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Abstract

Whenever applicable, the Stochastic Gradient Descent (SGD)
has shown itself to be unreasonably effective. Instead of un-
derperforming and getting trapped in local minima due to the
batch noise, SGD leverages it to learn to generalize better
and find minima that are good enough for the entire dataset.
This led to numerous theoretical and experimental investiga-
tions, especially in the context of Artificial Neural Networks
(ANNs), leading to better machine learning algorithms. How-
ever, SGD is not applicable in a non-differentiable setting,
leaving all that prior research off the table.

In this paper, we show that a class of evolutionary algorithms
(EAs) inspired by the Gillespie-Orr Mutational Landscapes
model for natural evolution is formally equivalent to SGD
in certain settings and, in practice, is well adapted to large
ANNs. We refer to such EAs as Gillespie-Orr EA class (GO-
EAs) and empirically show how an insight transfer from SGD
can work for them. We then show that for ANNs trained to
near-optimality or in the transfer learning setting, the equiv-
alence also allows transferring the insights from the Muta-
tional Landscapes model to SGD.

We then leverage this equivalence to experimentally show
how SGD and GO-EAs can provide mutual insight through
examples of minima flatness, transfer learning, and mixing of
individuals in EAs applied to large models.

Introduction
Over the last decade and a half, deep learning has achieved
impressive progress(LeCun et al., 2015). From image recog-
nition (Krizhevsky et al., 2012) to image and text synthe-
sis (Karras et al., 2018; Brown et al., 2020), a progres-
sive increase in the size of ANN models, combined with
an increase in the size and variety of datasets and new
approaches, such as GANs or Self-Attention (Goodfellow
et al., 2014; Vaswani et al., 2017), unlocked new capabili-
ties - both expected and unexpected (Ganguli et al., 2022).
However, one of the most fundamental aspects of such mod-
els - their training process - is still far from fully understood.

The ability of ANN models to solve large classes of prob-
lems is not exactly surprising. ANNs have been proven to
be universal approximators that can fit any function (Hornik
et al., 1989). What is surprising is that good approximations

can reliably be found by trivial gradient descent, even if it is
calculated on small batches of dataset samples - a procedure
known as Stochastic Gradient Descent (SGD) LeCun et al.
(1998). SGD can teach ANNs robust, well-generalizing fea-
tures (Bottou and Cun, 2003; Bottou and Bousquet, 2007),
even when models are overparametrized enough to memo-
rize images (Dinh et al., 2017; Zhang et al., 2021). While
numerous other optimizers have been proposed and success-
fully applied - such as Adam (Kingma and Ba, 2015), few
remain as well-explored as SGD.

Thanks to its simplicity and unreasonable effectiveness,
SGD has been explored better than any other machine
learning algorithm, both theoretically and experimentally.
Among other things, we now understand how SGD opti-
mization responds to learning rate adjustment (Jastrzebski
et al., 2018; Hoffer et al., 2017), minibatch noise (Ziyin
et al., 2021b; Wu et al., 2020), or additional noise injec-
tion in case of large batches (Xie et al., 2021; Zhu et al.,
2018). Several experimental and theoretical works made
clear the importance of model over-parametrization for both
the loss landscape smoothing (Li et al., 2018) and increas-
ing the connectedness of minima (Nguyen et al., 2021; Ja-
cot et al., 2018), allowing the SGD to avoid getting trapped
in local minima and to train ANNs to recognize robust and
generalizing features instead.

However, SGD applies only in a fully differentiable set-
ting. It requires a transformation of the learning prob-
lem into a continuous form and can only train fully dif-
ferentiable models with layers that can support gradient
back-propagation. However, a fully differentiable setting is
highly limiting. For instance, a stronger, discrete version of
the wildly successful soft attention architecture (Bahdanau
et al., 2015; Vaswani et al., 2017) - hard attention (Mnih
et al., 2014; Xu et al., 2015) - cannot be trained with SGD
or other optimizers requiring a differentiable setting.

These limitations led to increasing attention to approaches
that can work in a non-differentiable setting. A prime exam-
ple is reinforcement learning (RL) (Sutton, 1991). While
reinforcement learning achieved impressive results in some
settings, notably strategy games (Silver et al., 2017; Vinyals
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et al., 2019), RL is more poorly understood and requires ex-
tensive hyper-parameter space sweeps for each new applica-
tion (Salimans et al., 2017).

These shortcomings led to a resurgence of interest in evo-
lutionary optimization algorithms (EA). Significantly more
stable than RLs (Salimans et al., 2017), EAs were shown to
scale well and, when supplied with sufficient computational
power, to outperform reinforcement learning on a range of
complex tasks (Salimans et al., 2017; Such et al., 2017). Un-
fortunately, the understanding of why EAs perform so well
and how their performance could be improved has been lim-
ited.

Here, we show that a relatively simple class of EAs rooted
in a formalization from population genetics - Gillespie-Orr
Mutational Landscapes model - approximates well SGD in
theory and practice. We call that class Gillespie-Orr Evolu-
tionary Algorithms (GO-EA) and experimentally show how,
thanks to them, insight can be transferred between SGD and
the Mutational Landscapes model of evolution. We demon-
strate it with a well-established MNIST digit recognition
task (LeCun et al., 1998).

Interestingly, such an equivalence allows us a novel in-
sight into the long-standing Flat Minima hypothesis in Ma-
chine Learning. The Flat Minima hypothesis postulates that
suggesting that SGD trains better generalizing ANNs by
finding flatter minima, given that those are the only ones to
be robust to the inherent SGD minibatch noise (Hochreiter
and Schmidhuber, 1994). While this theory has found some
empirical support (Goodfellow and Vinyals, 2015; Keskar
et al., 2017; Chaudhari et al., 2017; Li et al., 2018), it also
has counter-examples (Dinh et al., 2017; Ziyin et al., 2021a).
Here we leverage the equivalence between GO-EA and SGD
to transfer results from the Mutational Landscapes model
(Kucharavy et al., 2018), suggesting that Minima Flatness
has more to do with the redundancy of feature recognition
rather than the model generalizability. We show that this has
implications for transfer learning, an increasingly prevalent
paradigm, where existing models are adjusted for a new ap-
plication rather than re-trained from scratch (Pan and Yang,
2010; Yosinski et al., 2014).

Specifically, our contributions are:

• Establishing a limit equivalence between SGD and GO-
EA class in the low learning rate limit

• Presenting a population size effect as equivalent to uni-
form anisotropic noise in SGD and perturbed gradient de-
scent (PGD), suggesting a new role for neutral drift

• Empirically validating hypotheses that arise from such
equivalence, namely with regards to minima flatness,
transfer learning, evolutionary algorithms hyperparame-
ters, and sampled parameter update vectors mixing

Evolution in Algorithms and Genetics
Evolutionary Algorithms
Evolutionary algorithms for optimization and AI have been
introduced by Fogel et al. (1966) and were directly inspired
by evolution understood in a strictly Darwinian sense - as
a pure mutation-selection loop looking for an optimum on
a fitness landscape. As additional concepts were picked up
from biological evolution, EA became progressively more
complex, culminating in the Genetic Algorithm1 (Goldberg,
1989; Holland, 1992) - perhaps the most widely known ma-
chine learning algorithm before the ubiquitous success SGD.

However, the Genetic Algorithm was far from the last
evolutionary algorithm introduced. In the late 1990s and
early 2000s, several new evolutionary algorithms were pro-
posed. They were inspired less by biological evolution and
more by heuristics to accelerate the search. Notable exam-
ples are Enforced Sub-Populations (ESP) (Gomez and Mi-
ikkulainen, 1997), Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) (Hansen and Ostermeier, 2001), Coop-
erativeSynapse Neuroevolution (CoSynNE) (Gomez et al.,
2008) or Natural Evolution Strategies (NES) (Wierstra et al.,
2008). However, their use remained limited, and they were
rapidly eclipsed by the success of deep learning and rein-
forcement learning, especially when applied to ANNs, with
neuroevolution remaining a relative niche domain (Floreano
et al., 2008).

Population Genetics and Mutational Landscape
Where evolutionary algorithms drew inspiration from bio-
logical evolution, population genetics instead sought to for-
malize and precisely quantify it. Its first challenge was Dar-
win’s theory of natural selection itself. The small, gradual
changes that nature was supposed to select from were in-
compatible with observed patterns of inheritance in most
organisms, as discovered by Mendel. It was not until Sir
Ronald Fisher introduced his Geometric Model of Evolu-
tion, almost 70 years later, that the paradox was resolved
from a theoretical standpoint (Fisher, 1930). By represent-
ing fitness relationship to traits as a scalar field, where gene
variants encoded specific points, this model represented evo-
lution as a random walk trying to ascend a fitness peak,
with steps following Mendelian patterns and trait changes
looking Darwinian (Tenaillon, 2014; Orr, 2005). Shortly af-
ter, Wright (1932) introduced a generalization of that model
with numerous fitness peaks and valleys and coined the term
of fitness landscapes to represent it, which in the context of

1Evolutionary algorithms often have multiple conflicting
names. To avoid confusion, here we adopt the taxonomy pre-
sented in Hansen et al. (2015), and following the lead of Galván
and Mooney (2021), use Evolutionary Algorithm as a general term
and reserve Genetic Algorithm name strictly to the algorithm pre-
sented in Goldberg (1989); Holland (1992), aka including chromo-
somes and recombination.
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machine learning saw their fitness inverted into the loss and
became known as loss landscapes.

The Fitness Landscapes model did not stop there, how-
ever. Kimura (1968) realized that survival was not only de-
termined by fitness but also by chance. A fire in the forest
could easily exterminate a population of deer that acquired
a mutation allowing them to better digest grass, eliminating
the improved trait by pure chance. This observation led to
the introduction of neutral drift as a counter-balance to natu-
ral selection and the formulation of the nearly neutral theory
of molecular evolution (Ohta, 1992). By bringing in evi-
dence from paleontology, Gould and Lewontin (1979) made
it clear that evolution is not a steady process but rather oc-
curs in rapid bursts shortly after the environment changes. If
the environment does not change, neither do organisms in-
habiting it, leading to living fossils, such as horseshoe crabs
in the Delaware River delta, unchanged for the last 480 mil-
lion years. This became known as the adaptive bursts chain
theory of evolution (Lande, 1986).

However, despite its refinements, the geometric model of
evolution still had one major issue - the biological reality.
The discovery of DNA in the 1950s meant that genetic code
was a long string, with mutations only affecting a letter or a
word in it at a time. While theories of evolution represent-
ing it as such were developed - notably the string rewrite
graph NK theory (Kauffman, 1969; Kauffman and Levin,
1987), they looked nothing like scalar vector fields of geo-
metric models and lacked the quantitative explanatory capa-
bilities of the latter. This conundrum was resolved by Gille-
spie (1983) and Orr (2002). The former noted that within
the adaptive burst theory evolution, the adaptation would
occur only after the environment would change and would
start with an organism that already had a genetic code map-
ping to a fitness maximum within the accessible genetic code
space prior to the environment change. Hence it was starting
the search for mutations improving its fitness from a genetic
code with an already extreme fitness compared to the ensem-
ble of all possible genetic codes. In turn, it meant that the fit-
ness change could be described by an extreme limit distribu-
tion, leveraging the Fisher-Tippet-Gnedenko theorem (Gille-
spie, 1984; Fisher and Tippett, 1928; Gnedenko, 1943). At
this point, Orr (2002, 2006) showed that the adaptive walk in
Fisher’s Geometric Models belonged to the same limit dis-
tribution family; hence, both were formally equivalent. Fi-
nally, Joyce et al. (2008) showed that the underlying classes
of fitness distributions across code strings mattered little -
the Geometric Model still represented most heavy-tailed or
truncated fitness distributions well enough.

The resulting model became known as Mutational Land-
scapes models (Orr, 2005), or Modern Fisher Geometric
Model (Tenaillon, 2014). Remarkably, despite being explic-
itly developed for biological organisms, it is well-suited for
any coding space search, with a strict equivalence to the bi-
ological setting when the adaptation occurs from an already

well-performing code, such as in transfer learning or the fi-
nal stages of model training.

Prior work
Unfortunately, to our knowledge, the equivalence between
evolutionary algorithms and gradient descent algorithms has
remained a relatively unexplored topic.

Closest to our approach, Salimans et al. (2017) estab-
lished an informal equivalence between Q-Learning and
Policy Gradient (Watkins and Dayan, 1992; Williams, 1992)
and a type of evolutionary search algorithm (ES) - Scalable
ES, in the context of reinforcement learning. The authors
speculate that Q-Learning and Policy Gradient explore pos-
sible actions by perturbing the actions of a learning agent,
ES perturbs the parameters of the ANN controlling the ac-
tor’s action choice directly. However, the authors stop there
and proceed to experimental investigations as to whether ES
could solve the RL tasks they were interested in.

Similarly, there is a wealth of papers that establish in par-
allel an equivalence between a machine learning process and
a physical process and between a biological evolutionary
process and the same physical process. For instance, both
Katsnelson et al. (2018) and Baity-Jesi et al. (2018) draw
analogies with glassy systems for biological evolution and
ANN training with SGD, respectively; while failing to ac-
knowledge that the field of glassy systems has itself been
inspired by NK models developed to explain natural evolu-
tion by Kauffman and Levin (1987).

However, to our knowledge, none formalized the direct
equivalence between SGD and a class of EAs or connected
it to population genetics.

Central Theoretical Results
Gillespie-Orr Evolutionary Algorithms Class
While the Mutational Landscape model of evolution is a
general framework, here we will focus on a simplified ver-
sion that is best suited for optimization tasks and theoretical
analysis. Specifically, by noting N is the population size, s
is a typical selection coefficient, and µ is the per-site muta-
tion rate, we will be making the following assumptions:

1. Haploid populations (single code evaluated for fitness);

2. Under high selection (Ns ≫ 1);

3. In the low mutation limit (Nµ < 1);

The main purpose of those assumptions is to ensure that a
new code modification (mutation) is evaluated by itself and
has the time to become universal in the evolving population
on its own merits. To enforce it, we define the Gillespie-Orr
Evolutionary Algorithms class (GO-EAs) as follows:

Definition 1 (Gillespie-Orr Evolutionary Algorithm class).
Any parameter space search algorithm that evaluates the
change in loss function Lθ upon update of model parameters
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(θ) with a random vector of perturbation (Lθ+θrand
), with-

out aggregation with other loss function evaluations, and
performing a greedy search based on such evaluation.

For simplicity, in the case when model parameters θ are
all real numbers, for convenience, we decompose the angu-
lar component of update θrand from its scalar component
ϵ and, by abuse of notation, write it as ϵθrand. Given that
ϵ indicates how much the model parameters (aka code) can
change, we refer to it as the rewrite capacity. Conversely,
given that θrand indicates the direction of a potential opti-
mization step, we call it update vector. If Lθ+ϵθrand

< Lθ,
we call θrand a valid update vector.

Similarly, the assumptions of the absence of aggregation
between different loss function evaluations and haploidy are
here for simplicity. In biological evolution, for polyploid
sexually reproducing organisms, this assumption is relaxed
by only considering mutations that spread throughout the
entire population (sweep) and by counting the generations
needed for that sweep as a single generation. Given that
evolutionary algorithms are not constrained by molecular bi-
ology, we abstract this away through our definition.

This means that Scalabe ES (Salimans et al., 2017),
CoSyNE (Gomez et al., 2008), NES (Wierstra et al., 2008),
or the Genetic Algorithm (Goldberg, 1989) are not part of
GO-EA class due to the aggregation of parameters com-
ing from different fitness evaluations. Conversely, a simple
greedy search algorithm described in Appendix Alg.1 is part
of the GO-EA class, just as the algorithm proposed in Such
et al. (2017).

In the Limit, GO-EA Converges to SGD in Mean
Using the standard notation, let fθ(·) be an ANN parameter-
ized by θ, that maps inputs X = {xi}Mi=1 ∈ Znx×dx×M

2 to
outputs Y = {yi}Mi=1 ∈ Zny×dy×M

2 , where Z2 = {0, 1},
dx and dy are dimensions of x and y, nx and ny respec-
tively the binary code length required to describe a single
component of the vectors of x and y and M the maximum
number of inputs the network can encounter, with poten-
tially M = inf .

Let Lθ be the fitness function associated to fθ on the X
and Y. A priori, L is inaccessible because it requires evalu-
ating all the possible input-output pairs. However, it can be
estimated with a finite sample of inputs and outputs Xsamp,
Ysamp, giving us an L̂θ|Xsamp,Ysamp

, that we will shorten
to L̂θ.

Let O be a greedy optimization process, such that
O(θ) = θ′, with a parameter change capacity d, such that
||θ′ − θ||p < d, where p ∈ N and L̂θ′ |Xsamp,Ysamp ≥
L̂θ′′ |Xsamp,Ysamp

for any θ′′ such that ||θ′′ − θ||p < d.

Theorem 1 (Low learning rate, high population). GO-EA
update converges in mean towards SGD gradient as sam-
pling population increases towards infinity (N → ∞), as-
suming a locally smooth surface (∀θ1,θ2, such that |θ1 −

θ′| < l and |θ2 −θ′| < l, and |L̂θ1
−L̂θ2

|
|θ1−θ2| < k where k is the

Lipschitz constant of the loss surface), a non-zero gradient
and a low learning rate limit (lk = d → 0).

Proof. Let θ0 be the starting parameters, θ′ be the parameter
found by a step of SGD, and θ′′ be the parameter found by
a GO-EA process for a single minibatch of SGD. Given that
the loss surface is locally smooth ∇L̂θ0 exists and θ′ = θ0+
l∇L̂θ0 , where |∇L̂θ0 | = k (since L is fitness, we are looking
to ascend the gradient, as opposed to the loss where we look
to descend it, and + becomes a −). Given the small learning
rate approximation, we can ignore higher order terms and
θ′ is the argmax of L̂θ, ∀θ such that |θ − θ0| < lk = d.
Because of linearity of the exploration space, ∀θ1, θ2 such
that L̂θ2 > L̂θ1 , |θ1 − θ′′| < |θ2 − θ′′|.

Let θ′′
N be the best parameters found by O with a pop-

ulation N . Because of the above, we have ∀N > 0,
|θ′′N+1 − θ′| ≤ |θ′′N − θ′|. Similarly, given that kl = d,
∀ϵ > 0, ∃N such that |θ′′N − θ′| < ϵ. In turn, this implies
that limN→+∞E(|θ′′N −θ′|) = 0, which is a convergence in
mean.

Relaxing Limit Constraints
The low learning limit used above is known as the
continuous-time approximation and has been used to obtain
several theoretical results regarding SGD learning. How-
ever, large learning rates have been shown to be critical for
SGD generalization (Xing et al., 2018; Ziyin et al., 2021b)
and the infinite population size is neither realistic nor neces-
sary in practice.

The minibatch noise in SGD has been shown to play an
essential role in its ability to teach well-generalizing models,
even if the noise distribution matters little (Wu et al., 2020).
One of the approaches that have been used to emulate the
SGD in the case where the model and hardware allow for
batches that are too large is artificial noise injection (Zhou
et al., 2019; Orvieto et al., 2022), to the point where it is
possible to recover generalization properties of SGD with
large batches (Geiping et al., 2021).

Assuming that for large batch size, the SGD parameters
update vector is close to the one of GD, and assuming that
the random sampling process is anisotropic, we can eas-
ily calculate the probability of randomly sampling a vec-
tor θrand within an angle α of the GD update vector. If
the sampling is uniform, the chance to sample such a vec-
tor would be equal to the ratio of the area of the cap of
a hypersphere in dimension n = dim(θ) delimited by the
colatitude angle α relative to the whole hypersphere sur-
face area. Fortunately for us, this is a well-known func-
tion, mapping to the normalized incomplete beta functions

Ix(a, b) = B(x;a,b)
B(a,b) =

∫ x
0

ta−1(1−t)b−1 dt∫ 1
0
ta−1(1−t)b−1 dt

(Li, 2011). The
final closed form that can be used for the estimation is
f = 1

2Isin2α(
n−1
2 , 1

2 ).
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Improvement Probability in Transfer Learning
In the context of fine-tuning, we expect to start with a
model fθ0

(·) parameterized so that it already performs well
on all the sample tests drawn from the distribution it was
used to train with - aka ∀(Xsamp,Ysamp) ⊂ X × Y,
P(L̂θ0

|Xsamp,Ysamp
∼ maxθ L̂θ|Xsamp,Ysamp

) ∼ 1. For-
mally, transfer learning consists in finding a new transfer
parametrization θT , so that ∀(Xsamp,Ysamp) ⊂ X∪X′ ×
Y ∪Y′, P(L̂θT

|Xsamp,Ysamp
∼ maxθ L̂θ|Xsamp,Ysamp

) ∼
1, where the X′ and Y′ are new domains application of the
model.

Assuming |X| >> |X ′| and |Y | >> |Y ′|, since oth-
erwise, transfer learning would be equivalent to model re-
training, the model is already performing well on the transfer
model and the vast majority of the parameters within rewrite
capacity d of θ0 would be deleterious or neutral, mean-
ing that the parametrizations offering improvement would
be distributed according to the generalized Pareto distribu-
tion (Pickands, 1975; Joyce et al., 2008), which in the case
of Gumbel domain of attraction would result in an expo-
nential distribution of fitnesses s = (s1, ..., si−1) where
sj = L̂θj

|Xsamp,Ysamp
, the jth best parametrization of bet-

ter parametrizations and a probability to reach the better
parametrization θj of rank j in the neighborhood from a
parametrization θi of the rank i of Pi,j(s) =

sj∑i−1
k=1 sk

. In
other terms, with finite populations, GO-EA sampling the
parametrization neighborhood of the current optimum θi
will find advantageous model code rewrites with the prob-
ability that is inverse to the exponential probability of the
difference between the loss associated to θi and smallest
possible loss within the edit distance budget.

Hypotheses based on central results
Overparameterized Setting
Previously, we demonstrated a formula to calculate the
chance of random search finding a good approximation of
the GD vector. However, if we visualize that function in
different dimensions (Appendix Fig.6), we see that coming
even within 30 degrees of the GD updates with GO-EA is
unrealistic in any dimension above 100. Modern ANNs
with thousands of parameters on the lower end would re-
quire sampling populations too large for any practical use.

However, most current ANN models are highly over-
parametrized to stabilize their learning. The over-
parametrization has been shown to smooth the loss land-
scape (Li et al., 2018) and connect minima (Nguyen, 2019;
Jacot et al., 2018), allowing most strategies performing gra-
dient descent to arrive at an acceptable minimum. Empirical
investigations into the update vectors of SGD in this con-
text (Xing et al., 2018) suggest that SGD updates are rarely
aligned, can be orthogonal, and often point in opposite di-
rections due to the fact that almost all of the points in the
loss landscape model passes through are saddle points.

If this is indeed the case, then numerous vectors are
”valid” in the sense that they correspond to updates that
could result from SGD minibatches from the training dataset
that would still allow convergence. At this point, random
sampling only needs to land close to a ”valid” update vec-
tor, effectively decreasing the required sampling population
size. Informally, we expect random sample vectors that lead
to a lower large batch loss to be close to SGD update com-
ponents that do not cancel out and are not that rare. In
fact, in the most extreme case, when SGD minibatch updates
are orthogonal, the curse of the dimension is lifted, and the
sampling size required to find a valid update is divided by
the number of minibatches. Intuitively, large and diverse
datasets applied to overparametrized models will lead to a
reasonably fast convergence, even with small search popu-
lations.

Because of that, we hypothesize that the training hyperpa-
rameters from SGD are directly translatable to the hyperpa-
rameters of the GO-EA class algorithm and allow us to train
a model with GO-EA while using a relatively small number
of samples per step.

We validate this hypothesis by first verifying that for our
model ANN training task, SGD update vectors are indeed
highly dispersed and showing that a basic GO-EA algo-
rithm (Appendix Alg.1) with a small population can effi-
ciently train a model with hyperparameters copied over di-
rectly from SGD.

Minima Flatness as Error Correction Redundancy
The convergence of SGD training to a flat minimum for a
model is believed to be one of the conditions for the model
training stability (Li et al., 2018). The minima flatness was
assumed to be connected to their generalization abilities
through the minimal coding length of the model (Hochreiter
and Schmidhuber, 1997; Goodfellow and Vinyals, 2015).
However, recent evidence argues to the contrary (Dinh et al.,
2017; Zhang et al., 2020; Mulayoff and Michaeli, 2020).
Within the theory of evolution, the flatness of the fitness
peak is commonly associated with the tolerance to the neu-
tral drift - aka error correction capabilities. By using this
analogy, we suggest that, just like in the context of the evo-
lution, the flatness of the loss function minimum in ANNs
optimized through SGD is determined by the redundancy of
the features used by the trained ANN to recognize patterns
in the target data.

This intuition seems to be consistent with empirical ob-
servations about the loss function minima flatness. Architec-
tures that provide the model with the means to encode redun-
dant features, such as wide hidden layers or skip-forwards
connections in deep ConvNets, contribute to making the
loss landscape minima flatter (Li et al., 2018). Similarly,
drop-out regularization (Srivastava et al., 2014), forcing the
ANNs to learn redundant, error-correcting codings, seems
to flatten minima as well, along with the smaller batches,
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which can contain a larger proportion of samples that defy
the heuristics that the ANN has learned before encounter-
ing them (Goodfellow and Vinyals, 2015). This hypothesis,
in particular, goes against the suggestion that for EAs, the
search population scales only with latent dimension, (Sal-
imans et al., 2017). To allow robustness through redun-
dant error correction, the actual parameter dimension mat-
ters. We validate this intuition experimentally.

Flat Minima and Transfer Learning
Building on the hypothesis presented above, if the minima
flatness is indeed related to the classification robustness and
error correction, we expect models that learned a variety
of error-correcting representations of training data to not be
able to transfer those representations without training on the
new data.

Intuitively, they rely on parallel redundant subpaths
traversing ANN layers to detect redundant relevant features
present in the training dataset. With only some of those fea-
tures present in the dataset on which the transfer task is per-
formed, their error correction property could interfere with
the corresponding output without an expected degree of re-
dundant detection. Similarly, we do not expect flatter min-
ima to accelerate transfer learning.

While some minima sharpening is observed experimen-
tally during transfer learning, the results in the model we
used are inconclusive, and more investigation is warranted.
As for the speed of transfer learning, our experiments sug-
gest flatter minima beyond base performance improvement
do not accelerate that due to redundant coding. Experimen-
tal results supporting this hypothesis are provided further
and in the Appendix.

Update Vector Mixing is Unnecessary
One of the prominent features of most recent Evolutionary
Algorithms, ranging from the Genetic Algorithm and NES
to the Scalable ES, is the mixing of different vectors that
were used to sample the loss landscape to generate a new
step. This approach is based on the intuition that vectors
found by sampling are approximations of a ”true” empirical
gradient descent vector, and by combining them, the empir-
ical gradient can be better approximated.

Our formalization of GO-EA suggests that this is likely
not the case. Valid update vectors are unlikely to be aligned
and are potentially orthogonal, meaning that averaging them
out is counter-productive, in the same way as increasing
batch size is in SGD. There is a priori no reason why any
interpolation between valid update vectors in EA would be
a valid update vector itself, let alone result in a lower loss
than either of the valid update vectors. In fact, empirical
studies have shown that minima interpolations tend to per-
form poorly (Li et al., 2018). Similarly, the justification of
the Genetic Algorithm’s chromosome cross-over - allowing
the beneficial mutations to combine and eliminate deleteri-

ous ones - does not apply in the setting where the change
of generations is not mandatory, and hence Muller’s Ratchet
cannot occur (Lynch et al., 1993). The GO-EA class defined
here goes around the problem altogether by evaluating only
a single modification to the model parameters at a time. We
observe & validate the hypothesis experimentally.

Experimental results
Appendix, supplementary figures, and the code
used for experiments presented here are avail-
able from the GitHub repository of the project -
https://github.com/chiffa/ALIFE2023 GOEA-SGD.

Model Used
In order to perform numerical experiments, we used a con-
volutional neural network (ConvNet) learning to recognize
digits in the MNIST dataset (LeCun et al., 1998). It is a well-
established model and a textbook use case for SGD, chosen
to minimize the chance of unexpected edge cases interfering
with our experimental results. The detailed ANN architec-
ture and hyperparameters are available in the Appendix. To
measure the flatness of minima and smoothness of loss land-
scapes consistently with prior work, we performed a spectral
normalization of each layer so that a perturbation along a
random axis would correspond to the local robustness of the
model. This approach is strictly equivalent to the filter-wise
normalized directions proposed in Li et al. (2018).

For clarity, we are using the following abbreviation for
hyperparameters and architecture models: batch size as B,
drop-out as DO, drop-out on inputs as DI, with two archi-
tectural parameters: latent maps in the first layer (LM) -
all subsequent follow a predefined ration, and linear width
(LW), determining the number of neurons in the hidden lin-
ear layer. For flatness experiments, we use three stereo-
typical settings: ”Robust Wide” (DO:0.25; DI:0.1; LM:16;
LW:48; B:4) with high loss landscape smoothness/flat min-
ima; ”Brittle Narrow” (-DO; -DI; LM:4; LW:12; B:128)
with low loss landscape smoothness; and ”Brittle Wide” (-
DO; -DI; LM:16; LW:48; B:128), added to make sure the
instability of Brittle Narrow was not due to the lack of latent
features/available feature encoding space. We confirmed the
model validity by replicating results from Li et al. (2018),
as described in the Appendix, notably the Appendix Fig.13.
The ”Robust Wide” model indeed maps to flatter minima,
whereas both ”Brittle” models map to sharper minima.

Modeling the transfer learning
We used the transfer learning setting to evaluate the trained
model’s generalization ability. We expect that a model that
generalizes better would be able to perform better when en-
countering new data or at least leverage more general fea-
tures it learned to learn new data faster. We do not expect
such abilities from models with simply a more redundant
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feature encoding, allowing us to differentiate the two in the
context of minima flatness.

For that, we performed partial training dataset occlusion,
where classes in the training dataset were occluded with
respect to the model and loss calculation. In the transfer
learning phase, the occluded categories were revealed and
included in the loss computation.

SGD Minibatch Noise is High
To evaluate the minibatch noise for different batch sizes, we
trained with occlusion the transfer model with default hy-
perparameters (-DO; -DI; LM:8; LW:12; B:32), froze its pa-
rameters and evaluated the angle between updates resulting
from different batch sizes, ranging from 1024 to 4, shown
on Fig.1. As we hypothesized, the batch noise increases as
batch size decreases, with a modal angle of 80 degrees for
minibatches of 4 samples. Similarly, large batches (1024)
are collinear and approximate GD well. Given that the
base model is approximately 10k parameters, 60k samples
MNIST training dataset provides approximately 15k differ-
ent sample batches of 4, suggesting that a small sampling
population of 10-100 individuals would be sufficient.

Figure 1: Empirical evaluation of angles between possible
SGD update vectors for the same network state and data

GO-EA Trains Efficiently with
SGD Hyperparameters
We ported the hyperparameters and model used with the
SGD optimizer directly to a simple algorithm in the GO-EA
class (Appendix Alg.1) and chose the sampling population
size of 20, as per the previous section. The model could train
rapidly, achieving an accuracy of over 60% after 800 sam-
pling steps (Fig.2). Further hyperparameter tweaking had
little effect on training speed, with the sampling population
size having only a moderate effect (Appendix Fig.7), sug-
gesting that SGD hyperparameters did indeed transfer well.

Flat Minima don’t Generalize Better,

Figure 2: Loss and accuracy of the 9854 parameters Con-
vNet trained on MNIST dataset with a sampling population
of 20 trained by a basic GO-EA class algorithm.

They are More Robust
After training the three minima flatness stereotype models
according to the transfer learning model, we saw a signifi-
cant difference in the flatness of their eight classes minima
(Appendix Fig.8). Models with flatter minima do not seem
to generalize better (Appendix Fig.15), given that they do
not perform better on new data, nor do they undergo transfer
learning faster beyond better performance on already known
classes. We observe, however, significantly more redundant
feature encoding, making them more resilient to noise in in-
put images (Fig.3).

Figure 3: Flatter Minima models are more noise resistant
but do not generalize better. Archetype models pre-trained
on eight classes with occlusion generalization on the whole
dataset (gen) as well as robustness to 10,25, and 50% source
image and feature corruption (rob 0.1, 0.25, and 0.5).

.

Transfer Learning Conforms to
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Mutational Landscapes Models

Figure 4: Probability of random update step being beneficial
or deleterious as well as the magnitude of effect in accuracy
(top panel, right is better) and in loss (bottom panel, left is
better)

.

To verify that ANNs trained with SGD conformed to the
Mutation Landscape Model during the transfer learning pro-
cess, we performed a random axis sweep of mutations with
an edit distance of the order of magnitude of the standard
deviation of the norm of weights in each layer. As shown
in Fig.4, it indeed does. We also observe that in conformity
to Orr (2005), at random initialization, around 50% of di-
rections result in improvement (assumption of NK models,
unrealistic in population genetics). In contrast, at the opti-
mum, all mutations are deleterious, and the start of adaptive
burst (start of transfer learning) conforms perfectly to the
Mutational Landscapes Model (cf Fig.3 in Orr (2005)).

Update Vector Mixing is Likely Undesirable
In conformity with our hypothesis, valid update vectors sam-
pled by EA are orthogonal and indistinguishable from a pair
of random sample vectors with a Kolmogorov-Smirnov test
between the two. Fig.5 gives distributions of both in differ-
ent settings and the p-value of the two-sample KS test for
angles between random update vectors and between update
vectors resulting in a better loss.

Discussion
In this paper, we define a new class of Evolutionary Al-
gorithms - GO-EA, and establish a formal equivalence be-
tween them and SGD, both in the limit and in a more re-
alistic setting. We then empirically test hypotheses aris-
ing from such equivalence for several well-established prob-
lems in machine learning, namely flat minimas, transfer
learning, and applicability of EAs to modern highly over-
parametrized ML models, demonstrating the advantage of
the simpler GO-EA class and partially explaining the past

Figure 5: Distribution of angles between randomly sampled
update vectors leading to better fitness (yellow) vs. all ran-
domly sampled update vectors (black), from random initial-
ization, transfer learning start point, and at optimum (panels
1-3, respectively)

.

success of GO-EA class algorithms in neuroevolution on
hard tasks (Such et al., 2017).

However, this equivalence opens up a possibility to for-
malize and transfer other insights between machine learning
and the theory of evolution. For instance, results by Kuchar-
avy et al. (2018); Tenaillon et al. (2007) suggest that it is
possible to evaluate the latent dimension of a problem di-
rectly. Conversely, insight into loss landscapes potentially
can be translated back to the theory of evolution to explain
adaptation, e.g., the feasibility of evolutionary traps to avoid
drug resistance (Chen et al., 2015).

Finally, leveraging the existing knowledge regarding SGD
in a non-differentiable setting opens up new possibilities for
training large models with non-differentiable layers. Specif-
ically, hard attention is generally considered superior to soft
attention, which was popularized by the Transformer and is
underlying the ubiquitous Large Language Models (LLMs)
(Xu et al., 2015; Vaswani et al., 2017). Allowing hard atten-
tion in LLMs through GO-EAs has the potential to further
the progress in that field.
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