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Abstract: This study investigates the integration of diverse data modalities within deep
learning ensembles for Android malware classification. Android applications can be
represented as binary images and function call graphs, each offering complementary
perspectives on the executable. We synthesise these modalities by combining predictions
from convolutional and graph neural networks with a multilayer perceptron. Empirical
results demonstrate that multimodal models outperform their unimodal counterparts while
remaining highly efficient. For instance, integrating a plain CNN with 83.1% accuracy and
a GCN with 80.6% accuracy boosts overall accuracy to 88.3%. DenseNet-GIN achieves
90.6% accuracy, with no further improvement obtained by expanding this ensemble to four
models. Based on our findings, we advocate for the flexible development of modalities to
capture distinct aspects of applications and for the design of algorithms that effectively
integrate this information.

Keywords: multimodal deep learning for Android malware detection; enhanced malware
analysis; graph neural networks; function call graphs (FCG); efficient multimodal late
fusion; CNN GNN Ensemble; bytecode image analysis; Android APK analysis; data fusion

1. Introduction
Multimodal machine learning integrates diverse data sources, or modalities, to deliver

richer representations and more robust predictive capabilities [1,2]. In malware detection,
research often focuses on a single modality, such as byte-level signatures or high-level
control flow structures. Yet, malicious software can manifest in complex ways that demand
broader perspectives. Integrating complementary modalities—specifically, binary images
encoding Dalvik Executable (DEX) bytecode and function call graphs (FCGs)—can thus
offer a more comprehensive characterisation of malicious behaviours.

Malware detection and classification remain pivotal challenges given the rapid pro-
liferation of harmful Android applications. Three-quarters of the global market share is
dominated by Android (as of December 2024), making it a highly attractive target for
cyberattacks [3–5]. Since traditional unimodal detection methods risk overlooking critical
patterns, particularly when apps employ encryption or obfuscation tactics [6,7], harnessing
multimodal data fusion increases the probability of detection by capturing more informa-
tive features from both byte-level images and structural call graphs [8,9].

Several fusion strategies have been explored in multimodal learning, which are com-
monly classified into early, intermediate, and late fusion [2]. Early approaches concatenate
modalities at the input level, intermediate approaches fuse extracted features in a shared
layer, while late fusion integrates decision-level outputs. Studies suggest that late fusion
reduces model complexity and the risk of overfitting by allowing each base classifier to spe-
cialise in its own domain [10–12]. Within this framework, convolutional neural networks
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(CNNs) handle image-based texture patterns, and graph neural networks (GNNs) capture
topological interactions in code. Such diversity in base classifiers can mitigate bias and
variance by leveraging different algorithmic strengths [13–15].

This study addresses a critical gap in existing scholarship by integrating deep learning
approaches to Android malware detection and classification that have traditionally been
limited to unimodal analyses. We propose a late fusion approach that integrates CNNs
trained on binary images and GNNs trained on FCGs via a multilayer perceptron (MLP)
meta-classifier. Our results show that this strategy often surpasses unimodal deep learning
across key classification metrics, underscoring the value of modality fusion for complex
malware analysis.

Contributions

• We propose a novel multimodal approach for Android malware classification, combin-
ing CNNs on bytecode images and GNNs on FCGs. Predictions from these networks
are concatenated as input to an MLP meta-classifier, effectively fusing low-level visual
data and high-level control-flow structures.

• We assemble a dataset by matching FCGs from MalNet-Tiny [8] with the corresponding
binary images in [9], both drawn from the AndroZoo repository [16].

• We evaluate four fusion strategies—two intermediate and two late—and identify late
fusion as superior for detection and classification tasks.

• We benchmark four CNN architectures (ResNet18 [17], DenseNet [18], MobileNet-
V2 [19], and a plain network) and two GNNs (GCN [20] and GIN [21]). Our findings
reveal that all multimodal ensembles exceed the performance of their unimodal base-
lines, and that this improvement is fully realised by incorporating a single algorithm
per modality.

• We extend the experiments of Freitas et al. [9] by introducing transfer learning via
unfrozen ImageNet [22] weights, demonstrating improved CNN performance. We
also show that encoding semantic information into colour channels can enhance
classification accuracy, contrasting earlier observations [9].

The rest of the paper is organised as follows. Section 2 reviews relevant literature
on malware detection and multimodal learning. Section 3 provides background on the
methods used. Section 4 details our proposed model and experimental setup and presents
a comprehensive performance analysis on MalNet-Tiny. Section 5 presents our results.
Finally, Section 6 discusses our key findings and outlines directions for future research.

2. Related Works
Efforts to enhance malware detection and classification have ranged from static and

dynamic to hybrid analyses [23]. Static methods examine programs without execution,
yielding high coverage [24] but limited resilience against obfuscation and runtime-specific
behaviour [25]. Dynamic approaches offer deeper behavioural insights by executing pro-
grams in sandboxes [26], though they often incur higher overhead and lower code coverage.
Hybrid solutions combine static and dynamic features [27], yet mismatches between these
analyses can complicate implementation [28].

Within static analysis, traditional signature-based techniques match attack signatures
in a known database, detecting only previously observed variants. These methods can
be easily evaded through polymorphism, where small source code changes significantly
alter the compiled code [29]. Machine learning (ML), by contrast, provides more robust
and automated methods [6,7]. Shallow ML algorithms, however, demand laborious fea-
ture engineering [30]. Modern deep learning circumvents this by learning directly from
data, a property advantageous in malware detection given persistent evasion tactics and



Mach. Learn. Knowl. Extr. 2025, 7, 23 3 of 29

the lack of up-to-date labelled samples [31]. Acknowledging these challenges, the Mal-
Net datasets [8,9] collectively supply over 1.2 million samples spanning 47 types and
696 families. While our work focuses on a subset for proof-of-concept, these large-scale
resources address a central limitation identified in the literature: difficulty in capturing
diverse, evolving threats. Interpretability of classifiers and explanations of their outputs,
although critical [31], remains an open issue, alongside measures of efficiency to assess
real-world feasibility of deployment and operationalisation of ML in this domain, are
further issues raised [31].

2.1. Unimodal Methods: Images and Graphs
2.1.1. Image-Based Representation

Early research [32,33] transformed malware bytes into grayscale images and used
K-nearest neighbours to attain strong results against polymorphic obfuscation. Subsequent
work leveraged CNNs to automate feature extraction: Gibert et al. [34] outperformed
hand-engineered features [32,35,36], ref. Rezende et al. [37] applied transfer learning, and
Yadav et al. [38] fused EfficientNetB0 with ensemble learning to achieve high accuracy.
DexRay [39] further demonstrated that one-dimensional CNNs excel in classifying large
bytecode sets. Extending beyond grayscale, Gennissen et al. [40] and Freitas et al. [9]
introduced semantic colour coding, heightening detection robustness.

2.1.2. Graph-Based Representation

Another line of research employs function call graphs (FCGs) to exploit high-level
code structures. Early work by Kinable and Kostakis [41] used graph similarity metrics
to cluster malware. Recognising limitations with traditional graph matching (e.g.,
inefficiency and limited scalability), research shifted to embedding-based methods:
Hassen and Chan [42] turned FCGs into feature vectors via Minhash signatures. Pektaş
and Acarman [43] combined FCG embeddings with deep learning for malware similarity
detection. Other work includes Gascon et al. [44] and Xu et al. [45], who applied graph
kernels and NLP-inspired embeddings, respectively. Gao et al. [46] integrated GNNs to
detect malicious nodes, underlining the effectiveness of graph representation. Recently,
attention-based architectures have emerged as a promising alternative to message passing
for graph learning, including FCG malware detection [47–49]. Meanwhile, Freitas et al.
[8] contributed MalNet-Graph, a large-scale FCG dataset, underscoring the efficacy of
structured information in identifying malicious behaviours.

2.2. Beyond Unimodality: Multimodal Integration

While deep learning approaches—whether using images or graphs—are effective, uni-
modal approaches nevertheless risk overlooking critical elements of malware. Techniques
such as DroidCat [50] and TFDroid [51] incorporate multiple features within a single static
or dynamic modality, respectively, yet still do not unify distinct data modalities. Multi-
modal frameworks, however, offer a broader perspective. For instance, using Windows
PE files, Ahmadi et al. [36] combined statistical and content-based features via early and
late fusion with XGBoost, while Gibert et al. [52] proposed HYDRA, operating on multiple
modalities such as API calls and opcode sequences. In Android detection, Kim et al. [53]
merged seven features to train a deep neural network ensemble, and de Oliveira and Sassi
[54] fused CNN, DNN, and Transformer outputs but relied partly on dynamic features,
raising efficiency concerns.

2.3. Malware Detection with FCGs and Images

Studies with a closer resemblance to our work, notably Song et al. [55] and Li et al. [56], in-
corporated FCGs and DEX bytecode images for Android malware detection. Song et al. [55]
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employed GraphSAGE [57] with SAGPool [58] alongside ResNet18 [17] (with CBAM [59]),
using a soft attention-based fusion to assign modality-specific weight coefficients. On a
subset of CICMalDroid2020 [60] and Androzoo [61] samples, they reported an F1-score
of 98.6%. Li et al. [56] leveraged Androguard [62] to extract suspicious code snippets
corresponding to sensitive API-adjacent nodes in an FCG. They vectorised these strings
using UniXcoder [63] and deployed a fine-tuned Vision Transformer [64] on the bytecode
images. Their fine-grained fusion used a two-layer transformer encoder [47] with attention
across both modalities.

In contrast, our approach extends prior work by leveraging FCGs’ structural properties
directly and avoids complex alignment procedures. We employ distinct CNN and GNN
pipelines for image and graph analysis and fuse high-level predictions via a meta-classifier.
This modular strategy clarifies each modality’s contribution and allows experimentation
with diverse algorithms—such as ResNet [17], DenseNet [18], MobileNetV2 [19], GCN [20],
and GIN [21]—in variably-sized ensembles, capturing broad algorithmic diversity [10–12].
Notably, prior research has not explored the impact of incorporating multiple, competing
unimodal algorithms in multimodal malware detection and represents a gap that this
study has sought to fill. Moreover, we focus of multi-category classification as it is a more
challenging task than malware detection with a finer granularity [65]. Our evaluation on
a curated subset of MalNet [8,9] offers a comprehensive test bed, with plans to extend to
full-scale datasets in future work. Therefore, within the context of existing gaps in the
literature, we formulate the following three research questions to guide our study:

• RQ1: Can simple multimodal fusion improve Android malware classification com-
pared with unimodal models, justifying the additional computation?

• RQ2: Which simple fusion strategy is most effective?
• RQ3: Does adding further base models enhance multimodal malware classification?

RQ1 explores the effectiveness of simple feature fusion as evaluated in ablation studies
across a range of algorithms. We incorporate a time metric to assess whether any perfor-
mance improvements justify the additional computation. RQ2 compares the performance
of four simple fusion strategies. RQ3 investigates the impact of additional unimodal models
to determine if this improves multimodal performance.

3. Preliminaries
This section introduces key concepts for classifying Android malware, starting with

the structure of Android APK packages to provide context before explaining how binary
images and function call graphs are derived from APKs. Key machine learning models
utilised in the study are also covered, aiming to establish the motivations and the design of
our approach.

3.1. Android Packages

Android programs are usually written in Java and compiled into bytecode. APKs package
compiled Android applications in an archive comprised of elements shown in Table 1.

Table 1. Components of an Android APK package.

File/Directory Description

AndroidManifest.xml
Contains the application’s metadata, such as name, version,
and permissions.

assets Directory of application asset files.

META-INF
Directory containing verification data, including signatures
and certificates.
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Table 1. Cont.

File/Directory Description

lib
Directory of compiled native libraries with subdirectories
based on the platform.

res
Directory containing resource values, such as colours, styles,
and dimensions.

resources.arsc Compiled resources file.

classes.dex
Compiled classes converted from JVM-compatible class files
to Dalvik Executable (DEX) files, optimised for mobile devices
with limited memory and processing power.

3.2. Binary Images

The DEX bytecode contains the primary execution logic, exposing the application’s
behaviour. Thus, malware developers commonly use packing and other obfuscation
techniques to evade detection. However, by representing executables’ bytecode as images,
the texture may be analysed with computer vision [9]. This is often preserved in packed
malware, as monotonic transformations rarely obscure these visual patterns. The process
of statically extracting binary images from APKs is described by Freitas et al. [9] and
summarised briefly as follows. The extracted DEX bytecode is converted into a one-
dimensional array of 8-bit unsigned integers representing pixel activations (in the range of
[0, 255], where 0 is black and 255 is white). These 1D arrays are converted into 2D greyscale
images using standard linear plotting with a fixed width and height determined by the file
size, then scaled to 256 × 256 using Lanczos filtering. The contextual usage of each byte
(e.g., pointer address, opcode, or ASCII character) can be optionally encoded into RGB
channels based on its position within the DEX file structure with red for header bytes, blue
for identifiers/class definitions, and green for data. In Section 4.2.1, we benchmark the
inclusion of this semantic layer. Figure 1 illustrates the structure of an image representing
an Android DEX file.

Structure

classes.dex

Binary Image Construction

Header
String_ids
Type_ids
Proto_ids
Field_ids
Method_ids
Class_ids

Data

Image Representation

Figure 1. Binary image structure.

3.3. Function Call Graphs

Malicious actions (e.g., gathering sensitive information and transmitting it to an
attacker) are often associated with a series of API calls. This behaviour can be modelled
with an FCG, which represents all possible runtime execution paths. FCGs are highly
valuable for malware classification, as they capture the caller–callee relationships between
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methods. An FCG extracted from an APK represents its executable control flow as a directed
graph, G(V, E), where V is the set of methods, and E represents inter-procedural calls. An
edge (v, w) ∈ E exists between v, w ∈ V if v contains an invoke instruction referring to
w. V may be partitioned into Vinternal and Vexternal, such that Vinternal ∪ Vexternal = V and
Vinternal ∩ Vexternal = ∅, where Vinternal contains methods that are defined and implemented
within the application, and Vexternal comprises methods for which only definitions are
included in the DEX file. Methods in Vexternal are imported from libraries and provide
insight into the program’s behaviour, as API packages provide interfaces for specific
Android functionalities.

Freitas et al. [8] use Androguard [62] to produce the graphs by statically analysing
APK files sampled from the AndroZoo repository [16]. Androguard parses the DEX code
and extracts its methods and constructs the FCG by traversing the parsed code, following
invoke functions. Directionality, disconnected components, and node isolates are pre-
served, while nodes are numerically relabelled to omit associated attribute information, as
including this could increase the potential for reverse engineering. Instead, Local Degree
Profile (LDP) [66] assigns node features X ∈ R|V|×5 composed of five-degree statistics that
summarise the neighbourhood of v as shown in Figure 2. Since G is directed, there exists
v ∈ V for which deg−(v) ̸= deg+(v). Thus, deg(v) is given by the average indegree and
outdegree, noting that for every v ∈ Vexternal, deg+(v) = 0, since these methods are not in-
cluded in the bytecode. DN(v) denotes the multiset of the degree of all neighbouring nodes:
DN(v) = {deg(w)|(v, w) ∈ E}. Figure 3 compares FCG and binary image representations
of an APK sample.

Version February 10, 2025 submitted to Mach. Learn. Knowl. Extr. 6

Extraction

APK

LDP input features

G(V, E)

FCG Construction

vi

h0
i ∈ R5

deg(vi)
min(DN(vi))
max(DN(vi))
mean(DN(vi))
std(DN(vi))

AndroidManifest.xml
assets/
META-INF/

res/
lib/

resources.arsc
classes.dex

Figure 2. FCG Extractor

G as shown in Figure 2. Since G is directed, ∃v ∈ V such that deg−(v) ̸= deg+(v). Thus,
deg(v) is given by the average indegree and outdegree, deg(v) = (deg−(v) + deg+(v))/2,
noting that ∀v ∈ Vexternal, deg+(v) = 0, since these methods are excluded from the
bytecode. DN(v) denotes the multiset of the degree of all neighbouring nodes such that,
∀v ∈ V, DN(v) = {deg(w)|(v, w) ∈ E}. Figure 3 compares FCG and binary image
representations of an APK sample.

Figure 3. An example processed adware APK. Left: FCG, right: binary image.

3.4. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are pivotal for image classification and are
thus relevant for this study. CNNs employ convolutional and pooling layers to extract
features, followed by fully connected layers for classification. Convolutional layers apply
learnable, spatially shared kernels across image regions, reducing model complexity and
improving efficiency [65], with activations such as ReLU [66] introducing non-linearities to

Figure 2. FCG extractor.
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Figure 3. An example processed adware APK. (Left): FCG, (right): binary image.

3.4. Convolutional Neural Networks

Convolutional neural networks (CNNs) are pivotal for image classification and are
thus relevant for this study. CNNs employ convolutional and pooling layers to extract
features, followed by fully connected layers for classification. Convolutional layers apply
learnable, spatially shared kernels across image regions, reducing model complexity and
improving efficiency [67], with activations such as ReLU [68] introducing non-linearities to
generate feature maps. As illustrated in Figure 4, multiple kernels produce distinct feature
maps, each neurone connected to a local receptive field. Formally, in the kth feature map of
layer l, the activation at (i, j) is

al
i,j,k = σ

(
wl

k
T

xl
i,j + bl

k

)
, (1)

where wl
k and bl

k are the shared weights and bias, and σ is the activation function. By
exploiting local connectivity, CNNs achieve translation invariance and locality [69]. For
multi-channel inputs like RGB, kernels adjust in depth while remaining spatially compact.
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three advanced CNN architectures.
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Figure 4. Three-layer CNN Architecture

3.4.1. ResNet18

Deep networks improve efficiency for complex tasks [13], but plain architectures suffer
from vanishing gradients. ResNet [17] mitigates this by using residual blocks with skip
connections, which facilitate gradient flow and allow effective deep learning. Each residual
block computes

Fk
m+1 = ga

(
gc(Fk

l→m, kl→m) + Fk
l

)
, (3)

where gc transforms the input Fk
l and ga is an activation function like ReLU. These iden-

tity shortcuts require no additional parameters, accelerating convergence and preventing
vanishing gradients. ResNet18, a lightweight variant with 18 layers organized into four
residual blocks of two 3 × 3 convolutional layers each, balances performance and compu-
tational cost. As reported in [8], among six evaluated models on the full MalNet-Image
dataset, ResNet18 achieved the best compromise between accuracy and efficiency.

Figure 4. Three-layer CNN architecture.

Pooling layers downsample feature maps by computing summary statistics (e.g., max
pooling [70]) over local regions:

pl
i,j,k = ρ

(
al

m,n,k

)
, ∀(m, n) ∈ Rij, (2)

where Rij denotes a local neighborhood. Stacking multiple convolutional and pooling
layers (see Figure 4) enables detection of increasingly abstract features and compositional-
ity [69]. The output is flattened, optionally regularised with dropout, and passed through
fully connected layers, concluding with a (log) softmax for classification. Parameters are
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optimised by minimising a loss function, typically via stochastic gradient descent. Beyond
the application of a plain CNN on our dataset as illustrated in Figure 4, we also leverage
three advanced CNN architectures.

3.4.1. ResNet18

Deep networks improve efficiency for complex tasks [13], but plain architectures suffer
from vanishing gradients. ResNet [17] mitigates this by using residual blocks with skip
connections, which facilitate gradient flow and allow effective deep learning. Each residual
block computes

Fk
m+1 = σ

(
gc(Fk

l→m, kl→m) + Fk
l

)
, (3)

where gc transforms the input Fk
l and σ is an activation function like ReLU. These identity

shortcuts require no additional parameters, accelerating convergence and preventing van-
ishing gradients. ResNet18, a lightweight variant with 18 layers organised into four residual
blocks of two 3 × 3 convolutional layers each, balances performance and computational
cost. As reported in [8], among six evaluated models on the full MalNet-Image dataset,
ResNet18 achieved the best compromise between accuracy and efficiency.

3.4.2. DenseNet121

DenseNet [18] combats vanishing gradients with cross-layer connectivity, linking
each layer to all preceding layers. Instead of additive shortcuts, DenseNet concatenates
feature maps:

Fk
l = gk(Fk

1 , . . . , Fk
l−1), (4)

resulting in
l(l + 1)

2
connections that improve gradient flow and regularisation. DenseNet’s

architecture allows layers to distinguish new information from that of previous layers,
mitigating overfitting, though its narrow structure can become parameter-expensive with
additional feature maps. DenseNet121, a lightweight variant featuring four dense blocks
with 6, 12, 24, and 16 layers, respectively, connected by transition layers, maintains the
benefits of deeper DenseNet variants while balancing performance and computational cost.
It matches the performance of DenseNet169 on the full MalNet-Image dataset [8].

3.4.3. MobileNetV2

MobileNetV2 [19] is a lightweight CNN architecture designed for mobile and embed-
ded applications, enhancing its predecessor MobileNetV1 [71] with more efficient feature
extraction and representation learning. It retains depth-wise separable convolutions [72],
which reduce parameters by decomposing convolutions into depth-wise and point-wise
operations, applying kernels to each channel separately before combining outputs.

Key innovations include inverted residual blocks with linear bottlenecks, which ex-
pand channels using 1 × 1 convolutions, process them via 3 × 3 depth-wise separable
convolutions, and then compress channels back with another 1 × 1 convolution. While
ReLU activation is applied after the expansion and depth-wise steps, it is omitted before
the final projection layer, preserving low-dimensional information and enabling more
efficient feature learning. This design efficiently balances expressiveness and compu-
tational cost by maintaining critical information in low-dimensional bottleneck layers.
MobileNetV2 begins with a fully convolutional layer containing 32 filters, followed by
19 residual bottleneck layers.

3.5. Graph Neural Networks

Many types of data are not applicable to a Euclidean domain and better suit a graph
structure. These include social networks, molecular models, and the control flow of an
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executable. As shown in Figure 5, graph neural networks (GNNs) generalise CNNs to this
data structure [69].

(a) Image (b) Graph
Convolution Convolution

Figure 5. Image versus graph convolution. (a) Image convolution aggregates a (red) pixel’s receptive
field (red line), and (b) graph convolution aggregates a (red) node’s neighbourhood (red line).

GNNs generally entail some form of recursive neighbourhood aggregation scheme
whereby each node in the graph derives its new feature vector by aggregating the feature
vectors of its neighbours [73]. The number of iterations determines the size of the neigh-
bourhood whose structural information is captured in the transformed feature vector. The
final node representations can be used for node classification and link prediction. For graph
classification, a readout function aggregates these node embeddings into a graph-level
representation. The readout function can be a basic permutation-invariant function, such as
summing the node vectors, or a more complex graph-level pooling mechanism [74]. This
way, GNNs may be applied to Android malware classification by way of the graph-level
classification of extracted FCGs (Figure 6).
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Figure 6. A Convolutional GNN for FCG Classification

The neighbourhood aggregation and graph-level pooling scheme depends on the
GNN variant used. Moreover, GNNs can be classified into one of two types based on their
neighbourhood aggregating scheme [15]. The first are spectral GNNs which, motivated
by graph spectral decomposition, seek to approximate spectral filters in the aggregat-
ing layers [20]. The second type are spatial GNNs, which implement neighbourhood
aggregation according to each node’s spatial relations, as opposed to explicitly trying to
learn the graph’s spectral features [21]. This paper evaluates one example of each type of
GNN within the ensemble structure for Android malware classification. Specifically, the
GCN [20], a proposed first-order approximation of a spectral GNN, and the GIN [21], a
spatial GNN specifically tailored to graph classification.

To improve efficiency, graphs are fed in a block-diagonal adjacency matrix with each
block representing one graph via a batch vector b ∈ {0, . . . , b − 1}V which assigns vertices
to their graphs. Feature matrices are concatenated to X ∈ R(|V1|+...+|Vb |)×|F| where b is the
batch size. A simple pooling matrix is created to collect features from each respective graph.
Thus, parallelisation over mini-batches is achieved with sparse block-diagonal adjacency
matrices and concatenating feature and target matrices in the node dimension.

3.5.1. Graph Convolutional Network

The Graph Convolutional Network (GCN) [20] adapts convolutional operations for
irregular graph structures by aggregating features from neighboring nodes to generate node
embeddings. For a graph G = (V, E) with feature matrix X ∈ R|V|×k, self-loops are added
to include each node’s features in the aggregation: Ã = A + I, where A is the adjacency
matrix and I the identity matrix. The resulting matrix Ã is symmetrically normalised as
Â = D̃− 1

2 ÃD̃− 1
2 , where D̃ii = ∑j Ãij is the diagonal degree matrix.

The GCN propagation rule for an n-layer network is:

H(l+1) = σ
(

ÂH(l)W(l)
)

,

where H(0) = X, H(n) = Z (the final node embeddings), σ is a non-linearity (e.g.,
ReLU [66]), and W(l) is the weight matrix for layer l. This operation aggregates neighbor-
hood features in a permutation-invariant manner, analogous to convolutional filters in
CNNs but adapted for unordered graph data. Figure 7 illustrates the GCN layer.

Figure 6. A Convolutional GNN for FCG classification.

The neighbourhood aggregation and graph-level pooling scheme depend on the GNN
variant used. Moreover, GNNs can be classified into one of two types based on their
neighbourhood aggregation strategy [15]. Spectral GNNs, motivated by graph spectral
decomposition, seek to approximate spectral filters in the aggregating layers [20]. In
contrast, spatial GNNs implement neighbourhood aggregation according to each node’s
spatial relations, rather than explicitly learning the graph’s spectral features [21]. This
paper evaluates one example of each category within the ensemble structure for Android
malware classification: the GCN [20], a first-order approximation of a spectral GNN, and
the GIN [21], a spatial GNN tailored for graph classification. To improve efficiency, graphs
are fed in a block-diagonal adjacency matrix where each block represents one graph. A
batch vector b ∈ {0, . . . , b − 1}V assigns vertices to their graphs, where b is the batch size.
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Feature matrices are concatenated into X ∈ R(∑b
1 |Vi |)×|F|. A simple pooling matrix then

collects features from each respective graph. Thus, parallelisation over mini-batches is
achieved with sparse block-diagonal adjacency matrices and concatenating feature and
target matrices in the node dimension.

3.5.1. Graph Convolutional Network

The graph convolutional network (GCN) [20] extends convolutional operations to
irregular graph structures by aggregating neighbouring node features to generate node em-
beddings. For a graph G = (V, E) with feature matrix X ∈ R|V|×k, self-loops are added to
include each node’s features in the aggregation: Ã = A+ I, where A is the adjacency matrix
and I is the identity matrix. The resulting matrix Ã is then symmetrically normalised:

Â = D̃− 1
2 ÃD̃− 1

2 , (5)

where D̃ii = ∑j Ãij is the diagonal degree matrix.
The GCN propagation rule for an n-layer network is

Hl+1 = σ
(

ÂHlW l
)

, (6)

where H0 = X, Hn = Z, the final node embeddings. Here, σ is a non-linearity (e.g., ReLU),
and W l is the learnable weight matrix for layer l. This operation aggregates neighbourhood
features in a permutation-invariant manner, analogous to convolutional filters in CNNs
but adapted for unordered graphs. Figure 7 illustrates the GCN layer.

Hl ReLU

Meanj

hl
i

hl+1
i

{hl
j}

Figure 7. GCN layer.

For graph classification, GCNs require a pooling operation to generate fixed-size graph
embeddings. Global sum pooling, defined as

hGi =
|Vi |
∑
k=1

Zk, (7)

aggregates node embeddings Z for Gi into a graph-level representation, which is passed
through a dense layer with a log-softmax output for classification. As in [21], the GCN
is trained with the Adam optimiser [75]. We extracted node features using LDP, adding
self-loops, as detailed in Section 3.3.

3.5.2. Graph Isomorphism Network

The graph isomorphism network (GIN) [21] is a spatial-based GNN designed to
match the expressive power of the Weisfeiler–Lehman (WL) graph isomorphism test [76].
Unlike earlier GNNs that rely on heuristic aggregation schemes and can fail to distinguish
non-isomorphic graphs, GIN employs an injective aggregation mechanism to enhance
expressivity. Its node update rule is given by

hk
v = MLPk



(

1 + ϵk
)

hk−1
v + ∑

u∈N (v)
hk−1

u


, (8)
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where hk
v is the feature of node v at layer k, N (v) denotes the set of its neighbours, and ϵk

is a learnable or fixed scalar parameter. Figure 8 illustrates the GIN layer architecture.
In this study, we employ the GIN-0 configuration with ϵ = 0, based on the effectiveness

reported in [21]. For graph-level classification, node embeddings are aggregated by sum-
ming over the nodes in each layer and concatenating to form the final graph representation:

hG = concatenate
(

sum{h(k)v | v ∈ G}
)K

k=0
, (9)

where K is the number of GIN layers. The final graph embedding hG is passed to a
classifier for prediction. Training is optimised using the Adam optimiser [75], with node
features extracted using LDP [66] with added self-loops to improve the network’s learning
ability [77].

1 + ϵ

∑ MLP

∑j

ReLU

hl
i

hl+1
i

{hl
j}

Figure 8. GIN layer.

3.5.3. Final Meta-Classifier

We employ a multilayer perceptron (MLP) as a meta-classifier to combine predic-
tions from the CNN and GNN models. For each input, class probabilities from both
models are concatenated into a 2n-dimensional feature vector, which the MLP maps to
an n-dimensional output representing final class predictions. The MLP is trained using
stochastic gradient descent to minimise cross-entropy loss, effectively learning to fuse the
complementary outputs of the base models for enhanced classification accuracy.

3.6. Data Fusion

Features from different modalities can interact in complementary, redundant, or coop-
erative ways [78]. Complementary fusion captures aspects of a phenomenon inaccessible
to other modalities, while redundant fusion enables cross-validation by providing similar
information. Cooperative fusion combines inputs to generate more complex insights, such
as in audio–video data. Modality fusion strategies are typically categorised into early, inter-
mediate, and late approaches based on the stage of data combination [2]. These strategies
strike different balances between marginal representations—latent factors within individ-
ual modalities—and joint representations, which encode complementary, redundant, or
cooperative information across modalities [1].

Early fusion concatenates input data into a single vector for model training, enabling
joint representation learning while ignoring the origin of features. While straightforward,
it does not identify meaningful marginal representations or higher-level cross-modal rela-
tionships and struggles with heterogeneous modalities and differences in dimensionality.

Intermediate fusion leverages knowledge of each feature’s modality by first learning
marginal representations. These representations are then fused, either for direct classifica-
tion or to learn joint representations through additional layers. This approach preserves
intra-modality information while also modelling cross-modal interactions, enabling the
identification of further multimodal disentangled factors.

Late fusion combines predictions from unimodal models, allowing base models to
learn marginal representations [1,2]. This benefits from imperfectly correlated errors of
base models, which enhance complementarity without explicitly learning multimodal
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interactions [2]. Common aggregation strategies include simple averaging, assigning
weights based on uncertainty, or optimising weights as hyperparameters. Meta-learning
is an advanced approach where a meta-classifier learns to combine base model outputs,
capturing complex relationships to improve generalisation.

4. Methodology
In this section, we introduce our proposed late-fusion model, which concatenates CNN

and GNN predictions for use as input features for an MLP classifier (Figure 9). We first
provide an overview of the data and evaluation methods used, which is followed by de-
scriptions of the various experiments conducted with respect to training and testing phases.

FCG

GNN

Binary Image

5

5

Base Models

APK

CNN

Concatenation

FC1

FC2

10

5

2-layer MLP

Prediction

Figure 9. Late fusion approach for binary images and FCGs.

The CNN and GNN are pretrained on binary images and FCGs, respectively, which
are derived from the same Android package samples via a process outlined in subsequent
sections. Once trained, the CNN and GNN are frozen and form base classifiers within
the ensemble structure. This structure is then trained. For each sample, the base-classifier
predictions take the form of a probability vector for the five class labels: addisplay, adware,
downloader, trojan, and benign. The probability distributions are concatenated, forming a
10-column vector. These become feature vectors for the meta-classifier, which outputs the
final predicted label.

4.1. Data

The datasets used in this study are summarised in Table 2. The MalNet images dataset
comprises 1.2 million 256 × 256 RGB binary images across 47 types and 696 families,
while the MalNet-Tiny graphs dataset contains 5000 function call graphs representing
five balanced malware classes. Both datasets share a common SHA-256 nomenclature,
enabling the construction of an ensemble dataset of 5000 APK samples, each represented by
both a binary image and an FCG, split into training, validation, and test sets in a 7:1:2 ratio.
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Table 2. Summary of datasets used in this study.

Attribute MalNet Images MalNet-Tiny Graphs

Data Type 256 × 256 RGB binary images Function Call Graphs (FCGs)
Scale 1.2 million images 5000 graphs

Features Extracted from the APKs’ DEX file (see
Section 3.2)

Extracted from the APKs’ DEX file (see
Section 3.3)

Graph Details N/A Up to 5000 nodes per graph

Classes 47 types, 696 families Five balanced types—addisplay, adware,
downloader, trojan, benign

Nomenclature SHA-256 hash SHA-256 hash
Ensemble Dataset 5000 APK samples represented by both binary images and FCGs
Data Split 7:1:2 training-validation-test split

4.2. Training and Evaluation Metrics

While the full MalNet datasets are imbalanced, the constructed ensemble dataset is bal-
anced. To that end, we evaluate our model using standard classification metrics—accuracy,
precision, recall, F1 score, and area under the receiver operating characteristic (ROC) curve.
Precision and recall quantify the trade-off between false positives and false negatives for
each class, with the F1 score providing a harmonic mean of these two measures. Although
accuracy is reliable on our balanced dataset, reporting precision, recall, and F1 score ensures
a more rigorous understanding of class-specific performance. To further assess discrimina-
tion capability independent of threshold selection, we analyse the ROC curve and compute
the area beneath it (AUC). We reserve 10% of the data for validation, selecting models by
validation accuracy. All experiments are run on an NVIDIA Tesla P100.

4.2.1. CNNs on Binary Images

We experiment with four CNN architectures on the 5000 MalNet image samples
and adopt early stopping (patience of 10 epochs). Beyond a plain CNN, we evaluate
ResNet18 [17], DenseNet121 [18], and MobileNetV2 [19].

Semantic information encoding. Following [9], we compare greyscale and RGB
images that embed bytecode context into colour channels. An initial two-layer CNN
shows that RGB encoding boosts validation (test) accuracy from 81.8% (80.1%) to 84.8%
(82.2%). ResNet18 further confirms this trend, with accuracy rising from 84.8% (84.1%) to
87.6% (84.3%), so we proceed with RGB images. See Section 5 for details regarding the
testing data.

Transfer learning with ImageNet. Transfer learning was evaluated by fine-tuning a
ResNet18 model pretrained on ImageNet [22] for malware classification using our 5000 bi-
nary images from the MalNet dataset [8]. Freitas et al. [9] previously observed that freezing
pretrained weights led to underperformance on the larger MalNet dataset, which the au-
thors attributed to MalNet’s size. In our experiments, freezing the pretrained weights
reduced the validation (testing) accuracy from 86.4% (83.4%) to 78.6% (78.1%), suggest-
ing that this approach is unsuitable even for a smaller subset. However, unfreezing the
pretrained weights improved the accuracy to 88.2% (83.6%), enabling the model to better
adapt to the specific characteristics of our images. This indicates that fine-tuning pretrained
features bridges the domain gap more effectively than freezing, as it retains generalised
knowledge while allowing task-specific learning.

Optimising a plain CNN. A hyperparameter grid search over layers {2, 3, 5}, hidden
dimensions {32, 64, 128}, kernel sizes {3 × 3, 5 × 5}, dropout (applied before the output
layer) {0, 0.5}, and learning rate {0.0001, 0.001} is conducted using ReLU [68] and Adam [75].
This approach is similar to the search used in [8] to optimise GNN architectures. The best
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model achieves 86.2% validation accuracy on epoch 49 with three convolutional layers,
64 hidden units, 0.5 dropouts, and a 0.001 learning rate (Figure 4).

Advanced CNN architectures. We evaluated three widely used CNN architectures—
ResNet18 [17], DenseNet121 [18], and MobileNetV2 [19]—using RGB images with unfrozen
ImageNet weights [22]. Each model was trained for 100 epochs with a learning rate of 0.001,
and the epoch with the highest validation accuracy was selected. ResNet18 achieved 88.2%
accuracy (epoch 67), DenseNet121 achieved 89.2% (epoch 60), and MobileNetV2 achieved
86.8% (epoch 66). Since these models demonstrated acceptable performance, we did not
pursue further optimisation.

4.2.2. GNNs on FCGs

We followed the hyperparameters found in [8] for GNN architectures on the MalNet-
Graph Tiny dataset—derived from a grid search similar to that used to optimise our plain
CNN. Both GCN and GIN employ five layers with 64 hidden units without dropout and a
learning rate of 0.0001. Each was trained for 1000 epochs without early stopping.

4.2.3. Fusion Strategies

We focus on intermediate and late fusion to accommodate the distinct data distribu-
tions of binary images and FCGs, as early fusion can degrade performance when feature
distributions differ substantially [2]. For each method, the CNN and GNN models were
pretrained and frozen before being integrated.

In intermediate fusion, we concatenate penultimate-layer embeddings from each
unimodal model and optionally balance embedding sizes by adding two dense layers to
the larger model. This approach captures cross-modal interactions at a higher abstraction
level and potentially in a cooperative manner, for example, linking obfuscation-related
artefacts in binary images with suspicious control flows in FCGs. For late fusion, we
concatenate the final prediction probabilities of each model, reducing complexity and
mitigating overfitting risks common in multimodal systems [79]. We train an MLP meta-
classifier to integrate these and compare its performance to simple averaging—a tuning-free,
interpretable approach.

We implemented both approaches using DenseNet121 (CNN) and GIN (GNN), train-
ing each ensemble for 100 epochs. ReLU activations [68] were used in the hidden layers for
fusion, while the final layer employed a log-softmax function for classification across five
malware classes. For balanced embeddings, we set the intermediate dimension of the added
pre-concatenation layers to the mean of the base models’ embedding sizes. The late-fusion
variants with concatenated predictions achieved the highest validation accuracies (92.0%
and 92.6%), surpassing intermediate-fusion methods (89.8% and 89.0%).

4.2.4. Optimising Ensembles

Subsequently, we extended experiments by optimising the MLP meta-classifier for
learning rate, layer count, hidden dimensions, and dropout prior to the final layer. We
employed a grid search to optimise CNN-GCN and CNN-GIN. CNN-GCN attained 90.4%
validation accuracy on epoch 36 with a 0.001 learning rate, 0.5 dropouts, one hidden layer,
and 32 hidden units. Its convergence is shown besides those of its base models in Figure 10.
Next, CNN-GIN obtained 93.2%.

For subsequent pairings with larger CNN architectures, we used Optuna’s Bayesian
search [80] (30 trials, 20 epochs) to expedite this process. A MobileNetV2-GCN ensemble
yielded 89.6% accuracy. DenseNet121-GCN obtained a validation accuracy of 91.2%, while
DenseNet121-GIN achieved 93.2% on epoch 5, tuned with a 3.92 × 10−5 learning rate,
0.1 dropout rate, 3 hidden layers, and 89 hidden units.
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Finally, we constructed a quad ensemble combining GIN, GCN, DenseNet121, and
MobileNetV2 to assess the impact of ensemble size. Optuna found that 4 dense layers,
66 hidden units, 0.2 dropout, and a 4.15 × 10−4 learning rate matched DenseNet121-GIN
with a best validation accuracy of 93.2%.
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5. Results

The models described in Section 4 are evaluated on a dedicated test set comprising 20%
of the data, reserved to verify the performance of the ensembles against each other and their
constituent base models. We use the split in [8]—where malnet graphs were divided into
training, validation, and test sets with a 7:1:2 ratio, stratified across MalNet-Tiny labels. We
source corresponding images for testing from the full MalNet image dataset [9], following
the process described in Section 4.1.

5.1. Evaluating Fusion Strategies

The fusion strategy significantly impacts the performance of the DenseNet121-GIN
ensemble. Across all metrics, the ensemble achieves its best testing performance with the
late-fusion strategies, while intermediate fusion did not outperform unimodal baselines,
as shown in Table 3. Predictions, though compact, are highly informative. Embeddings
provide richer input but may introduce unnecessary complexity, while balancing these
with additional dense layers may result in information loss. The better overall performance
of late fusion could suggest that the primary interaction between binary image and FCG
features is complementary (non-overlapping).

Figure 10. Training loss and validation accuracy over epochs for CNN, GCN, and CNN-GCN.

5. Results
The models described in Section 4 are evaluated on a dedicated test set comprising 20%

of the data, reserved to verify the performance of the ensembles against each other and their
constituent base models. We use the split in [8]—where MalNet graphs were divided into
training, validation, and test sets with a 7:1:2 ratio, stratified across MalNet-Tiny labels. We
source corresponding images for testing from the full MalNet image dataset [9] following
the process described in Section 4.1.

5.1. Evaluating Fusion Strategies

The fusion strategy significantly impacts the performance of the DenseNet121-GIN
ensemble. As shown in Table 3, the ensemble achieves its best testing performance with the
late-fusion strategies across all metrics except time (see Section 5.2.4). Predictions, though
compact, are highly informative. Embeddings provide richer input but may introduce
unnecessary complexity, while balancing these with additional dense layers may result
in information loss. The better overall performance of late fusion could suggest that the
primary interaction between binary images and FCG features is complementary (non-
overlapping). Within late fusion, simple averaging achieved performance comparable to
meta-learning with our initial hyperparameters. Although optimising the MLP yielded
the best results, simple averaging offers a highly interpretable alternative and avoids
extra tuning.
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Table 3. Test performance of DenseNet121-GIN across fusion approaches with macro-averaged
metrics.

Model Accuracy (%) Precision (%) Recall (%) F1 (%) Time (s)

DenseNet121 86.3 86.7 86.3 86.3 3.61 ± 0.02
GIN 89.1 89.2 89.1 89.0 1.28 ± 0.01
Embeddings 1 86.6 87.3 86.6 86.7 5.27 ± 0.05
Balanced Embeddings 1 85.8 86.6 85.8 85.8 5.10 ± 0.15
Simple Averaging 2 90.3 90.6 90.3 90.2 5.20 ± 0.09
Meta-Classifier (Initial) 2 90.3 90.6 90.3 90.3 5.16 ± 0.12
Meta-Classifier (Optimised) 2 90.6 91.1 90.6 90.6 4.85 ± 0.04

1 Intermediate fusion. 2 Late fusion.

5.2. Model Evaluation

Table 4 compares the base and optimised late-fusion models on the test dataset across
key performance metrics.

Table 4. Test performance of base and multimodal late-fusion models with macro-averaged metrics.

Model Accuracy (%) Precision (%) Recall (%) F1 (%) Time (s)

Plain CNN 83.1 83.5 83.1 83.1 1.70 ± 0.02
ResNet18 83.6 84.4 83.6 83.8 2.16 ± 0.04
DenseNet121 1 86.3 86.7 86.3 86.3 3.61 ± 0.02
MobileNetV2 84.7 85.0 84.7 84.6 2.21 ± 0.03
GCN 80.6 80.9 80.6 80.3 1.40 ± 0.08
GIN 2 89.1 89.2 89.1 89.0 1.28 ± 0.01
Plain CNN + GCN 3 88.3 88.8 88.3 88.4 2.49 ± 0.03
Plain CNN + GIN 90.3 90.6 90.3 90.3 2.42 ± 0.03
DenseNet121 + GCN 88.9 89.2 88.9 88.8 5.05 ± 0.10
DenseNet121 + GIN 4 90.6 91.1 90.6 90.6 4.85 ± 0.04
MobileNetV2 + GCN 85.9 86.0 85.9 85.9 3.73 ± 0.07
DenseNet121 + MobileNetV2 + GCN + GIN 90.5 90.6 90.5 90.6 8.31 ± 0.17

1 Best-performing CNN. 2 Best-performing GNN. 3 Largest improvement over base models. 4 Best-performing
model.

5.2.1. Unimodal Algorithms

Advanced CNN architectures with unfrozen ImageNet weights outperform the plain
CNN, with DenseNet121 leading. DenseNet121’s improved gradient flow, owing to its
dense connectivity and feature reuse, enables it to extract features from the binary images
more effectively than the more efficient MobileNetV2, which notably outperforms the
residual learning of ResNet18. For the GNNs, GIN outperforms GCN across each metric.
This suggests that GIN’s highly expressive injective aggregation function better captures
the topological patterns of FCGs than the averaging mechanism of GCN. Comparing
across modalities, while GIN surpassed each CNN, these, in turn, outperformed the
GCN, highlighting the validity of both modalities and underscoring the significance of
model choice.

5.2.2. Ablation Experiments

In all five ablation experiments involving two base models, integrating modalities with
our late-fusion strategy improves performance across each metric, demonstrating the advan-
tages of our approach for malware classification. The largest improvement is to the weakest
unimodal models—the plain CNN-GCN ensemble achieves a test accuracy score of 88.3%,
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outperforming its best base model (CNN) by 5.2%. Following this are DenseNet121-GCN
(2.6%), DenseNet121-GIN (1.5%), Plain CNN-GIN (1.2%), and MobileNetV2-GCN (1.2%).

The choice of GNN significantly affected the ensemble performance. For example, the
plain CNN-GIN and DenseNet121-GIN ensembles boost accuracy to similar scores of 90.3%
and 90.6%. In contrast, plain CNN-GCN and DenseNet121-GCN yielded lower accuracy
scores of 88.3% and 88.9%. However, with the exception of MobileNetV2, stronger base
models led to stronger ensembles with diminishing returns.

5.2.3. Quad Ensemble

Regarding the quad ensemble, our results reveal that increasing classifier diversity
in a larger multimodal ensemble does not necessarily translate to better performance.
The quad ensemble performed similarly to its strongest dual constituent (DenseNet121-
GIN). Considering its protracted classification time, this argues against incorporating
multiple base models per modality, as comparable performance gains may be achievable
by extracting marginal representations with a single algorithm.

5.2.4. Inference Time

In Table 4, time is the number of seconds the model takes to classify 1000 testing sam-
ples. The CNNs perform as expected: the parametrically smaller plain CNN is the fastest,
followed by the efficiency-optimised MobileNetV2, ResNet18, and the larger DenseNet121.
GNNs were comparable to the plain CNN, while GIN slightly outpaced GCN. For the
ensembles, classification times were generally equal to or less than the sum of the base
model times, highlighting the efficiency trade-off in the multimodal approach. Never-
theless, all classification times were rapid—a few milliseconds per sample—falling well
within acceptable ranges for practical applications. Table 3 indicates that the optimised
meta-classifier achieved the shortest inference time, although differences among fusion
methods were minimal.

5.3. Confusion Matrices

For a more detailed performance analysis of the plain CNN-GCN ensemble, which saw
the largest accuracy improvement, Figure 11 shows the confusion matrices for the CNN,
GCN, and ensemble on the test dataset. While the CNN and GNN misclassify between
malicious types, the ensemble mitigates this. However, it occasionally remains susceptible
to obfuscation, which presents obstacles to detection by allowing the malware to resemble
innocuous software patterns. Along with the increased overall accuracy, we also notice
some discrepancies between the base models in capturing class-specific patterns flattening
out in the ensemble.

Figure 12 shows the confusion matrices for the best model—the DenseNet121-GIN
ensemble—and its base models on the test dataset. While highly capable of distinguishing
between malware types, there are likewise detection failures which indicate the use of
obfuscation. While optimising the meta-classifier for accuracy yields superior overall
performance for the ensemble, this focus results in missing trojan and adware samples,
suggesting that re-tuning the MLP to prioritise recall might be beneficial.

Table 5 shows strong performance across the classes, with particularly high accuracy
for addisplay (95.5%) and downloader (99.5%). However, trojan sees a notable drop in
recall (78.5%), as some samples are misclassified—primarily as benign. Nevertheless, the
model’s overall accuracy of 90.6% reinforces its effectiveness.
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Figure 11. Base and Ensemble Confusion Matrices for DenseNet121-GIN on the Test Dataset

Table 5. Metrics for the DenseNet121-GIN Ensemble on the Test Dataset for each class

Class Accuracy (%) Precision (%) Recall (%) F1 (%)

addisplay 95.5 93.2 95.5 94.3
adware 90.5 92.3 90.5 91.4
benign 89.0 77.4 89.0 82.8
downloader 99.5 99.5 98.5 99.0
trojan 78.5 94.0 78.5 85.6
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Figure 12. Confusion Matrices for Base and Ensemble Models on the Test Dataset

5.4. UMAP Analysis of DenseNet121-GIN Embeddings and Classification

Uniform Manifold Approximation and Projection (UMAP) [79] is a dimensionality
reduction technique well-suited for visualising high-dimensional data. By preserving both
local and global structures, UMAP is particularly effective for analysing the relationships
between embeddings in complex machine learning models. In this study, UMAP was used
to project the high-dimensional dense layer embeddings (89 dimensions) from the test set
of the best-performing DenseNet121-GIN model into a two-dimensional space (Figure 13).

Figure 11. Base and ensemble confusion matrices for plain CNN-GCN on the test dataset.
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Figure 11. Base and Ensemble Confusion Matrices for DenseNet121-GIN on the Test Dataset

Table 5. Metrics for the DenseNet121-GIN Ensemble on the Test Dataset for each class

Class Accuracy (%) Precision (%) Recall (%) F1 (%)

addisplay 95.5 93.2 95.5 94.3
adware 90.5 92.3 90.5 91.4
benign 89.0 77.4 89.0 82.8
downloader 99.5 99.5 98.5 99.0
trojan 78.5 94.0 78.5 85.6
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Figure 12. Confusion Matrices for Base and Ensemble Models on the Test Dataset

5.4. UMAP Analysis of DenseNet121-GIN Embeddings and Classification

Uniform Manifold Approximation and Projection (UMAP) [79] is a dimensionality
reduction technique well-suited for visualising high-dimensional data. By preserving both
local and global structures, UMAP is particularly effective for analysing the relationships
between embeddings in complex machine learning models. In this study, UMAP was used
to project the high-dimensional dense layer embeddings (89 dimensions) from the test set
of the best-performing DenseNet121-GIN model into a two-dimensional space (Figure 13).

Figure 12. Base and ensemble confusion matrices for DenseNet121-GIN on the test dataset.

Table 5. Metrics for the DenseNet121-GIN ensemble on the test dataset for each class.

Class Accuracy (%) Precision (%) Recall (%) F1 (%)

addisplay 95.5 93.2 95.5 94.3
adware 90.5 92.3 90.5 91.4
benign 89.0 77.4 89.0 82.8
downloader 99.5 99.5 98.5 99.0
trojan 78.5 94.0 78.5 85.6

5.4. UMAP Analysis

Uniform Manifold Approximation and Projection (UMAP) [81] is a dimensionality
reduction technique well-suited for visualising high-dimensional data. By preserving both
local and global structures, UMAP is particularly effective for analysing the relationships
between embeddings in complex machine learning models. In this study, UMAP was used
to project the high-dimensional dense layer embeddings (89 dimensions) from the test set
of the best-performing DenseNet121-GIN model into a two-dimensional space (Figure 13).
These visualisations provide insights into the feature utility and the model’s ability to
distinguish between classes.
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These visualisations provide insights into the feature utility and the model’s ability to
distinguish between classes.
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Figure 13. UMAP Visualisation of DenseNet121-GIN Embeddings on the Test Dataset

With respect to class separability (Figure 13a), the embeddings show well-defined
and generally distinct clusters for most classes, particularly downloader, addisplay and
adware. This indicates that the underlying features used in the multimodal fusion strategy
successfully captures class-specific patterns. However, overlap observed between the trojan
and benign clusters highlights the difficulty of correctly classifying this malware type.

In terms of classification accuracy (Figure 13b), it is observable that most test samples
are classified correctly, as indicated by the dense presence of blue points across clusters.
Misclassified samples (red) are concentrated in the overlapping regions of trojan and benign,
reinforcing the difficulty in detecting this class. A small number of misclassifications are
scattered throughout the other clusters, suggesting shared characteristics in their FCG
topologies and/or binary image textures. These functional similarities underscore the
added complexity of multi-type malware classification compared to detection solely.

The outcome from the UMAP analysis, supported by Figure 11, is that the visualisa-
tions validate the effectiveness of both the underlying features and the late fusion strategy
in integrating spatial and structural features for classification, enabling robust separation of
malware classes. However, the overlap between trojan and benign highlights the limitations
of the current feature representations in handling obfuscation. Incorporating additional
modalities, such as dynamic execution traces or contextual metadata, could further en-
hance class separability. Additionally, advanced fusion techniques, such as attention-based
mechanisms, might help emphasise discriminative features. From a practical perspective,
the implications of this analysis demonstrate the model’s ability to generalise to unseen
data, suggesting its readiness for deployment in real-world malware detection systems.

5.5. Explaining Base Model Contributions

While training an MLP on the base model predictions outperformed simple averaging,
it introduces opacity into the data fusion step. We address this by computing SHAP
(SHapley Additive exPlanations) [80] values to analyse base model contributions to the
final decision. Rooted in game theory, SHAP assigns feature importance scores, providing a
consistent and objective quantification. Figure 14 presents one-vs-all SHAP values for each
class for DenseNet121-GIN’s test set predictions. Positive (negative) SHAP values indicate
a contributing (detracting) effect on the final decision, with the magnitude representing the
strength of this influence. The base predictions are shown in descending order according to
the absolute mean of the SHAP values for each feature.

The SHAP analysis indicates that the MLP often supplements higher base probabilities
for one class with reduced probabilities for others to inform its predictions. Moreover, GIN
downloader often ranks highest across other classes, exerting greater influence on the MLP’s

Figure 13. UMAP visualisation of DenseNet121-GIN embeddings on the test dataset.

With respect to class separability (Figure 13a), the embeddings show well-defined and
generally distinct clusters for most classes, particularly downloader (purple). This indicates
that the underlying features used in the multimodal fusion strategy successfully capture
class-specific patterns. However, the overlap observed between benign and other classes,
particularly trojan (orange), highlights the difficulty of correctly detecting malware. This is
reinforced in Figure 13b, which shows that misclassified samples (red) are concentrated
in the overlapping regions of benign. A small number of misclassifications are scattered
throughout the other clusters, suggesting shared characteristics in their FCG topologies
and/or binary image textures. These functional similarities underscore the added com-
plexity of multi-type malware classification compared with detection solely. However, it is
observable that most test samples are classified correctly, as indicated by the dense presence
of blue points across clusters.

The outcome from the UMAP analysis, supported by Figure 12, is that the visualisa-
tions validate the effectiveness of both the underlying features and the late fusion strategy
in integrating spatial and structural features for classification, enabling robust separation
of malware classes. However, the overlap between benign and other classes, notably trojan,
highlights the limitations of the current feature representations in handling obfuscation.
Incorporating additional modalities, such as dynamic execution traces or contextual meta-
data, could further enhance class separability. Additionally, advanced fusion techniques,
such as attention-based mechanisms, might help emphasise discriminative features. From
a practical perspective, the implications of this analysis demonstrate the model’s ability to
generalise to unseen data, suggesting its readiness for deployment in real-world malware
detection systems.

5.5. ROC Curve

The receiver operating characteristic (ROC) curve depicts the trade-off between True
Positive (TP) and False Positive (FP) rates as the discrimination threshold is varied. In
binary classification, calculating the area under the curve (AUC) provides the likelihood
that the classifier will rank a randomly selected positive sample above a negative one.
Figure 14a shows an ROC graph with AUC calculations for the strongest model, the
DenseNet121-GIN ensemble, on the test dataset. Figure 14b focuses on the top-left corner
of the ROC curve, the region of high sensitivity and low FP rate. Included are the curves
for chance level, individual classes, and the macro- and micro-averages over five classes.

Addisplay (dotted turquoise), adware (dotted orange), and downloader (dotted green)
curves remain close to the top left corner, suggesting excellent model performance for
these classes. However, for trojan (dotted pink) and benign (dotted purple) the trade-off
with respect to the cost in false positives becomes apparent, albeit at different rates, with
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increasing the threshold, thus further testifying to the challenge of reliably detecting trojan
malware. Nevertheless, the AUC for the macro- (solid blue) and micro-average (solid red)
ROC curves are both 0.98, confirming that our proposal is highly effective at classifying
Android malware.

(a) ROC Curve (b) Zoomed-in View of Top-Left Corner

Figure 14. ROC Curve for DenseNet121-GIN on the Test Dataset.

5.6. Explaining Base Model Contributions

Although training an MLP on base model predictions outperformed simple averaging,
it introduced opacity into the data fusion step. To counteract this, we compute SHAP
(SHapley Additive exPlanations) values [82] to elucidate the base models’ contributions to
the final decision. SHAP borrows from game theory to attribute an importance score to each
feature, providing an objective quantification. Figure 15 shows one-vs-all SHAP values
for each class based on DenseNet121-GIN’s test predictions. A positive (negative) SHAP
value indicates a contributing (detracting) effect on the final decision, with its magnitude
representing the strength of this influence. Base model predictions are shown in descending
order according to the absolute mean SHAP value for each feature.

The SHAP analysis suggests that the MLP often reinforces its predictions by suppl-
menting higher base probabilities for a target class with lower probabilities for others. GIN
downloader typically ranks highest across classes, exerting more influence on the MLP’s
decision than the target probabilities, with addisplay as the sole exception. This influence
is generally detracting,though not consistently so. Downloader probabilities, particularly
from GIN, contribute strongly to predicting this class. Overall, we observe the classifier
prioritising GIN’s highly accurate downloader probabilities, a strategy consistent with the
distinct clustering observed for this class in Figure 13. Additionally, GIN addisplay and
especially GIN trojan contribute to benign classifications. This reveals a means for the MLP
to enhance overall accuracy following optimisation at the expense of reduced detection for
these malware types (see Figure 12).

Figure 16 displays global feature importance, calculated as the mean absolute SHAP
values for base predictions across test samples. This result confirms the model’s reliance
on the GIN’s downloader probabilities and also indicates a greater overall dependence on
GIN compared to DenseNet121, consistent with GIN’s superior performance.
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decision than the corresponding base model probabilities. The exception is Addisplay, where
GIN downloader ranks third, following base model Addisplay probabilities. GIN downloader
generally exhibits negative directionality in predicting other classes, though this effect is
not consistent. downloader probabilities—particularly from the GIN—also exert a strong
positive influence on the MLP’s decision to predict this class. The classifier thus leverages
GIN’s highly accurate downloader probabilities as a primary reference, a strategy that aligns
with its distinct clustering observed in Figure 13. Additionally, GIN trojan, and to a lesser
extent GIN addisplay, positively contribute to the MLP classifying a sample as benign. This
reveals a means by which the MLP enhances overall performance following its optimisation
for accuracy, at the expense of reduced detection for these malware types (Figure 11).

(a) Addisplay (b) Adware (c) Benign

(d) Downloader (e) Trojan

Low
Feature value

High

Figure 14. 5×One-vs-All SHAP Graphs for DenseNet121-GIN on the Test Dataset

Figure 15 displays global feature importance, computed as the mean absolute SHAP
values for base predictions across test samples. This confirms the model’s broad reliance
on the GIN’s downloader probabilities. Furthermore, it shows that the model depends more
overall on GIN than DenseNet121, given GIN’s superior performance over DenseNet121.

5.6. ROC Curve

The Receiver Operating Characteristic (ROC) curve depicts the trade-off between True
Positive (TP) and False Positive (FP) rates as the discrimination threshold is varied. In binary
classification, calculating the Area Under the Curve (AUC) provides the likelihood that the
classifier will rank a randomly selected positive sample above a negative one. Figure 16a
shows a ROC graph with AUC calculations for the strongest model, the DenseNet121-GIN
ensemble, on the test dataset. Figure 16b focuses on the top-left corner of the ROC curve,
the region of high sensitivity and low FP rate. Included are the curves for chance level,
individual classes, and the macro- and micro-averages over five classes. The AUC for the

Figure 15. 5× One-vs-all SHAP graphs for DenseNet121-GIN on the test dataset.
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Figure 15. SHAP Global Feature Importance Graph for DenseNet121-GIN on the Test Dataset

macro- and micro-average ROC curves are 0.98, confirming that our proposal is highly
effective at classifying Android malware.

(a) ROC Curve (b) Zoomed-in View of Top-Left Corner

Figure 16. ROC Curve for DenseNet121-GIN on the Test Dataset

5.7. Comparison with Previous Works

Table 6 presents the accuracy of other methods applied to similar samples. In the
absence of multimodal approaches sharing our data, we compare our results with graph-
based methods using MalNet-Graph Tiny [8], which differs from MalNet-Image Tiny [9]
in malware volume and types. Several studies [8,81,82] employ GCN and/or GIN-based
methods, enabling a more direct comparison with the performance gains of our approach,
while others [81–86] depart from these architectures.

DenseNet121-GCN outperforms DenseNet121 by 2.6% accuracy and GCN [8] by 7.9%
accuracy. Moreover, while our reimplemented GIN model achieves 89.1% accuracy, and
DenseNet121 attains 86.3% accuracy, fusing these models yields a combined accuracy
of 90.6%, surpassing the 90% reported for GIN—the strongest model in [8]. Jumping
Knowledge (JK) [87] boosts GCN’s accuracy to 89.7% [82], exceeding DenseNet121-GCN
by 0.8%. However, our DenseNet121-GIN model achieves 90.6%, outperforming GIN-JK
by 0.6%—noting that JK was not shown to enhance the GIN architecture [82], in contrast to
our method’s consistent performance improvements. These results further substantiate the
effectiveness of our multimodal approach.

Other architectures have also been benchmarked on MalNet-Graph Tiny. Graph-
SAGE [54] obtained 88.1% accuracy, increasing to 89.2% with GST+EFD [81]—both values

Figure 16. SHAP global feature importance graph for DenseNet121-GIN on the test dataset.

5.7. Comparison with Previous Works

Table 6 presents the accuracy of other methods applied to similar samples. In the
absence of multimodal approaches sharing our data, we compare our results with graph-
based methods using MalNet-Graph Tiny [8], which differs from MalNet-Image Tiny [9]
in malware volume and types. Several studies [8,14,48] employ GCN and/or GIN-based
methods, enabling a more direct comparison with the performance gains of our approach,
while some [14,48,49,83–85] utilised alternative architectures.

DenseNet121-GCN outperforms DenseNet121 by 2.6% accuracy and GCN [8] by
7.9% accuracy. Moreover, while our reimplemented GIN model achieves 89.1%, and
DenseNet121 attains 86.3%, fusing these models reaches 90.6%—surpassing the 90% re-
ported for GIN, the strongest model in [8]. Jumping Knowledge (JK) [73] boosts GCN’s
accuracy to 89.7% [14], exceeding DenseNet121-GCN by 0.8%. However, our DenseNet121-
GIN model achieves 90.6%, outperforming GIN-JK by 0.6%. Notably, JK did not enhance
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the GIN architecture [14], whereas our method consistently improves performance. These
results further substantiate the effectiveness of our multimodal approach.

Table 6. Accuracy compared with previous works evaluated with MalNet-Graph Tiny.

Model Category Accuracy (%)

GCN [8] Spectral-based GNN 81 *

GCN GST + EFD [48] Spectral-based GNN 88.8
GCN-JK [14] Spectral-based GNN 89.7
GIN [8] Spatial-based GNN 90 *

GIN-JK [14] Spatial-based GNN 90.0
GraphSAGE [48] Spatial-based GNN 88.1
GraphSAGE GST + EFD [48] Spatial-based GNN 89.2
GraphSAGE-JK [14] Spatial-based GNN 94.4
HGNN [83] Spectral-based HNN 87.6
HyperGCN [83] Spectral-based HNN 79.3
HGNNP [83] Spectral-based HNN 91.1
UniGIN [83] Spatial-based HNN 89.0
GraphGPS [48] Graph Transformer 90.8
GraphGPS GST + EFD [48] Graph Transformer 92.5
Exphormer [49] Graph Transformer 94.0
GraphCL [84] Graph Contrastive Learning 87.6

Inferential SIR-GN [85] Graph Structural Representation
Learning 92 *

DenseNet121 CNN 86.3
GCN † Spectral-based GNN 80.6
GIN † Spacial-based GNN 89.1
DenseNet121 + GCN CNN-GNN Ensemble 88.9
DenseNet121 + GIN CNN-GNN Ensemble 90.6

* Presented with a precision of two significant figures, as specified in the referenced publication.
† Our reproduction.

Other architectures have also been benchmarked on MalNet-Graph Tiny. Graph-
SAGE [57] obtained 88.1% accuracy, increasing to 89.2% with GST+EFD [48]—both values
below DenseNet121-GIN. However, GraphSAGE-JK achieved 94.4% accuracy [14], though a
GraphSAGE baseline was not provided in that study. DenseNet121-GIN outperforms three
Hypergraph Neural Network (HNN) approaches, although it is surpassed by HGNNP [83].
GraphCL [86] shares a drawback with our approach by requiring two models to learn
from the same samples; however, it only achieved an accuracy of 87.6% [84], 3.0% lower
than DenseNet121-GIN [84]. However, Inferential SIR-GN [87] and Transformer-based
methods [47] have exceeded the performance of the base and ensemble models used to
validate our approach [48,49,85]

Although some architectures surpass our method in absolute performance, our multi-
modal approach generally compares favourably. Further optimising our base models (e.g.,
DenseNet121) may enhance ensemble performance. Nonetheless, the modular design of
our late-fusion approach ensures compatibility with other unimodal techniques. Ablation
experiments show consistent performance improvements (see Table 4), with the ensem-
ble benefiting from stronger base models. Consequently, our framework can be readily
extended to incorporate different unimodal algorithms to directly assess the performance
gains from multimodal fusion.

6. Discussion
Addressing RQ1, the results confirm that simple multimodal fusion improves Android

malware classification compared with unimodal models. Irrespective of the unimodal
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algorithm used, late fusion of binary images and FCGs consistently outperforms unimodal
baselines across all key evaluation metrics. The notable accuracy gains, such as the 5.2%
improvement seen with the CNN-GCN ensemble, not only justify the added computation
but also suggest that leveraging complementary features from different modalities can
enhance model robustness and adaptability to varied malware strains. Meanwhile, neither
modality consistently outperformed the other, as unimodal performance depended on the
architecture and parameters used—aligning with literature identifying both CNN-based
textural bytecode analysis and GNN-based topological analysis of API calls as effective
methods for malware feature extraction.

Our approach maintains the efficient code coverage characteristic of static analysis, as
evidenced by classification times of a few milliseconds per sample—related to its simplicity,
the enhanced multimodal classifications can require less time than the combined times of
the unimodal components. Additionally, the meta-classifier is efficient to train, converging
in a few epochs (e.g., 5 for DenseNet121-GIN). Moreover, on a single core of Google Cloud’s
general-purpose N2 machine, processing an RGB binary image or its corresponding FCG
from an APK takes an average of 7.7 s (extrapolated from the reported one-week processing
time on 16 N2 cores for the full MalNet datasets [8,9]) and, in contrast to dynamic analysis,
this processing is hardware-unspecific. Additionally, 256 × 256 images and FCG edge lists
take up minimal disc space. Thus, our approach—from raw APK through to classification—
is highly streamlined, making it practical for real-world deployment. Yet, the holistic nature
of our method also partially mitigates common challenges in static analysis, improving the
detection of sophisticated malware that may evade other methods. By avoiding signature
detection, our approach is less vulnerable to polymorphism. Further, the multimodal
strategy may leverage graph-based detectors’ resilience to obfuscation and concept drift,
along with image-based robustness to APK-level adversarial attacks [65], resulting in
protection against broader threats.

Further supporting practical uptake, our framework is straightforward to implement.
The use of advanced deep-learning models at each stage automates feature extraction and
analysis, eliminating the need for manual feature engineering which typically demands
specialised expertise. Our simple fusion method also avoids complex and computationally
intensive preprocessing steps (e.g., tokenisation and normalisation) required by other
multimodal approaches [53]. In addition, our approach introduces a minimal number of
tuneable parameters, reducing the time required for further optimisation. By pretraining
unimodal algorithms independently, the search space increases linearly with additional
algorithms. Moreover, optimising the meta-classifier is highly efficient. On an NVIDIA
Tesla P100, Optuna [80] required only 3 h and 20 min to optimise DenseNet121-GIN.
Advanced CNNs (e.g., DenseNet [18]) required minimal tuning, making this the only
additional tuning beyond that for the GNN. Finally, we also propose simple averaging as a
practical alternative that eliminates optimisation for the data fusion step.

Regarding RQ2, while we did not experiment with early fusion due to the heterogene-
ity of our modalities and models, our evaluation indicates that late fusion outperforms
intermediate fusion strategies. This superiority likely arises from preserving modality-
specific learning until the final aggregation step, which promotes an effective combination
of diverse predictions and implies that modular architectures could benefit other multi-
modal tasks as well. Specifically, it suggests that integrating binary images and FCGs offers
primarily complementary rather than cooperative or redundant features, with each modal-
ity largely influencing the target variable independently. This follows from the different
information captured by either modality: while binary images represent low-level bytecode
patterns, FCGs explicitly model a program’s high-level behaviour, logical structure, and
control flow. Their fusion thus provides primarily non-overlapping information, thereby



Mach. Learn. Knowl. Extr. 2025, 7, 23 24 of 29

reducing the emphasis on cross-modality relationships. This enabled us to benefit from the
advantages of late fusion—namely, reducing model complexity and overfitting risk [79].
Yet, the superior performance of meta-learning over simple averaging suggests that it
partly compensates for not explicitly modelling redundant and cooperative relationships.
By learning complex relationships between base model predictions, the MLP effectively
models (non-)linear interactions without directly learning correlations between features of
different modalities.

In relation to RQ3, algorithmic heterogeneity within ensembles generally enhances
classification performance [10–12]. Diverse learning approaches—as exhibited across mod-
els developed for different modalities—help mitigate individual model biases and errors,
yielding more robust detection, especially when weaker base models are incorporated. This
likely contributed to our finding that all multimodal models outperformed their unimodal
counterparts. However, introducing an additional model to each modality did not fur-
ther improve overall performance. This demonstrates the efficiency of our approach: the
performance gains of combining binary images and FCGs can be realised by extracting
marginal representations with one algorithm per modality, thereby minimising increases
in computation and the hyperparameter search space. Nevertheless, it also emphasises
the need for strategic selection of complementary models rather than simply increasing
ensemble size.

Study Limitations and Future Work

This study is limited by its use of a curated subset of the MalNet dataset, which does not
capture the full complexity of larger-scale datasets. Future work should extend the proposed
framework to the complete MalNet dataset to validate scalability and generalisability.

Additionally, the use of static analysis, although efficient, limits the ability to han-
dle obfuscation, dynamic loading, and other evasive techniques. While our multimodal
deep-learning approach compensates for this to some degree, future work could explore
combining our methods with dynamic analysis to address these limitations.

Moreover, our experiments focus primarily on simple fusion strategies and a limited
set of CNN and GNN architectures. Expanding the exploration to include more advanced
fusion techniques, such as attention-based mechanisms and diverse deep-learning architec-
tures, could further enhance performance. Additionally, finding the optimal fusion strategy
is non-trivial and highly dependent on the problem and modalities used. Automating
this process is an active area of research [2] and is yet to be explored in the context of
malware detection.

Another limitation is the increase in the number of tuneable parameters; however,
since this grows linearly, the complexity remains manageable. Moreover, although our
approach adds computational overhead by processing and integrating multiple modal-
ities, multimodal classification times remained within a few milliseconds per sample,
representing a favourable trade-off for enhanced performance. However, the use of deep
learning may become a bottleneck in resource-constrained environments, where the smaller
improvements to stronger unimodal models (e.g., GIN) might not justify the added compu-
tational cost. This aligns with [31] which argues that performance enhancements should be
balanced with practical feasibility according to the application.

Finally, while this work demonstrates the efficacy of multimodal integration and
employs SHAP [82] to interpret the fusion step, incorporating modal explainable AI meth-
ods, such as GradCAM [88] (binary images) or SubgraphX [89] (FCGs), in future research
could offer more comprehensive interpretability, improving trust and adoption in real-
world applications.
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7. Conclusions
We propose a multimodal deep-learning approach for Android malware classifica-

tion. We employ CNNs and GNNs to analyse binary images and function call graphs for
subsequent fusion. Experimenting with four simple fusion methods—two intermediate
and two late—we find that concatenating competing predictions to form inputs for an
MLP meta-classifier performs best. This modular strategy fully exploits complementary
features and consistently outperforms unimodal baselines across diverse architectures—for
example, a plain CNN-GNN ensemble boosted overall accuracy by 5.2%. Meanwhile, the
90.6% accuracy of DenseNet121-GIN highlights the effectiveness of both the underlying
features and the late fusion strategy in integrating their marginal representations for clas-
sification. Due to its static nature, our approach achieves these improvements with high
efficiency, while alleviating several challenges common to other static techniques. Our
setup automatically extracts features and analyses samples without laborious feature engi-
neering or preprocessing—the latter often encountered in other multimodal deep-learning
approaches. Finally, our experiments indicate that the performance gains from combining
binary images and FCGs can be realised with just one algorithm per modality. Overall, our
results demonstrate that multimodal deep learning provides a framework for developing
algorithms that capture and integrate distinct application characteristics for robust Android
malware classification.
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