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Abstract
Federated learning (FL) enables collaborative model training
without sharing raw data, which is pivotal for maintaining
privacy. However, existing FL frameworks often rely on a
central coordinator, posing risks in heterogeneous networks.
This work presents NEBULA, a decentralized FL platform
that unifies centralized and peer-to-peer FL paradigms, inte-
grating network awareness and autonomous adaptation for
improved resilience and efficiency. Key contributions include:
(1) a unified architecture supporting both server-coordinated
and fully decentralized operation; (2) network-aware orches-
tration for dynamic communication and aggregation opti-
mization; and (3) built-in mechanisms for robust operation.
The demonstration will showcase real-time performance,
defense against adversarial attacks, and adaptive client par-
ticipation in challenging network scenarios.

CCS Concepts
•Networks→Network simulations;Networkmobility;
• Security and privacy→ Malware and its mitigation.
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1 Introduction
Federated learning (FL) facilitates collaborative machine
learning model training across distributed data sources with-
out centralizing sensitive user data [9]. This paradigm is
crucial for privacy-sensitive applications in edge and cloud
computing. However, many prominent FL solutions, such
as TensorFlow Federated (TFF) [11], FATE [6], Flower [3],
PySyft [12], and FedML [5], often depend on a central server.
This centralized architecture can introduce a single point of
failure and performance bottlenecks, particularly in dynamic
or resource-constrained heterogeneous network environ-
ments. Decentralized Federated Learning (DFL) [1] mitigates
these issues via peer-to-peer communication, removing the
central coordinator. However, existing DFL frameworks, such
as BrainTorrent [10] or Fedstellar [8], often overlook real-
world network dynamics or lack integrated adaptation. Fur-
thermore, while secure aggregation protocols are essential
for cryptographic privacy, they do not inherently address
system resilience or efficient operation over unreliable net-
works, aspects often underemphasized in FL demonstrations.

This paper introduces NEBULA, a novel FL platform that
unifies centralized and decentralized paradigms while be-
ing network-aware and autonomous (publicly available in
[2]). NEBULA is engineered to maintain training progress
and adapt performance despite network disruptions, node
failures, or adversarial behavior. The key contributions are:
• Unified FL Architecture: A flexible platform supporting
operation in server-coordinated and DFL modes, adaptable
to diverse network topologies and application needs.

• Network-Aware Orchestration: Integration of real-time net-
work context into training decisions, dynamically optimiz-
ing communication patterns and node selection.

• Robustness and Adaptation Mechanisms: Strategies for re-
silience against common adversarial attacks and adaptive
responses to dynamic client states, such as mobility and
fluctuating network connectivity.

2 NEBULA Platform
Architecture Overview: NEBULA employs a modular ar-
chitecture comprising three main components, as illustrated

https://creativecommons.org/licenses/by-nc-nd/4.0
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Figure 1: NEBULA Platform Architecture

in Figure 1. The Frontend provides a web-based dashboard
and REST/WebSocket APIs for experiment configuration,
real-time monitoring, and results visualization. It interacts
with the Controller, orchestrating the FL experiment lifecy-
cle. The Controller manages initial setup, including session
instantiation, client registration, and initial model distribu-
tion. The Core executes on each physical and virtual client.
It is responsible for local model training, network condition
sensing, node discovery, and a configurable peer-to-peer pro-
tocol for robust model dissemination and aggregation among
nodes. The system is designed for asynchronous operations
to enhance tolerance to network delays and straggler nodes.
Features and Implementation: NEBULA supports a versa-
tile range of FL settings. The platform implements multiple
aggregation algorithms, including FedAvg [9], and robust
aggregation algorithms like Krum [4] to defend against ma-
licious updates. Additional defense mechanisms, such as
reputation based on update consistency and gradient norm
bounding, are integrated. Network awareness is achieved
through a combination of active probing (e.g., round-trip
time measurements to potential nodes) and passive monitor-
ing of communication statistics. This network intelligence
informs dynamic node selection in DFL mode, aggregation
frequency adjustments, and potentially adaptive model com-
pression strategies. NEBULA is implemented in Python 3.11
with asyncio for efficient and scalable asynchronous message
passing. The platform is containerized using Docker and is
compatible with Kubernetes orchestration.

3 Demonstration
The demonstration showcases NEBULA capabilities across
two distinct testbed configurations: (i) 10 containerized clients
and (ii) 10 resource-constrained Raspberry Pi 4 devices. For
decentralized operations within each configuration, clients
establish a peer-to-peer network based on a randomErdős–Rényi
topology. Network variability is emulated using a custom
wrapper of the Linux traffic control (tc) utility. Nodes col-
laboratively train models for image classification (CIFAR-
10 with a MobileNetV3-Small architecture) and sentiment
classification (IMDb [7] with a distilled BERT model). The
demonstration is structured around three scenarios:
• Unified Architecture Showcase: This scenario demonstrates
NEBULA orchestrating an FL task on the heterogeneous
testbed, showing centralized and decentralized operating
modes. The dashboard visualizes node participation, com-
munication links, and model convergence.

• Adversarial Attacks and Defense: Building upon an ongoing
federated task, one or more clients are configured to act
maliciously via label-flipping or model-poisoning attacks.
The impact is visualized on the live dashboard. Attendees
will observe the system detecting and mitigating malicious
contributions by filtering or down-weighting harmful up-
dates, followed by stabilization of model performance.

• Mobile Client Adaptation: A client simulates mobility by
dynamically changing network conditions, altering its set
of reachable nodes. Clients use their integrated network
sensing module to detect these real-time changes. The
dashboard will highlight adaptive behaviors, such as dy-
namically altering node selection or adjusting update fre-
quency based on the detected network context.
During the scenarios, a web dashboard displays telemetry

for attendees to access and engage with the demonstrators.

4 Conclusion
NEBULA offers a unified and robust platform for FL in het-
erogeneous networks. By integrating centralized and decen-
tralized approaches with network awareness and adaptive
mechanisms, it addresses key limitations of existing frame-
works. The demonstration highlights capabilities in handling
diverse hardware, dynamic network conditions, and adver-
sarial threats. The platform is a valuable tool for research
in networking, distributed systems, and FL. Future work
includes larger-scale evaluations and enhanced security.
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