect
the attack success [88]. Bitstream encryption is vulnerable to EM side-channel analysis: Moradi
and Schneider demonstrated the attack feasibility on Xilinx series 4, 5, 6, and 7 FPGAs [150]. ML
algorithms also fall victim to EM SCA: Yoshida et al. used correlation EM analysis to recover the
weights of an MLP under the assumption that the adversary has control over the inputs to the
MLP [230].

5.2.2  Software-Based Side-Channel Attacks. By carefully programming the FPGA logic, a ma-
licious party can implement an on-chip sensor for measuring the core voltage variations or the
crosstalk-coupling between neighboring long wires. These software-defined sensors are the en-
ablers of remotely controlled attacks, targeting cloud FPGAs.

Power. Remote power-side channel attacks, @ in Figure 6, commonly employ sensors based on
ROs, easily created by connecting an odd number of inverters in a loop. The RO frequency of
oscillation depends on the loop delay, which, in turn, depends on the power supply voltage. To
monitor its variation with time, it is sufficient to connect the RO output to the clock input of a
frequency counter and to sample the counter output at fixed periods of time.

Zick and Hayes were among the first to use ROs for monitoring on-chip variations [238]. To
minimize the sensor footprint, they employed residue number system ring counters using shift
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register look-up tables (LUTs), resulting in only 8 LUTs per sensor on a Xilinx Virtex-5 FPGA.
On a Zyng-7020 SoC, Zhao and Suh showed that ROs are the enablers of side-channel attacks
against RSA cores and CPUs on the same SoC [236]. Their insight was that a power side channel
allows for distinguishing the CPU activity levels, suitable for timing-based attacks against RSA
exponentiation operation, which executes in constant time. One drawback of RO sensors is that,
to obtain good measurement resolution, the sampling period of their frequency counter should be
hundreds or even thousands of clock cycles. To address this limitation, Gravellier et al. combined
high-frequency ROs with Johnson ring counters [75].

As an alternative to limited-resolution RO sensors, Zick et al. proposed delay line-based time-to-
digital converters (TDCs), capable of sensing nanosecond-scale voltage transients on FPGAs [239].
Many subsequent works employed TDCs: Schellenberg et al. used TDCs for a CPA attack against an
AES FPGA core [189] and for an inter-chip power side-channel attack [190], showing that remote
attacks are not limited to a single chip only.

Remote side-channel exploits have been demonstrated in the cloud setting as well. Glamoc¢anin
et al. were the first to demonstrate a successful power SCA attack against an AES core, using TDCs,
on Amazon AWS F1 instances [71]. More recently, Moini et al. used TDCs to recover the inputs
to a BNN, under the assumption that the adversary knows the BNN structure [146]. Zhang et al.
used TDCs to remotely steal the structure of an FPGA neural network [234].

EM Field. The possibility of remote measurement of the EM field emanated from an FPGA core
is an open research question. However, the effects of the EM coupling between neighboring FPGA
wires (® in Figure 6) can be measured remotely. It has been shown that the EM coupling be-
tween neighboring FPGA wires can leak information about the logical level carried by the ob-
served wire [60, 69]. Ramesh et al. used an RO sensor to learn the AES final round key. First, they
ensured that the RO is routed next to one of the long wires carrying inputs to the final round Sbox.
Then, with the observed ciphertext (assumed to be publicly available) and the oscillation count of
the RO, they examined all possible values for the target key byte until finding one consistent with
the obtained measurements [177]. Giechaskiel et al. showed that a variety of RO-based crosstalk-
coupling sensors can be successfully deployed on cloud FPGAs while bypassing the checks for
combinational loops put in place by the cloud service providers [67].

5.2.3 Countermeasures. Protections against SCA on FPGAs focus on decreasing information
leakage or preventing remotely controlled attacks by disallowing sensor circuits or better isolating
the neighboring designs. Two common techniques for decreasing information leakage are hiding
and masking [133]. In hiding, the goal is to reduce the SNR available to the adversary. In masking,
the data processed by the circuit is obfuscated so that the observable leakage is independent of
the secret [181]. Implementing these techniques incurs considerable area or frequency penalties.
Furthermore, the circuit can still remain vulnerable to more advanced, higher-order attacks [133].

Le Masle et al. used a network of on-chip RO sensors and a proportional-integral-derivative con-
troller to monitor and maintain an approximately constant core voltage, effectively reducing the
SNR [135]. As actuators, they employed long routing wires (equivalent to high capacitive load). In
a similar direction, Krautter et al. used a TDC sensor to control a noise-generating fence composed
solely of ROs [110].

Giineysu and Moradi proposed and evaluated a set of countermeasures against DPA on
FPGAs [81]. They generated Gaussian noise by leveraging shift register LUTs, BRAM write
collisions, and short circuits in the switch boxes. They randomized the clock signal to impede
data alignment and implemented a circuit to detect whether the external clock is manipulated.
Finally, they proposed scrambling the contents of Sboxes or Tboxes. These countermeasures were
tested on an AES core in a Xilinx Virtex-II Pro FPGA.
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Sasdrich et al. proposed leveraging the dynamic reconfiguration capability of FPGAs to dynam-
ically change the hardware implementation of a PRESENT cipher and thus improve the resistance
against SCA exploits [187]. Dubey et al. investigated the application of masking and hiding to a
BNN, demonstrating improved security but also highlighting the challenges of building a fully
side-channel resistant neural network [49].

To detect FPGA sensors, Krautter et al. [112] and La et al. [115] developed bitstream scanners,
which reconstruct the design netlist and search for so-called signatures of potentially malicious cir-
cuits. However, the developed scanners target only a subset of FPGA families: Lattice iCE40 [112]
and Xilinx Ultrascale+ [115].

Mitigating crosstalk side channels was first addressed by Huffmire et al., who proposed using
moats (guard bands between design partitions) for spatial separation and drawbridges for routing
core-to-core communication signals and isolating them [92]. Yazdanshenas and Betz proposed
wrapping user applications into soft shells and encrypting incoming and outgoing data [228].
Compared to unencrypted traffic, they report up to 80% higher latency and a 20% decrease in the
available user area. Luo and Xu developed HILL, a hardware isolation framework, which places
security-critical nets in the center of a core, routes them without using the long wires, and isolates
them from other FPGA cores [127]. Seifoori et al. improved the FPGA compilation to ensure that
the post place and route designs are protected by construction, that is, that no untrusted signal is
routed close to a security-critical net [194].

5.3 Fault Injection

An adversary with hardware access to an FPGA can externally inject faults. Moreover, the pro-
grammability of FPGAs allows for injecting faults internally. We discuss both scenarios here.

5.3.1  Hardware Fault Injection.

Voltage. FPGA circuits are sensitive to both undervolting and overvolting [33] (© in Figure 6).
Undervolting increases circuit delays, leading to timing violations, whereas overvolting glitches
cause transient oscillations in the internal voltage while trying to recover a nominal voltage
value, ultimately resulting in transient undervolting [241]. Bhasin et al. evaluated the effects
of undervolting on several AES implementations and observed that, when no countermeasures
are implemented, the hardware with the lowest area is also the most vulnerable to differential
fault analysis [21]. Zussa et al. investigated the mechanism of injecting faults into FPGA circuits
through voltage glitches and concluded that it is the same as with clock glitches [241].

Frequency. Violated timing constraints can also be a consequence of clock glitches, @ in
Figure 6 [2, 138, 231]. Agoyan et al. carried out a DFA attack against an AES circuit running on a
Xilinx Spartan 3AN FPGA. With another FPGA serving as the external clock generator, they used
a delay-locked-loop to generate two clock signals (one of them delayed). A glitch was injected
when combining the rising edge of the delayed clock with the falling edge of the regular clock.
This reduces the setup time available before the next clock edge [2]. Korczyc and Krasniewski used
two clocks, a high-frequency and a low-frequency one, to generate glitches and evaluate the sus-
ceptibility of FPGA circuits to clock-glitching attacks [109]. Glitches were created by alternating
between these two clocks, as the resulting clock would have some periods shorter than others.

Yuce et al. targeted a LEON3 RISC processor [231]. First, they showed that clock glitches can
lead to faults that are not mitigated by instruction duplication, triplication, instruction parity, and
a countermeasure against skipping instructions. Second, they leveraged this knowledge to break
a fault-resistant implementation of an LED block cipher.
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EM Field. FPGA hardware is also vulnerable to EM fault injection, ® in Figure 6. Dehbaoui
et al. used EM fault injection to attack unprotected and protected FPGA AES cores. They showed
localized effects of the fault injection and, hence, the countermeasure, which was a timing
violation detection circuit, was shown to not be consistently effective [46]. Madau et al. used
EM-induced faults to attack a true random number generator as a first step to overcoming the
masking countermeasures for cryptographic cores [129].

5.3.2  Software Fault Injection. Recent work has shown that valid FPGA bitstreams can be used
to create core voltage fluctuations [73] with the goal of resetting the FPGA (a DoS attack) or causing
a computational fault (a fault attack). Additionally, the reconfigurable clock generation circuits can
be programmed to inject faults.

Voltage. ROs are not only able to sense on-chip delay changes, they can also be used as power
viruses (the Trojans denoted with @ in Figure 6). When instantiated in large numbers and enabled
periodically, they can cause voltage drops capable of sending an FPGA to reset [73] or inject-
ing a computational fault. Krautter et al. used ROs for a differential fault analysis attack on an
AES core [111], while Mahmoud et al. used them to bias self-timed true random number genera-
tors [130] and to remotely trigger a stealthy hardware Trojan (Circuit 3 in Figure 6) [131].

Given that combinational ROs are the enablers of a multitude of remote electrical-level attacks
on FPGAs, some CSPs (e.g., Amazon AWS) prevent them from being synthesized. However, ROs
are by far not the only circuits capable of high power consumption; Alam et al. used dual port
FPGA RAM memories (€0 in Figure 6) to create short circuits, causing severe voltage drops. They
leveraged the induced faults to attack a finite state machine and to cause a neural network to
misclassify [5]. Provelengios et al. evaluated several power-wasting circuits, all allowed by the
CSPs [170]. These included two designs in which FFs are inserted into the RO loop. In the first,
the FF was clocked by a PLL-generated clock, while its data input comes from the RO inverter. The
second design uses the RO inverter output to clock the FF and the input of the inverter to clear
the FF. Finally, they demonstrated that shift registers and AES rounds (which violate timing con-
straints) can serve as power viruses. Matas et al. used multiple-input XOR gates to generate glitches
and then amplify the glitches by having them charge long routing paths [137]. Boutros et al. tested
other power-wasting circuits: asynchronous ROs, clock-gated garbled XORs, and clock-gated hy-
brid logic [26]. The garbled XORs are a collection of multiple-input XOR gates, with inputs con-
nected to the outputs of toggling registers. The hybrid logic combines the garbled XORs with block
random access memories (BRAMs) and digital signal processing (DSP) blocks. In their work, these
attacker circuits were clock-gated to cause large current changes the moment they are enabled.

Frequency. Many works that investigate the effect of clock glitches on FPGA circuits take ad-
vantage of the programmable fabric to build the glitch generator. Hence, the exploit itself does not
require hardware access to the FPGA. These exploits (@ in Figure 6) are a threat if a hardware
Trojan is present in the design, as each FPGA application can have its own clock generated from
a corresponding PLL otherwise. Bonny and Nasir used PLLs to create clock glitches and attack
an FPGA implementation of a chaotic oscillator [24]. Ghalaty et al. leveraged the PLL on an In-
tel Cyclone IV to generate clock glitches for a differential fault intensity analysis in which the
attacker varies the intensity of the fault injection and observes how the faulty behavior of the cir-
cuit changes [66]. Since the change is secret dependent, it can be leveraged to recover the secret.
Additionally, the clock glitches have been successfully used to recover the secret key of an AES
module [121] or cause a neural network to misclassify [122].

5.3.3 Countermeasures. While relaxing the timing margins is one way of decreasing the risk of
fault injection exploits, it does not eliminate the risk altogether. Therefore, other countermeasures
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are needed, for example, for detecting and correcting the faults or for detecting the presence of
fault-injection circuits (to stop them or notify the victim).

The main contributor to circuit delay variations on FPGAs are voltage droops caused by fast load
transients [73, 143]. Shen et al. designed a voltage droop detector for an Intel Cyclone IV FPGA,
which uses an adder to measure the propagation delay of a carry input. If the propagation delay is
above a specified threshold (calibrated in advance), a voltage droop is signalled. This signal is used
to suppress the next clock edge, thus avoiding the injection of a timing fault [197]. Focusing on
cloud FPGAs, Provelengios et al. [169] and Mirzargar et al. [143] proposed distributed sensing of
on-chip voltage variations for detecting and locating the origins of voltage droops. Provelengios
et al. used a regular network of RO-based sensors on a DE1-SoC board to reconstruct voltage
contours and locate the source of the high power consumption [169]. Mirzargar et al. developed a
fully automated approach for Xilinx FPGAs, in which the RO sensors are implemented after design
placement and using free resources only [143].

Following the approach of Razor [55], Stott et al. built a timing-fault detector using a shadow
register, a comparator, and a latch to signal whether a fault has occurred. These fault detectors
can also be automatically inserted into arbitrary FPGA applications, as needed by the timing re-
port [202]. Many other works built similar sensors to detect that a fault has occurred or to protect
a target implementation [26, 131]. Zussa et al. built a clock glitch detector to defend against EM
fault injection. Given the local effects of EM fault injection, they needed to deploy a network of
sensors on-chip [240]. Jiang et al. proposed a solution for measuring the delay of a desired path,
which may not necessarily end in a register against which to compare [95]. Their design, useful
for measuring delays of paths ending in BRAMs or DSP blocks, has two registers, clocked by the
last signal in the path (which would act as the register’s input in other designs). The two registers
sample a shifted clock as their input. The outputs of the two registers are passed through an OR
gate, whose output is monitored to return a numerical value for the path delay. Focusing on clock
glitches, Luo et al. generated a high-frequency signal using ROs and used it to monitor the clock
and detect when glitches are present [126]. This is only one of many examples of ROs being used
for protecting instead of attacking.

Aghaie et al. provided a full fault coverage when an adversary is assumed to be able to inject
faults into a number of signals during each clock cycle [1]. Their methodology combined the use of
checkpoints with duplication. While each countermeasure has its own overhead, the combination
proves to be efficient in detecting faults, with a reasonable overhead. Luo and Xu proposed a
frequency scaling-based approach, in which they build a framework to dynamically change the
application frequency (using feedback information from an on-chip delay-line sensor) and avoid
the occurrence of timing faults [128]. For EM fault injection, Miura et al. successfully employed
on-chip PLLs, which act as monitors of the clock’s stability, for attack detection [145]. An RO was
routed around the core to protect, and its output acted as the monitored signal. Once that signal
experiences a sudden change of frequency due to EM fault injection, the PLLs stop being locked
and the attack is detected.

Finally, fault-attack countermeasures can focus on optimizing the architecture of future devices.
Ahmed et al. designed an optimized LUT with input-to-output delays less sensitive to supply volt-
age changes. Motivated by dynamic voltage scaling, they decoded the slowest two inputs of the
LUT and used separate voltage islands for LUTs and routing [3].

6 ELECTRICAL-LEVEL ATTACKS ON GPUS
GPUs have also recently received attention with regards to their security. Being similar to CPUs,

they suffer from the same vulnerabilities. That being said, the literature on electrical-level attacks
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on GPUs is sparser and more recent than for CPUs. In this section, we discuss the demonstrated
exploits that target or leverage GPUs.

6.1 RowHammer

Frigo et al. leveraged GPUs to accelerate RowHammer exploits [58] and allow an adversary, con-
trolling a malicious website or advertisement on the website, to escape a browser sandbox and gain
arbitrary read/write privileges on an Android platform. To find the target main memory physical
addresses, they built efficient eviction sets, achieved contiguous memory allocations, and exploited
a timing side channel to obtain their locations. This type of attack, @ in Figure 7, is capable of af-
fecting the entire heterogeneous system.

6.1.1 Countermeasures. The protections against RowHammer exploits are most efficient if im-
plemented in the main memory or the memory controller. The exploit by Frigo et al. could be
thwarted by better memory partitioning to ensure that the victim memory rows are not reused to
store sensitive data [58]. However, the trade-off of this countermeasure’s complexity and security
is not yet evaluated [58]. Even if this countermeasure does not fully eliminate the RowHammer
vulnerability, it makes the exploits more challenging.

6.2 Side-Channel Analysis

In a similar fashion to CPUs and FPGAs, GPUs can leak information through side channels, even
though the massively parallel code execution results in somewhat different requirements for the
side-channel analysis. The works we discuss here show that hardware-based SCA attacks on GPUs
are a real threat.

6.2.1 Power. Luo et al. implemented a power SCA attack (@ in Figure 7) against an AES en-
cryption running on an NVIDIA TESLA GPU to extract the last round key using CPA [125]. They
present their methodology for a successful attack, even under the concurrent execution of a vast
number of processes on GPUs, and the noise in the collected traces. Cronin et al. chose a different
target—a mobile platform with CPUs and GPUs, responsible for processing graphics on smart-
phones [43]. They found that information leaks through the USB charging interface and used it to
break a passcode typed while the smartphone was charging.

6.2.2 EM Field. An adversary with physical access can measure the EM field created by the
GPU, ® in Figure 7. With an EM-based SCA attack, Gao et al. successfully broke the security of
a bitsliced AES implementation on GPUs otherwise immune to cache-based side channels [62].
Gao and Zhou targeted single-instruction multiple threads (SIMT) execution on CUDA-enabled
GPUs, accelerating an SBox LUT-based AES [61]. In their experimental setup, all threads were
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executing different encryptions with the same secret key, but the adversary could choose some of
the threads to encrypt the same plaintexts. Under those conditions, they demonstrated a successful
key recovery exploit.

6.2.3 Countermeasures. The concept of masking is not only applicable to CPUs and FPGAs, but
also to cryptographic primitives executing on a GPU. However, masking can quickly become too
complex due to the required generation of random masks [61]. A simpler approach would rely on
restricting attacker capabilities, knowing that side-channel exploits against GPUs rely on chosen-
thread attacks, in which the attacker can choose multiple threads to encrypt the same random
plaintext and seeing that no exploits with random plaintexts have been demonstrated yet [61].
To characterize GPU power consumption, Mukherjee et al. built GIPSim, a model of power side-
channel leakage [153]. Such models are a foundation for future protection frameworks, which
could select the instructions to execute considering the primitive to protect. The concurrent execu-
tion of the primitive and the instruction would reduce the SNR, rendering the exploit significantly
more difficult.

6.3 Fault Injection

6.3.1 Software-Based Fault Injection. For lowering power consumption and maintaining high
performance, modern GPUs provide AVFS interfaces. Exploits utilizing AVFS are highlighted as
@ in Figure 7. Sabbagh et al. leveraged AVFS on the AMD Polaris GPU to inject random faults
into its execution. The authors exploited Radeon Open Compute—system management interface
(rocm-smi) tools and application programming interfaces to set the OPPs for their exploit and the
timing to activate them. The adversary can send the fault injection commands from the host CPU
to the GPU, resulting in exploitable faults for DFA on AES [185]. Gongye et al. launched the same
exploit against a ResNet-18 model to reduce its classification accuracy [74].

6.3.2 Countermeasures. Sabbagh et al. discuss potential defenses against their demonstrated
attack. These include limiting the OPPs to ensure that OPPs that lead to faults are not allowed.
Recognizing operating limits requires characterizing the GPU hardware, which may need to be
done periodically to account for aging effects. Increasing the guardbands can also reduce the pos-
sibility of fault injection [185].

7 IMPLICATIONS FOR HETEROGENEOUS SYSTEMS

When CPUs, FPGAs, and GPUs are brought together in a heterogeneous computing system, new
electrical-level exploits may arise. In this section, we provide our insights on whether the attacks
known to affect one computing component may pose a threat (i.e., extend) to other components
in a heterogeneous computing system and how the defenses should be adapted. To that goal, we
proceed as follows:

e Starting from the surveyed attacks on CPUs, FPGAs, and GPUs, we identify those that can
affect more than one component given the heterogeneous system architecture models pre-
sented in Section 2.

o If applicable, we examine how the threat model changes in a heterogeneous use case.

e We discuss the proposed and deployed countermeasures to assess whether they remain rel-
evant for the HCSs.

Through this evaluation, we highlight the open research directions for the security of HCSs against
electrical-level attacks. These future research directions, summarized in Table 1, range from inves-
tigating and understanding novel vulnerabilities to designing appropriate countermeasures and
deploying software- and hardware-defense strategies. Designing and deploying secure HCSs is
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Table 1. Open Research Directions

Attack Access Target Open Research
FPGA Vulnerability to attack and adapted countermeasures
RowHammer SW GPU Vulnerability to attack and adapted countermeasures
HCS Deploying secure HCSs
HW+SW FPGA Countermeasures against SCA sensors
HW CPU Countermeasures against disassembly
SCA SW CPU + HCS  Vulnerability to remote disassembly and countermeasures against it
SW HCS Intercomponent leakage and countermeasures
SW HCS SCA through monitors and countermeasures
HW+SW FPGA Countermeasures against power wasters
Fault SW HCS Intercomponent fault injection and countermeasures
Injection SW HCS Combining DVFS/AVFS with power wasters and countermeasures
HW+SW HCS Building new fault models
HW+SW HCS Deploying HCSs secure against fault injection

HW: Hardware access; SW: Software access; HCS: Heterogeneous Computing System.

not limited to one use case. Therefore, the solutions should consider various deployment models,
including embedded devices and virtualized accelerators, as well as various attacker models (e.g.,
a malicious cotenant or a malicious CSP). While CPUs and GPUs can be virtualized, FPGAs have
not been virtualized yet (even though there is considerable research on FPGA virtualization [176]).
While virtualization can hinder some exploits by abstracting away details of the hardware and
restricting access to some hardware-dependent interfaces, it does not necessarily provide full pro-
tection. For instance, if the adversary has hardware access, attacks that bypass the virtualization
remain feasible [30]. The situation is not very different when the attacker has software access (e.g.,
RowHammer remains feasible [180]). Consequently, virtualization of heterogeneous computing
systems, in view of electrical-level vulnerabilities, remains an open research direction.

7.1 RowHammer

As discussed in Section 2, in an embedded platform, the main memory is typically shared between
the components. Furthermore, in heterogeneous systems, GPUs and FPGAs can typically have
access to the main memory (DRAM) of the host CPU. Researchers have shown that this access can
be used to accelerate RowHammer attacks [58, 224]. Moreover, the FPGA’s and GPU’s access to the
DRAM also means that faults in the memory may affect the computation of any of the components
that use the faulty value. We underscore this threat in the first two entries in Table 1.

RowHammer attacks typically target the CPU to gain unauthorized privileges or to fault the
operation of security primitives; as such, most RowHammer works focused on the CPU as the
victim. Depending on the code running on the GPU or the hardware deployed on the FPGA, fault-
ing security primitives may be the goal of the RowHammer attack against a GPU/FPGA, or new
exploits can arise according to the use scenario, which remain to be demonstrated. For instance, if
an encryption circuit (e.g., RSA) is implemented on the FPGA, its stored key values may be faulted,
leading to incorrect computations by the FPGA circuit. Similarly, fault attacks can be carried out
against ML models to cause accuracy degradation similar to what was demonstrated by Hong
et al. [87]. Therefore, RowHammer attacks likely do pose a threat to an HCS as a whole. Further-
more, since the DMA 1is accessible not only to the internal components but also to the I/O inter-
faces, RowHammer attacks requiring no process residing on the system (e.g., Nethammer [120]
and Throwhammer [207]) are another threat, to be investigated for FPGAs, GPUs, and HCSs.

In a heterogeneous computing system, the adversary can reside on and try to attack any of the
system components, and virtualization does not necessarily provide protection [180]. Furthermore,
the attacker goals may be more varied according to the computation that is targeted. This changes
the threat model significantly, as it no longer holds that only the CPU interfaces need monitoring.
The threat model change also requires reexamining the countermeasures. As an example, let us
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consider one of the main enabling features of the accelerated RowHammer attack by Weissman
et al.: the lack of hardware performance counters (to monitor the FPGA’s accesses to the mem-
ory) [224]. One could argue that, because multitenancy is not yet a reality, there should be no
security concerns and, hence, no need to deploy the countermeasures in that case. However, the
potential existence of Trojans and the possibility of multitenancy in the future render the search
for and the deployment of effective countermeasures important (third entry in Table 1).

While all proposed countermeasures have their disadvantages (power and performance over-
heads, memory overhead, lack of backward compatibility), they can still render the exploit sig-
nificantly harder. Furthermore, though most proposed countermeasures are concerned with only
CPUs, their principles can be extended to the memory accesses of GPUs and FPGAs. Many of
the proposed countermeasures focus on existing CPU systems and, hence, require no modifica-
tions to the hardware (e.g., ZebRAM [106], which uses guard rows to protect against RowHammer
bitflips). In this case, research can show how to adapt them to other system components using
existing drivers and software interfaces. Some of the countermeasures, however, require the ex-
istence of hardware performance counters (e.g., ANVIL [10], which uses the counters to identify
frequently accessed rows). Taking advantage of the flexibility of heterogeneous platforms, perfor-
mance counters may be implemented in the programmable logic (similar to the idea of Elnaggar
et al. [54]).

Depending on the data or the computation to be protected, countermeasures may even focus
on the algorithm or on protecting only part of the memory (e.g., GuardION [216], which protects
against DMA-based exploits on mobile devices by isolating DMA buffers with guard rows). For
protection against DMA-based exploits, transaction control, similar to what is available on the Xil-
inx UltraScale+ MPSoC [242], may prove useful for limiting the access rate of potentially malicious
channels. However, further investigation is required to assess the effectiveness and the required
modifications for the proposed countermeasures when used in heterogeneous platforms. To effec-
tively test the countermeasures on heterogeneous platforms, the threat model for a heterogeneous
system (considering all of the possibilities of how an adversary can gain access to the system)
should be considered. This should be followed by an evaluation of the effectiveness of a RowHam-
mer exploit. Based on this investigation, stronger recommendations can be provided on how to
design heterogeneous computing platforms that are secure against RowHammer exploits.

7.2 Side-Channel Analysis

Side-channel exploits that rely on the physical access to the device are a real threat for all three
examined system components. Therefore, countermeasures against them should be investigated.
Furthermore, there is still room for more research on side-channel disassembly, for example, for
processors with higher clock frequencies, in noisier environments, or for an HCS with various
components executing concurrently. However, the more interesting threats—which we deem
feasible and requiring further investigation—are those that can use software interfaces to carry
out SCA remotely and across components.

The existence of monitors (such as the RAPL interface for Intel CPUs and the system moni-
tor in the UltraScale+ MPSoC), which can report the consumed power of various components,
is one obvious threat. PLATYPUS and similar attacks demonstrated the risk of unprivileged ac-
cess to such interfaces in a CPU-based system [118, 134]. Accordingly, we extrapolate the possible
risk against other HCS components. Consequently, the typical threat model of an adversary with
physical access is no longer necessary for SCA. Further investigation is required to quantify the
information that can be gained from power-reporting interfaces on existing embedded and cloud
systems, which is why we consider secure monitoring as an open research direction in terms
of describing the vulnerability in a heterogeneous setting and in terms of defenses that do not
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remove the benefits of the monitors. The possibility of maliciously using the monitors, which is
to be investigated, changes the usual threat models for GPUs and FPGAs, which are now at risk
from the CPU processes.

Another risk comes from the possibility of implementing voltage sensors in the PL of the
FPGA [73]. Having been used for remotely controlled SCA against a CPU on the same chip, the
open research question is whether they would enable remote side-channel disassembly. Given
the tight integration in (MP)SoC platforms, in terms of sharing the power resources, the FPGA
sensors are likely a higher threat for chip-level than for system-level heterogeneous platforms.
Yet, as discussed in Section 2, if the voltage regulator is shared by the CPU and the FPGA (given
their requirement for the same voltage level), an equivalent of the tightest level of integration is
inadvertently provided. The amount of information that can be gained at various levels of sys-
tem integration (e.g., same power chip, but different voltage regulators) is a topic that deserves
further investigation, in particular in light of the covert communication channel demonstrated by
Giechaskiel et al. [68]. Their C3APSULe exploits disclosed the possibility of covert communication
between an FPGA and a CPU or a GPU when sharing the same rack-level power supply [68].

Those SCA countermeasures, which do not require hardware modifications, would likely not
fully prevent information leakage. This does not mean that they are ineffective, as hiding and mask-
ing do make breaking cryptographic keys considerably more difficult and time-consuming [19, 81].
The issue is that hiding and masking focus on making the side-channel information independent
of the secret data to be protected, meaning that they would not, in general, prove effective against
side-channel disassembly. They might render some information harder to obtain (e.g., instruction
operands), but there is no reason to assume that they would completely prevent the leakage. Hence,
countermeasures against side-channel disassembly remain an open area of research, as highlighted
in Table 1.

In the case of hardware side-channel disassembly, depending on the threat model, countermea-
sures may include detecting power probes or improving packaging to reduce EM emanations. For
software side-channel exploits, countermeasures would need to limit the information leaked across
components, and the information provided from the system interfaces (SCA through monitors in
Table 1) to render attacks impractical, without compromising the usefulness of these interfaces.
Countermeasures against data leakage should work against both hardware- and software-based
secret recovery exploits, and they should be tested to understand their impact on instructions
leakage. Accordingly, relying on virtualization to prevent access to system monitors is not suffi-
cient to guarantee system security. Finally, defense mechanisms that detect the presence of sensors
on FPGAs are needed to protect against an adversary residing on the programmable fabric [112].
Given that typical FPGA sensor architectures may not be the only circuits enabling side-channel
information recovery [72], effective defenses are yet to be found.

7.3 Fault Injection

Similar to SCA, fault-injection attacks that manipulate the clock or the power supply to the chip are
a threat to all electronic components. Further studies are required to analyze whether manipulating
the power supply can lead to faults in more than a single component of a heterogeneous computing
system (i.e., novel fault models should be considered; see Table 1). For example, an attack such as
VoltPillager [37], which sends messages on the Intel SVID bus (power management bus in Figures 2
and 5) to change the voltage of the CPU voltage regulator, may affect one component at a time
(depending on the available interfaces and the control messages sent on them). On the other hand,
if all of the components share the same voltage source and that source is manipulated, then faults
may occur in several of them depending on their undervolting, frequency, and timing constraints.
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For remote fault injection, the existence of DVFES (and AVFS) interfaces remains a threat for CPUs
(and GPUs). Voltage and frequency scaling for FPGAs—which has been considered but not yet im-
plemented [4, 128]—would need to be carefully deployed for new vulnerabilities to be avoided.
Another important threat comes from the possibility of implementing power-wasting circuits on
FPGAs—their impact can extend to multiple system components, potentially enabling intercompo-
nent fault injection, as underscored in Table 1. The demonstrated use of power wasters to cause
a DoS on both the CPU and the FPGA in an SoC platform [73] strongly suggests that it may be
possible to inject faults across different components. Furthermore, the demonstrated side-channel
attacks [77] show that the power network is tightly coupled, confirming that power-related effects
across components are possible. Power-wasting circuits can be even more powerful if combined
with DVFS or CPU stressor codes to inject faults, while bypassing the countermeasures that focus
on either of the two threats alone. Finally, the recent demonstration of using clock gating to boost
the FPGA transient power consumption [26] shows that clock gating, and potentially power gat-
ing, may be used in the attacks. Knowing that powering on large clusters of gated logic may cause
current surges [203], it becomes important to investigate whether power gating the islands in an
MPSoC may facilitate some of the exploits.

Software-based fault-injection attacks on heterogeneous systems require new threat models. For
instance, access to the DVFS interfaces or their manipulation beyond specified OPPs may no longer
be required given that the adversary can program the FPGA to inject faults that are not localized
to the programmable fabric. The proposed and deployed countermeasures cannot protect all of the
computing components against all of the fault injection possibilities. However, this does not neces-
sarily mean that it should be impossible to protect a heterogeneous system against fault-injection
attacks. Combining careful design choices with countermeasures at the algorithmic level [16], the
software drivers and hardware [112] may enable the detection of the fault injection before it can
be exploited. Furthermore, restricting the access to the exploitable software and hardware inter-
faces or ensuring that they cannot be used to operate the circuit beyond its functional limits would
render some interfaces safe and, consequently, software-based exploits more difficult. Therefore,
new research is required to find and tailor the countermeasures for heterogeneous systems.

8 CONCLUSION

In this work, we have surveyed the electrical-level attacks on CPUs, FPGAs, and GPUs, which
are the main components of today’s heterogeneous systems. While previous work considered the
security of each computing unit on its own, we paid special attention to the potential security
threats brought about by their integration. Considering the architecture of common heterogeneous
systems, we investigated whether electrical-level attacks may pose a threat to a heterogeneous
platform as a whole. Finally, we proposed a number of future research directions that, if addressed,
should help to ensure the security of today’s heterogeneous computing systems.
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