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A B S T R A C T
Context: Decentralized Federated Learning (DFL) is an emerging paradigm that enables collaborative
model training without centralized data and model aggregation, enhancing privacy and resilience.
However, its sustainability remains underexplored, as energy consumption and carbon emissions vary
across different system configurations. Understanding the environmental impact of DFL is crucial for
optimizing its design and deployment.
Objective: This work aims to develop a comprehensive and operational framework for assessing the
sustainability of DFL systems. To address it, this work provides a systematic method for quantifying
energy consumption and carbon emissions, offering insights into improving the sustainability of DFL.
Methods: This work proposes GreenDFL, a fully implementable framework that has been integrated
into a real-world DFL platform. GreenDFL systematically analyzes the impact of various factors,
including hardware accelerators, model architecture, communication medium, data distribution, network
topology, and federation size, on the sustainability of DFL systems. Besides, a sustainability-aware
aggregation algorithm (GreenDFL-SA) and a node selection algorithm (GreenDFL-SN) are developed
to optimize energy efficiency and reduce carbon emissions in DFL training.
Results: Empirical experiments are conducted on multiple datasets, measuring energy consumption
and carbon emissions at different phases of the DFL lifecycle. Results indicate that local training
dominates energy consumption and carbon emissions, while communication has a relatively minor
impact. Optimizing model complexity, using GPUs instead of CPUs, and strategically selecting
participating nodes significantly improve sustainability. Additionally, using wired communication,
particularly optical fiber, effectively reduces energy consumption during the communication phase,
while integrating early stopping mechanisms further minimizes overall emissions.
Conclusion: The proposed GreenDFL provides a comprehensive and practical approach for assessing
the sustainability of DFL systems. Furthermore, it offers best practices for improving environmental
efficiency in DFL, making sustainability considerations more actionable in real-world deployments.

1. Introduction
With the wide adoption of Artificial Intelligence (AI),

especially the emergence of intelligent assistants based
on Large Language Models (LLMs), Machine Learning
(ML) has become deeply integrated into daily life [45].
The neural scaling law is no longer a prediction of real-
world observations; it has come to be broadly recognized
as a fundamental principle [23]. However, developing ever-
larger ML models requires feeding them ever-increasing
amounts of data. In the vanilla ML training process, data
are typically centralized in a single entity or data center to
facilitate training, thus, raw user data must be transferred
and stored on a central server. This centralized approach,
however, raises significant privacy concerns: users prefer not
to expose their sensitive information [28]. Meanwhile, legal
and regulatory requirements increasingly restrict extensive
data aggregation [3]. As a novel paradigm that mitigates these
privacy challenges, Federated Learning (FL) has garnered
substantial attention for its privacy-preserving capabilities
and collaborative learning mechanisms [30].
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FL leverages a distributed training paradigm that distin-
guishes it from conventional ML training [28]. In FL, data
remain on local devices (clients), and each client trains a local
model using its private data. These locally trained models,
rather than the raw data, are then sent to a central server for
aggregation and subsequent redistribution. However, such a
Centralized FL (CFL) architecture suffers from the drawbacks
of a single point of failure and potential bottlenecks at the
central server. To overcome these limitations, Decentralized
FL (DFL) removes the central server, employing peer-to-
peer communication such that models are directly exchanged
among nodes for aggregation [3]. By eliminating the client-
server distinction, DFL mitigates the single-point-of-failure
risk and offers greater system robustness. In DFL, data
remain on each node for local training; afterward, models
are exchanged and aggregated among neighboring nodes,
proceeding recursively until the federated model converges.
This paradigm not only addresses the server bottleneck but
also enables more flexible network topologies and improved
scalability [3]. However, FL is not immune to privacy and
poisoning risks, since model updates can still leak sensitive
information through inference or reconstruction attacks [12].
In practice, CFL has been adopted in applications such as
Google Gboard [17] and Apple Siri [16], while DFL remains
largely at the research stage.
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As a specialized class of software systems, AI systems
are increasingly becoming a critical topic in sustainability
research [25]. The scaling laws that drive larger models
inherently imply massive computational demands. Support-
ing these large-scale computations consumes substantial
amounts of energy and has significant environmental im-
pacts, particularly greenhouse gas emissions [10]. However,
current studies on the sustainability of AI software systems
have predominantly concentrated on energy consumption
in traditional centralized ML paradigms, leaving a gap in
rigorous frameworks for assessing and quantifying sustain-
ability in distributed and especially fully decentralized FL
systems [13].

In DFL systems, nodes may be geographically distributed
across different regions or even countries, necessitating an in-
dependent evaluation of each node’s energy consumption and
carbon emissions. Such complexity is not commonly encoun-
tered in centralized AI systems, where training occurs in a
single data center. Moreover, in DFL, each node is responsible
not only for local model training but also for model comm and
aggregation. Research on centralized ML typically focuses
on the energy consumption and environmental impacts of
model training alone, largely overlooking the substantial
energy costs of communication and model aggregation. While
studies have explored sustainability in CFL by measuring
carbon emissions, research on DFL remains limited [13].
In particular, there is a lack of comprehensive solutions for
systematically measuring sustainability aspects in DFL and
integrating energy-efficient strategies into node selection and
aggregation processes. Furthermore, heterogeneity presents
additional hurdles in DFL. Nodes may vary regarding lo-
cal data distributions, tasks, security requirements, model
architectures, and hardware capabilities. This multi-layered
heterogeneity makes it challenging to develop standardized
methodologies for evaluating and reducing the environmental
footprint of DFL systems, further highlighting the need for
targeted research on sustainability-aware DFL frameworks.

To address the current research gap in assessing the
sustainability of DFL systems, this paper proposes the
GreenDFL framework for quantitatively analyzing and evalu-
ating DFL energy consumption and environmental impacts.
The framework takes account of the entire lifecycle of the
DFL model training process, encompassing local training,
communication, and model aggregation. The main contribu-
tions are as follows:

• Quantitative Sustainability Framework: This paper
proposes an operational framework, named GreenDFL,
for comprehensively computing energy consumption
and equivalent CO2 emissions in DFL systems, en-
abling a quantitative assessment of their sustainability
and environmental impacts. A prototype of the pro-
posed framework is implemented and integrated into
an open-source DFL system, Nebula 1, demonstrating
its feasibility and effectiveness in real-world scenarios.

1Code available at: https://github.com/CyberDataLab/nebula

• Sustainability-Aware Aggregation and Node Selec-
tion Algorithm: A sustainability-aware aggregation
algorithm (GreenDFL-SA) is developed to optimize
the environmental impact of the aggregation process,
ensuring a more energy-efficient model update. Addi-
tionally, a node selection algorithm (GreenDFL-SN)
is introduced to determine participating nodes during
each training round dynamically. This method utilizes
a voting mechanism, allowing nodes to decide which
participants continue training based on their reported
sustainability metrics, thereby reducing overall energy
consumption while maintaining model performance.

• Empirical Analysis: Through extensive experiments
and case studies, the paper applies the proposed
framework to identify and analyze factors affecting the
sustainability of DFL, offering practical insights into
energy consumption trade-offs and carbon footprint
reduction strategies.

• Best Practices for Sustainable DFL: This paper
provides recommendations for enhancing the sus-
tainability of DFL systems, including strategies for
optimizing model training strategy and leveraging
renewable energy sources.

The remainder of this paper is organized as follows.
Section 2 contains findings from the literature review on
sustainability in FL. Section 3 introduces the proposed
GreenDFL framework. Section 4 details its implementation.
Section 5 presents the experimental results and analyzes key
findings. Section 6 discusses best practices for sustainable
DFL. Threats to validity are discussed in Section 7. Finally,
Section 8 summarizes the conclusions and outlines directions
for future research.

2. Related Work
This section provides a review of the literature concerning

the energy consumption and environmental impacts associ-
ated with FL. Table 1 summarizes the research findings on the
environmental sustainability aspect of ML and FL systems.

Sustainability in software engineering has been con-
ceptualized as a multi-dimensional construct by the Karl-
skrona Manifesto for Sustainability Design [2]. It identifies
environmental, social, economic, technical, and individual
dimensions of sustainability. The environmental dimension
emphasizes minimizing the negative ecological impact of
software systems throughout their lifecycle. This includes
the consumption of natural resources (such as energy), the
generation of emissions (such as CO2), and the long-term
ecological consequences of operating large-scale computing
infrastructures.

Although the sustainability of traditional ML has attracted
attention in academia, research on the sustainability of FL
remained relatively scant. [33] indicated that the geographic
location of ML training servers, the composition of the
energy grid, the duration of the training, and even the specific
brand and hardware type significantly affected overall carbon
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Table 1
Comparison of Related Work Regarding Energy Consumption , Environmental Impacts, and Software Aspects in ML, FL, and
Software Systems

Work Paradigm Metrics Software/Engineering
Aspect

Highlights Optimization Strategies

[35] 2021 ML, CFL CO2 Simulation scripts only, no
reusable software

Quantify carbon emission esti-
mation of CFL.
Compare the carbon emission
of CFL and ML.

None

[36] 2023 CFL Energy,
CO2

Real hardware experiments,
methodology only (no frame-
work)

Introduce a generalized
methodology to compute the
carbon footprint of CFL.

None

[40] 2023 ML, CFL,
DFL

Energy,
CO2

Analytical model, no system
implementation

Propose frameworks for the
calculation of energy consump-
tion and carbon emission in
ML, CFL, and DFL.

None

[13] 2024 CFL Hardware
efficiency,
carbon
intensity

Implementation in a CFL plat-
form

Qualitative sustainability anal-
ysis of CFL

None

[41] 2025 FL Multi-
dimensional

Survey only, no software/tool
contribution

Taxonomy of Green FL meth-
ods

Guidelines for energy-
efficient FL

[26] 2025 Software
systems

Sustainability
indicators

Developed toolkit for soft-
ware sustainability assess-
ment

Toolkit with multi-
dimensional indicators

Conceptual modeling

[31] 2024 ML-
enabled
systems

Accuracy/
energy
trade-off

Concept drift detection algo-
rithm, not a full system

Trade-offs between monitoring
accuracy and energy

Algorithm-level
optimization

[22] 2024 Data cen-
ters

CiS2, ISO
30134-4

KPI metrics for datacenters,
no software

Standardized sustainability
metrics

Resource scheduling

[1] 2025 Cloud-
native
systems

Energy pro-
filing

Cloud-native software experi-
ments

Energy profiling of software
systems

Architectural optimiza-
tion

[11] 2025 ML Energy per
epoch

Experimental training opti-
mizations, no general soft-
ware framework

Energy-efficient training (layer
freezing, quantization)

Algorithm-level energy
reduction

This work CFL, DFL Energy
(kWh), CO2

Implementation on Nebula
DFL platform

Quantitative sustainability
assessment of DFL.
Development of sustainability-
aware aggregation (GreenDFL-
SA) and node selection
(GreenDFL-SN) algorithms

Aggregation + node
scheduling optimization

emissions. Algorithm-level techniques such as runtime layer
freezing, quantization, and early stopping, as proposed by
Domingo-Reguero et al. [11], can reduce the training energy
of ML models. Even though these works focused on ML, they
inspired subsequent research on the sustainability of FL.

A pioneering effort in FL sustainability was presented
in [35], which offered the first systematic investigation into
the carbon footprint of centralized FL (CFL). This work
introduced a model for quantifying the carbon footprint of
CFL, thus enabling an in-depth examination of how different
CFL design choices influenced carbon emissions. In addition,
it compared CFL’s carbon footprint with that of centralized
ML. Subsequent research generalized the carbon emissions
calculation method across various CFL configurations and
tested it on real CFL hardware setups, examining how
different settings, model architectures, training strategies, and

tasks affect sustainability [36]. Feng et al. [13] expanded the
trustworthiness framework for CFL by introducing sustain-
ability as a new evaluation pillar, thereby addressing all seven
key AI requirements outlined by the European Commission’s
High-Level Expert Group on AI. In this expanded framework,
sustainability was evaluated through qualitative metrics such
as hardware efficiency, federation complexity, and the carbon
intensity of local energy grids, offering insights into the
environmental footprint of FL systems. However, this study
employed a qualitative approach and did not provide a
quantitative analysis of FL’s sustainability. Beyond these
individual contributions, a survey by Thakur et al. [41]
synthesized the emerging field of Green FL. The survey
identified energy- and carbon-aware techniques across the
FL lifecycle, but also emphasized that most existing efforts
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remained fragmented and largely restricted to CFL, with
limited attention to decentralized settings.

A further contribution introduced a framework for analyz-
ing energy consumption and carbon emissions in ML, CFL,
and DFL contexts [40]. This work quantified both the energy
consumption and the equivalent carbon emissions associated
with classical FL approaches as well as consensus-based
decentralized methods, pinpointing optimal thresholds and
operational parameters that could make FL designs more
environmentally friendly. This study proposed a general
computational framework but did not differentiate between
energy consumption and carbon emissions from training
versus aggregation. Moreover, it assumed that each node’s
energy consumption was known, a condition that is often
infeasible in practice.

In parallel, the broader software and data center communi-
ties have developed sustainability assessment frameworks and
standardized metrics. Lago et al. [26] proposed a modeling
toolkit that consolidates more than a decade of experience in
sustainability assessment for software systems. Their frame-
work emphasizes multi-dimensional indicators and provides
guidelines for modeling trade-offs across environmental,
economic, and technical dimensions. While this toolkit is
versatile, it was designed primarily for centralized software
systems and lacks mechanisms to capture the dynamic and
distributed nature of DFL.Omar et al. [31] evaluated the sus-
tainability from a monitoring perspective, analyzing the trade-
offs between accuracy and energy consumption in concept
drift detection for ML-enabled systems. Their work highlights
the importance of balancing functional performance with
energy efficiency, yet it remains confined to specific ML mon-
itoring tasks and does not provide a generalized framework
applicable to collaborative training. Juiz et al. [22] advanced
the state of practice in sustainable data centers by defining
ISO-compliant metrics such as the consolidated CiS2 metric.
These metrics enable benchmarking of energy efficiency
and carbon emissions at the datacenter scale, but they
assume controlled environments with centralized resource
management, which is in stark contrast to the heterogeneity
and autonomy of edge devices in DFL. Similarly, Andringa
et al. [1] investigated the energy consumption of cloud-native
software, uncovering how architectural choices influence
runtime energy usage. Their findings reinforce the role of
software architecture in shaping sustainability outcomes but
remain limited to cloud-native deployments.

Industry tools such as Google’s Carbon Footprint [6],
IBM’s Cloud Carbon Calculator [21] and Salesforce’s Net
Zero Cloud [39] provide carbon accounting and resource
optimization capabilities in cloud datacenters, but they are
tailored for centralized cloud environments and offer limited
support for edge computing and IoT scenarios.

In conclusion, existing research and tools on software
sustainability primarily focused on centralized systems, with
limited attention paid to DFL. Although DFL-focused works
identified various factors affecting energy efficiency and
carbon emissions, their proposed computational methods
lacked practical operability. In addition, these studies often

overlooked the renewable energy substitution rate in the
nodes’ energy sources, relying instead on broad estimates
of the local grid’s carbon intensity, which introduced inac-
curacies. Moreover, existing work provided limited practical
guidance for training real-world DFL systems, as it did not
propose an algorithm that used sustainability metrics to
optimize node selection in DFL.

3. The GreenDFL Framework
This section delves into the detailed methodologies of the

GreenDFL framework for calculating energy consumption
and carbon emissions within DFL environments.
3.1. Research Methodology

This section presents the research methodology, including
the defined research scope, the formulated research questions,
and the applied methodological approach.
3.1.1. Research Scope

This work investigates the environmental sustainability
of DFL systems, focusing on energy consumption and carbon
emissions. Other sustainability dimensions, such as social or
economic factors, are beyond its scope. While the sustainabil-
ity of a DFL system can be affected by various stages of the
ML lifecycle, including data collection, model development,
training, and deployment, this work concentrates on the
learning stage, as it represents the dominant share of runtime
energy usage in DFL. The developed models and prepared
datasets are assumed to be available to all nodes before
training.
3.1.2. Research Questions

To structure the investigation, this work formulates three
research questions. These research questions address the main
sources of environmental impact in DFL, the conditions under
which sustainability varies, and the potential of optimization
strategies. This work is guided by the following research
questions:

• RQ1: Which phase of the DFL lifecycle, train-
ing, communication, or aggregation, contributes
most to energy consumption and carbon emissions?
This question aims to identify the main source of
environmental impact within the iterative process of
DFL. Understanding the relative contribution of each
phase provides guidance on where optimization efforts
should be directed.

• RQ2: How do system- and environment-related
factors, such as network topology, data distribution,
model architecture, and energy carbon intensity,
affect the sustainability of DFL? This question
examines the sensitivity of DFL sustainability to both
design choices and external conditions. The results
can reveal which parameters are most influential and
should be considered when deploying DFL systems.
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Figure 1: Overall Architecture of the GreenDFL Framework

• RQ3: Can sustainability-aware aggregation and
node selection strategies reduce the environmen-
tal footprint of DFL compared to standard ap-
proaches? This question evaluates the effectiveness of
algorithmic modifications that incorporate sustainabil-
ity metrics into decision-making. It tests whether such
strategies can achieve measurable reductions in energy
consumption and carbon emissions.

3.1.3. Methodological Process
To address these research questions, the work follows a

five-step methodological process. First, a literature review is
conducted to examine sustainability in ML and FL, together
with established frameworks for software systems, data
centers, and cloud-native applications. Secondly, building on
these insights, the GreenDFL framework is designed, defining
relevant metrics and modeling the DFL lifecycle in terms
of training, communication, and aggregation. Based on this
framework, sustainability-aware aggregation (GreenDFL-SA)
and node selection (GreenDFL-SN) algorithms are developed
that incorporate environmental metrics into decision-making.
The framework and algorithms are then implemented within
the Nebula DFL platform to ensure practical applicability.
Finally, a series of experiments across datasets, network
topologies, and geographic settings are carried out to evaluate
the framework and to answer RQ1 to RQ3.
3.2. GreenDFL Overview

The GreenDFL framework models the lifecycle of DFL
in three stages: training, communication, and aggregation.

These stages describe the main processes in most FL sys-
tems [3]. Variants such as fog computing, edge hierarchies,
or grid-based federations can be mapped to these processes.

• Model Training: This phase involves the local com-
putation by DFL nodes, where models are trained on
distributed nodes using local data. This is the most
computationally intensive phase, often resulting in
significant energy use and associated carbon emissions.

• Communication: Communication refers to exchang-
ing local models among nodes in DFL systems. This
stage involves sending the local model to other nodes
and receiving models from them. Since the primary en-
ergy consumption arises from network communication,
the size of the model plays a critical role.

• Model Aggregation: When a node receives the desired
models from other nodes, it uses an aggregation
algorithm, commonly FedAvg, to aggregate its local
model with the received models. This aggregation’s
computational load depends on the number of models
being merged and the size of their parameters. Conse-
quently, the scale and topology of the DFL system often
play a critical role in determining energy consumption
at this stage.

In line with the DFL learning lifecycle, as shown in Fig-
ure 1, GreenDFL divides the sustainability analysis of DFL
systems into three phases: model training, communication,
and model aggregation. Each phase is examined for its energy
consumption and carbon emissions, offering a holistic view
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Table 2
Table of Notations

Symbol Definition

𝐾 Number of nodes in the system
𝑛 Number of global learning rounds
𝑃𝑈𝐸𝑘 Power Usage Effectiveness of node 𝑘, measuring

power efficiency
𝑇𝐷𝑃𝑘 Thermal Design Power of node 𝑘, indicating peak

heat dissipation
𝛽(𝑇 )
𝑘,𝑡 CPU utilization rate during training at node 𝑘 in

round 𝑡
𝑇 (𝑇 )
𝑘,𝑡 Duration of local training at node 𝑘 in round 𝑡

𝑃 (GPU)
𝑡 Power consumption of GPU in round 𝑡

𝛽(𝐴)
𝑘,𝑡 CPU utilization rate during aggregation at node 𝑘 in

round 𝑡
𝑇 (𝐴)
𝑘,𝑡 Duration of model aggregation at node 𝑘 in round 𝑡

𝐵sent
𝑘,𝑡 Total bytes sent by node 𝑘 in round 𝑡

𝐵recv
𝑘,𝑡 Total bytes received by node 𝑘 in round 𝑡

𝐸(𝐶)
byte,𝑘 Energy consumption per byte transmitted at node 𝑘

of the environmental impact of DFL systems. The following
subsections decompose and explain each phase in GreenDFL
from energy consumption and carbon emissions perspectives,
providing a practical computational framework.
3.3. Calculation of Energy Consumption

The energy consumption of GreenDFL can be broken
down into three components: model training, model com-
munication, and model aggregation. For the training and
aggregation stages, GreenDFL adopts a quantifiable and im-
plementable approach by primarily considering each node’s
hardware architectures (i.e., device models and different
accelerators), hardware resource utilization, and computation
time. For model communication, GreenDFL focuses on the
volume of data being sent and received, as well as the energy
required to transfer one byte of data. Thus, the total energy
consumption could be modeled as:

𝐸 = 𝐸(𝑇 ) + 𝐸(𝐶) + 𝐸(𝐴) (1)
where 𝐸(𝑇 ), 𝐸(𝐶), 𝐸(𝐴) are the energy consumption in the
model training, communication, and aggregation, respec-
tively. While studies, such as [11], employ normalized
metrics (e.g., energy per epoch or FLOPs per Watt) to assess
efficiency, these primarily capture computational operations
and do not account for the communication stage, which is an
important component in DFL. Therefore, this work adopts
absolute energy consumption and carbon emissions as the
main sustainability indicators.

Before presenting the detailed energy consumption model,
Table 2 summarizes the key notations used in the subsequent
equations.
3.3.1. Model Training Phase Energy Consumption

The calculation of energy consumption for local model
training in a node depends on the type of accelerator utilized,
such as CPUs or GPUs. During the training process, nodes

may employ only CPUs or a combination of CPUs and GPUs.
The total energy consumption for local training is determined
by summing the energy consumed by both components, with
GPU energy consumption considered zero when GPUs are
not in use. The energy consumption for CPU-based and GPU-
based training is formulated in Equation (2).

𝐸(𝑇 ) = 𝐸(𝑇 )
CPU + 𝐸(𝑇 )

GPU

𝐸(𝑇 )
CPU =

𝐾
∑

𝑘=1

𝑛
∑

𝑡=1
𝑃𝑈𝐸𝑘 ⋅ 𝑇𝐷𝑃𝑘 ⋅ 𝛽

(𝑇 )
𝑘,𝑡 ⋅ 𝑇 (𝑇 )

𝑘,𝑡

𝐸(𝑇 )
GPU =

𝐾
∑

𝑘=1

𝑛
∑

𝑡=1
𝑃 (GPU)
𝑡 ⋅ 𝑇 (𝑇 )

𝑘,𝑡

(2)

Equation 2 quantifies the total CPU energy consumption
during local training. The calculation considers the power
usage effectiveness (𝑃𝑈𝐸𝑘), the thermal design power
(𝑇𝐷𝑃𝑘), CPU utilization rate (𝛽(𝑇 )𝑘,𝑡 ), and the training duration
(𝑇 (𝑇 )

𝑘,𝑡 ). Besides, it calculates the total GPU energy consump-
tion across all nodes and rounds, considering the training
time (𝑇 (𝑇 )

𝑘,𝑡 ) and GPU power consumption (𝑃 (GPU)
𝑡 ). Rather

than relying on the GPU’s TDP, which denotes a vendor-
specified upper bound and typically overestimates actual
runtime consumption, this work derives energy estimates
from measured GPU power values sampled during training
(e.g., via nvidia-smi), ensuring a more accurate representation
of real energy usage.
3.3.2. Communication Phase Energy Consumption

In DFL systems, energy consumption is not limited to
computation but also arises from communication. During
model updates, nodes exchange data, contributing to overall
energy consumption. The energy consumption for communi-
cation is formulated as in Equation (3):

𝐸(𝐶) =
𝐾
∑

𝑘=1

𝑛
∑

𝑡=1

[(

𝐵sent
𝑘,𝑡 + 𝐵recv

𝑘,𝑡

)

⋅ 𝐸(𝐶)
byte,𝑘

]

(3)

Equation (3) accounts for both sent (𝐵sent
𝑘,𝑡 ) and received

(𝐵recv
𝑘,𝑡 ) data at each node during each training round. The

energy per byte transferred (𝐸(𝐶)
byte) is multiplied by the total

data exchanged.
3.3.3. Model Aggregation Phase Energy Consumption

The energy consumption during the aggregation phase is
computed as follows:

𝐸(𝐴) = 𝐸(𝐴)
CPU + 𝐸(𝐴)

GPU

𝐸(𝐴)
CPU =

𝐾
∑

𝑘=1

𝑛
∑

𝑡=1
𝑃𝑈𝐸𝑘 ⋅ 𝑇𝐷𝑃𝑘 ⋅ 𝛽

(𝐴)
𝑘,𝑡 ⋅ 𝑇 (𝐴)

𝑘,𝑡

𝐸(𝐴)
GPU =

𝐾
∑

𝑘=1

𝑛
∑

𝑡=1
𝑃 (GPU)
𝑡 ⋅ 𝑇 (𝐴)

𝑘,𝑡

(4)
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Table 3
Table of Notations

Symbol Definition

𝐶𝐼𝑘 Carbon intensity (gCO2/kWh) at node 𝑘
𝐶𝐼𝑘,local Local carbon intensity (gCO2/kWh) at node 𝑘
𝐶𝐼𝑘,renewable Carbon intensity for renewable energy, approxi-

mated as zero
𝑅𝑘 Renewable energy ratio at node 𝑘

Equation 4 follows a similar methodology to the energy
consumption calculation during training, incorporating both
CPU and GPU energy consumption depending on the type
of accelerator utilized.

By integrating these three aspects, GreenDFL offers a
comprehensive and operational framework for evaluating the
sustainability of DFL systems.
3.4. Calculation of Carbon Emissions

After computing the energy consumption of the DFL
system, the next step is to estimate its carbon emissions. This
process consists of two key steps. Firstly, the carbon intensity
(𝐶𝐼) of the energy used by each node must be identified, as it
varies depending on the regional energy grid carbon intensity
and the proportion of renewable energy utilized. Secondly,
the total carbon emissions of the DFL system are obtained
by multiplying the energy consumption of each node by its
corresponding carbon intensity. The total carbon emissions
of the DFL system are computed as follows:

𝐶 =
𝐾
∑

𝑘=1
𝐶𝐼𝑘 ⋅ 𝐸𝑘 (5)

where 𝐶 represents the total carbon emissions (gCO2)
of the DFL system, 𝐶𝐼𝑘 denotes the carbon intensity
(gCO2/kWh) at node 𝑘, and 𝐸𝑘 represents the total energy
consumption (kWh) of node 𝑘. This equation provides a
comprehensive assessment of the carbon footprint of a DFL
system by aggregating emissions across all nodes.

Before presenting the carbon intensity and emissions
calculations, Table 3 summarizes the key notations used in
the following equations.
3.4.1. Carbon Intensity

Carbon intensity is typically defined as the ratio of CO2emissions to energy consumption (gCO2/kWh). Calculating
carbon intensity is crucial because it quantifies the CO2emissions produced per unit of energy consumed. Carbon
intensity varies according to the geographic location of the
nodes, as different regions may depend on various energy
sources with distinct carbon footprints. The energy grid used
by a node can be determined by its location, typically defined
by the latitude and longitude, aligning with the energy mix
of the country where the node operates.

Besides, carbon intensity also depends on the renewable
energy ratio of the nodes’ local places. In this work, 𝐶𝐼𝑘,local

is treated as an external parameter that characterizes the
local grid mix at node 𝑘, obtained from official reports or
databases. An increasing number of data centers and even
households are integrating self-generated renewable energy
as an alternative to the traditional power grid. Considering
this factor allows for a more accurate assessment of carbon
emissions. The higher the renewable energy ratio, the lower
the carbon intensity of the region. The carbon intensity at a
given node is computed as follows:

𝐶𝐼𝑘 = 𝐶𝐼𝑘,local ⋅ (1 − 𝑅𝑘) (6)

𝐶𝐼𝑘,renewable ≈ 0 (7)
Equation 6 adjusts the local carbon intensity (𝐶𝐼𝑘,local)by the proportion of energy derived from the local grid

(1−𝑅𝑘). A higher renewable energy ratio (𝑅𝑘) results in lower
carbon intensity. This formulation does not redefine carbon
intensity; instead, it uses the standard carbon intensity factor
as a multiplier to translate energy consumption into total
emissions, while accounting for the fraction of renewable
energy. Equation 7 approximates the carbon intensity of
renewable energy sources as zero, referring to the operational
phase where emissions are negligible. It is acknowledged that
lifecycle emissions exist due to infrastructure development
(e.g., production of solar panels or wind turbines), yet these
are comparatively minor and typically amortized over the
long-term energy output.
3.4.2. Carbon Emissions

With the energy consumption and carbon intensity es-
tablished, the total carbon emissions at each node are de-
termined using the following equations. These equations
integrate energy consumption for training, aggregation, and
communication with the specific carbon intensity at each
node.

𝐶 =
𝐾
∑

𝑘=1
𝐶𝐼𝑘 ⋅ 𝐸𝑘

=
𝐾
∑

𝑘=1
𝐶𝐼𝑘 ⋅ 𝐸

(𝑇 )
𝑘 + 𝐸(𝐶)

𝑘 + 𝐸(𝐴)
𝑘

=
𝐾
∑

𝑘=1

𝑛
∑

𝑡=1
𝐶𝐼𝑘 ⋅ [𝑃𝑈𝐸𝑘 ⋅ 𝑇𝐷𝑃𝑘 ⋅ (𝛽

(𝑇 )
𝑘,𝑡 ⋅ 𝑇 (𝑇 )

𝑘,𝑡 + 𝛽(𝐴)𝑘,𝑡 ⋅ 𝑇 (𝐴)
𝑘,𝑡 )

+ 𝑃 (GPU)
𝑡 ⋅ (𝑇 (𝑇 )

𝑘,𝑡 + 𝑇 (𝐴)
𝑘,𝑡 ) + (𝐵sent

𝑘,𝑡 + 𝐵recv
𝑘,𝑡 ) ⋅ 𝐸(𝐶)

byte,𝑘]
(8)

As shown in Equation 8, by incorporating carbon
intensity and energy consumption, GreenDFL provides a
comprehensive assessment of the carbon emissions of DFL
systems, offering insights for optimizing energy efficiency
and reducing environmental impact.
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3.5. Sustainability-Aware Aggregation (SA)
The above analysis serves as the theoretical foundation,

providing a cornerstone for exploring sustainability-oriented
optimizations in DFL. Building on this basis, two optimiza-
tion directions are proposed, focusing on model aggregation
and node selection.

To optimize the environmental impact of the aggregation
process in DFL, this paper proposes a sustainability-aware
aggregation algorithm, GreenDFL-SA, as shown in Algo-
rithm 1.

In a DFL system, nodes exchange model updates and
carbon emission values with their neighboring nodes. Algo-
rithm 1 allows each node to dynamically select a subset of
its neighbors for model aggregation based on their carbon
emissions. By filtering out high-emission nodes, the system
promotes sustainable collaboration, effectively reducing the
overall carbon footprint of model training.

Algorithm 1 GreenDFL-SA Algorithm
Require: Total nodes 𝐾 , Current node 𝑖, Neighbor set 𝑖,Carbon threshold 𝐶thresh

1: Initialize selected neighbor set 𝑆𝑖 ← ∅
2: Broadcast local model 𝑀 (𝑡)

𝑖 and carbon emission 𝐶 (𝑡)
𝑖to neighbors 𝑖

3: Receive models {𝑀 (𝑡)
𝑗 }𝑗∈𝑖

and emissions {𝐶 (𝑡)
𝑗 }𝑗∈𝑖

4: for each neighbor 𝑗 ∈ 𝑖 do
5: if 𝐶 (𝑡)

𝑗 ≤ 𝐶thresh then
6: 𝑆𝑖 ← 𝑆𝑖 ∪ {𝑗} ⊳ Select neighbor 𝑗 for

aggregation
7: end if
8: end for
9: Compute aggregated model:

𝑀 (𝑡+1)
𝑖 =

∑

𝑗∈𝑆𝑖

𝑤𝑗𝑀
(𝑡)
𝑗 (9)

10: Update local model 𝑀 (𝑡+1)
𝑖

At the start of each training round, each node broadcasts
its local model and carbon emissions to its neighbors and
receives the same information. Each node then evaluates
the reported emissions of its neighbors against a threshold
that is determined during an initialization phase based on
the distribution of observed energy consumptions (e.g., set
to the 75th percentile). This threshold is predefined and
can be configured by the user during the setup phase. Only
models with emissions below this threshold are included in
the aggregation process.

All decisions are made locally by each node without
centralized coordination. Nodes that are not selected for
aggregation still proceed with the next round of training.
Therefore, this algorithm impacts only the sustainability of
the aggregation phase. The selected neighbors’ models are
then weighted and aggregated to update the local model. This
adaptive selection strategy ensures that nodes with lower
environmental impact have a greater influence on the global

model, fostering a more energy-efficient and sustainable DFL
process.
3.6. Sustainability-Aware Node Selection (SN)

The GreenDFL-SA optimizes energy consumption during
the aggregation phase. However, the training phase is the
most computationally intensive stage in the DFL learning
lifecycle, making it a critical target for energy optimization.
To address this, this work proposes the Sustainability-Aware
Node Selection Algorithm, called GreenDFL-SN, shown
in Algorithm 2, which aims to reduce energy consumption
during local training by selectively enabling only the most
sustainable nodes to participate in each training round.

The GreenDFL-SN algorithm operates independently
from the sustainability-aware aggregation (GreenDFL-SA)
and focuses on selecting participants for each training round.
The GreenDFL-SN algorithm ensures that nodes with higher
carbon efficiency are prioritized after each training round
for continued participation. At the end of a training round,
each node reports its carbon intensity, representing the
environmental impact of its energy consumption. Based
on these reports, nodes collectively decide which peers
should continue in the next round. The decision is made
in a distributed manner: each node compares the reported
carbon intensity of its neighbors with its own. If a neighbor’s
intensity is higher, it casts a negative vote; otherwise, it casts
a positive vote. A node is retained if it receives positive votes
from at least half of its neighbors; otherwise, it is excluded
from the subsequent round.

Algorithm 2 GreenDFL-SN Algorithm
Require: Number of nodes 𝐾 , Carbon Intensity (CI) reports

from all nodes
Ensure: Set of selected nodes for next training round 𝑆

1: Initialize vote counters 𝑣𝑖 ← 0 for all 𝑖 ∈ {1,… , 𝐾},
and 𝑆 ← ∅

2: Broadcast: each node 𝑖 sends 𝐶𝐼𝑖 to all neighbors
𝑗 ∈ 𝑖

3: Neighbor voting:
4: for each node 𝑖 ∈ {1,… , 𝐾} do
5: for each neighbor 𝑗 ∈ 𝑖 do
6: if 𝐶𝐼𝑗 ≤ 𝐶𝐼𝑖 then
7: 𝑣𝑗 ← 𝑣𝑗 + 1 ⊳ 𝑖 votes positively if 𝑗 is at

least as efficient
8: end if
9: end for

10: end for
11: Majority decision:
12: for each node 𝑖 ∈ {1,… , 𝐾} do
13: if 𝑣𝑖 >=

|𝑖|

2 then ⊳ at least 50% of neighbors voted
14: 𝑆 ← 𝑆 ∪ {𝑖}
15: else
16: exclude 𝑖 from next round
17: end if
18: end for
19: return 𝑆
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Figure 2: Integration of GreenDFL Framework to the Nebula Platform

Assume a 5-node line topology 𝐴−𝐵−𝐶−𝐷−𝐸 with
neighbor sets 𝐴 = {𝐵}, 𝐵 = {𝐴,𝐶}, 𝐶 = {𝐵,𝐷},
𝐷 = {𝐶,𝐸}, 𝐸 = {𝐷}. Reported carbon intensities
are 𝐶𝐼𝐴 = 150, 𝐶𝐼𝐵 = 180, 𝐶𝐼𝐶 = 220, 𝐶𝐼𝐷 = 260,
𝐶𝐼𝐸 = 140 (gCO2/kWh). Each node votes positively for a
neighbor 𝑗 if 𝐶𝐼𝑗 ≤ 𝐶𝐼𝑖, otherwise casts a negative vote. A
node is retained if it receives positive votes from at least half
of its neighbors, otherwise it is excluded.

The votes are as follows:
𝐵→𝐴: positive, 𝐴→𝐵: negative;
𝐶→𝐵: positive, 𝐵→𝐶: negative;
𝐷→𝐶: positive, 𝐶→𝐷: negative;
𝐸→𝐷: negative, 𝐷→𝐸: positive.
The final voting results are: 𝐴 ∶ 1∕1 (retain), 𝐵 ∶ 1∕2

(retain), 𝐶 ∶ 1∕2 (retain), 𝐷 ∶ 0∕2 (exclude), 𝐸 ∶ 1∕1
(retain). Hence, the next-round training set is {𝐴,𝐵, 𝐶, 𝐸}.
D is excluded from the training yet retained as a bridge node
for model relaying.

This voting process allows the system to dynamically filter
out high-carbon nodes, reducing the overall carbon footprint
of the DFL system. By iteratively applying this voting-
based selection, GreenDFL-SN promotes energy-efficient
participation in DFL without requiring central coordination.

4. Framework Implementation
GreenDFL provides a comprehensive and operational

framework for assessing the environmental sustainability
of DFL systems. This section details its implementation
and integration into the Nebula DFL platform, including
parameters acquisition and metrics computation.

NEBULA
FRONTEND

NEBULA
CONTROLLER

NEBULA
CORE

Send Configuration Parameters

Create Bootstrap for Each Node

Create Node Instances

Send Real Time Metrics

Display Metrics

Model Training

Model 
Communication 

Loop

[Scenario Execution Cycle]

Model 
Aggregation

End of Scenario
Abort Connection

NEBULA
FRONTEND

NEBULA
CONTROLLER

NEBULA
CORE

Data Partition

Multiple Instances

Sustainability
Metrics Calculation

Figure 3: Sequence Diagram Showing the Interaction of Nebula
Components (Based on [29])
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4.1. Nebula Platform
Nebula [29] was chosen as the infrastructure for integrat-

ing GreenDFL due to its flexibility and advanced functionality
in deploying DFL systems. Existing FL software platforms
mainly support the CFL paradigm. Although platforms,
such as Flower [4], also support DFL model training, their
flexibility in topology and other aspects is not as strong as
Nebula. Therefore, Nebula is chosen as the implementation
platform. However, the computational methods presented in
this work can, in principle, also be implemented on other
platforms.

Nebula is a versatile FL platform that supports multiple
FL paradigms, allowing users to deploy various types of FL
models, including CFL, semi-DFL, and DFL. Additionally,
Nebula offers multiple datasets and diverse model archi-
tectures for FL training. It enables users to customize the
connectivity topology among nodes, enhancing its adapt-
ability to different research and deployment needs. Nebula
consists of three components: Frontend, Controller, and
Core. Each component plays a distinct role in facilitating FL
model deployment, configuration, and execution, enabling
seamless integration with GreenDFL. Figure 2 provides an
overview of the three core modules of Nebula and illustrates
how GreenDFL is implemented and integrated within these
modules.

• Frontend: Provides a user-friendly interface for con-
figuring and deploying FL models. Users can specify
various configurations such as FL architecture (CFL
or DFL), dataset selection, data partitioning strategies,
model architectures, communication topology, hard-
ware accelerators, and aggregation algorithms. Besides,
the frontend provides monitoring and visualization of
the FL process. Users can track the real-time status
of FL model training directly through the frontend
interface.

• Controller: The controller acts as a middleware, trans-
lating user-configured scenarios into bootstrap configu-
rations for individual nodes. It ensures that each node is
correctly initialized with the designated configurations.

• Core: It is a fundamental component of the Nebula plat-
form, deployed into physical or virtualized devices by
the controller. This component handles the execution
of model training, communication, and aggregation
based on the bootstrap configurations. It is responsible
for orchestrating FL workflows across participats.

As shown in Figure 3, the deployment process begins
with the configuration of the scenario. Once the frontend
submits the configuration, the controller instantiates a core
module for each node and transfers the predefined parameters
to these instances. The core is responsible for executing the
local workflow, including data partitioning, model training,
communication, aggregation, and sustainability metrics cal-
culation.

4.2. Implementation in the Frontend
The frontend of Nebula is built using the Flask frame-

work [34], providing a web-based interface for configuring
various FL parameters, including the DFL architecture,
dataset selection, and training options. These configurations
are transmitted to the controller via REST API, where they
serve as initialization parameters for node bootstrapping.

To accommodate sustainability computations, the fron-
tend implementation of GreenDFL introduces the following
additional configurations:

• Communication Mode Selection: Users can specify
whether wired or wireless communication is used. Ad-
ditionally, the system allows users to define the energy
consumption per byte transferred, corresponding to
parameter 𝐸(𝐶)

byte,𝑘 in the Equations (3).
• Local Renewable Energy Utilization: Users can input

the proportion of energy sourced from self-produced
renewable energy. This factor influences the carbon
intensity calculation, corresponding to parameters
(𝐶𝐼𝑘,local) and (𝐶𝐼𝑘,renewable) in Equations (6) and (7).

Users only need to provide these three parameters. All
other required parameters for GreenDFL are automatically
retrieved from the backend or determined at runtime. The
current model adopts a static carbon intensity factor based
on the national electricity grid mix, without considering
short-term fluctuations such as renewable availability at
specific times of day (e.g., solar panels generating only
during daylight). While this simplification neglects temporal
variations in renewable supply, it provides a stable and
comparable baseline for evaluating the sustainability of DFL
systems across regions.

The federation status and model performance are also
visualized through the frontend. By integrating Tensor-
Board [37], users can monitor the real-time execution of FL,
including device utilization, as well as the training, validation,
and testing performance of the model. Correspondingly,
GreenDFL utilizes REST API to receive sustainability met-
rics from the backend, including the energy consumption and
carbon emissions associated with training, communication,
and aggregation at each node.
4.3. Implementation in the Controller

The controller acts as a middleware component, bridging
the frontend configurations with the FL nodes by converting
user-defined parameters into structured initialization settings.
It ensures that the FL system is correctly configured before
execution.

In the integration of GreenDFL, the controller is re-
sponsible for handling sustainability-related parameters and
incorporating them into the FL workflow. When the frontend
transmits configurations via REST API, including communi-
cation mode and renewable energy utilization, the controller
processes these inputs and encodes them into predefined
JSON fields. These newly formatted fields are then injected
into the node configuration files, ensuring that each node
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is bootstrapped with sustainability-aware parameters. This
allows GreenDFL to track and compute energy consumption
and carbon emissions.
4.4. Implementation in the Core

The core module is responsible for executing of the DFL
training process, including model training, aggregation, and
communication. Thus, it plays a crucial role in computing the
energy consumption and carbon emissions across the three
phases of GreenDFL.
4.4.1. Energy Consumption and Carbon Emissions in

the Training and Aggregation Phases
To compute the energy consumption during training as

described in Equation 2, several key parameters must be
automatically retrieved during the training process, including
𝑃𝑈𝐸𝑘, 𝑇𝐷𝑃𝑘, GPU power consumption (𝑃 (GPU)

𝑡 ), CPU
utilization (𝛽(𝑇 )𝑘,𝑡 ), and training duration (𝑇 (𝑇 )

𝑘,𝑡 ). CPU and
GPU utilization are monitored at the system level using
standard profiling tools, where the reported values indicate
the percentage of total device capacity in use. Since FL is
often deployed in edge computing scenarios where nodes are
primarily dedicated to local training and typically run without
other significant workloads, this system-level approximation
serves as a practical measure of utilization.

The CPU model of each node must first be identified to
obtain the 𝑇𝐷𝑃𝑘 parameter. In this work, the Python platform
library [15] is utilized to retrieve the CPU model of each
node automatically. The CPU model is then matched in a
precompiled database [32] to obtain the corresponding 𝑇𝐷𝑃𝑘value. To measure CPU utilization related to model training,
the psutil library [38] is employed to retrieve both CPU
usage (𝛽(𝑇 )𝑘,𝑡 ) and 𝑃𝑈𝐸𝑘. If a model is trained using a GPU
accelerator, the pynvml library [8] is used to monitor GPU
power consumption in real time. Additionally, the training
duration (𝑇 (𝑇 )

𝑘,𝑡 ) is recorded for each node, tracking the time
interval from the start to the completion of local model
training in each round of local training.

Based on these parameters, GreenDFL calculates the
energy consumption for each node in each training round.
Using Equation 8, the corresponding carbon emissions per
training round are determined.

The energy consumption of aggregation is computed
analogously to training, with aggregation duration (𝑇 (𝐴)

𝑘,𝑡 ).
Per-round values are accumulated across all nodes, and the
totals are used to derive the overall carbon emissions from
training and aggregation in the federated system.
4.4.2. Energy Consumption and Carbon Emissions in

the Communication Phase
As shown in Equation 3, the energy consumption during

the communication phase primarily depends on the amount
of data sent and received by each node in every aggregation
round, as well as the energy consumption per byte transmitted.

To obtain these values, the psutil library is used to retrieve
the data communication metrics of each node during each
round (𝐵sent

𝑘,𝑡 and 𝐵recv
𝑘,𝑡 ). By summing them, the total data

Table 4
Energy Consumption per Byte for Different Communication

Mediums
Communication Medium Energy (J/byte)

Wired (Electrical Signal) [20] 8 × 10−11
Optical Communication [43] 3.52 × 10−14
Mobile Network (4G/5G) [42] 3.33 × 10−8
WiFi Communication [9] 5.51 × 10−4

volume per round is obtained. The total energy consumption
for communication at each node is then computed by multi-
plying the total data volume by the energy consumption per
byte (𝐸(𝐶)

byte,𝑘).
Energy consumption in data communication varies signif-

icantly depending on the communication medium, with wired,
optical, and wireless methods exhibiting different efficiency.
Optical communication is the most energy-efficient, followed
by electrical wired networks, while wireless communication
(e.g., WiFi, mobile networks) is the most energy-intensive.

The energy required to transmit one byte of data is
summarized in Table 4. These values highlight the signif-
icant disparity in energy efficiency across communication
technologies. The information provided by the frontend for
𝐸(𝐶)

byte,𝑘 is derived from the data presented in Table 4.
The carbon emissions resulting from communication

are calculated using Equation 8. Similarly, by aggregat-
ing the results across all participating nodes, the overall
communication-related energy consumption and carbon emis-
sions of the federated system can be obtained.

All energy consumption and carbon emissions data are
transmitted via REST API to TensorBoard, which continu-
ously monitors sustainability metrics throughout the DFL
process.

5. Experimental Evaluation
This work employs an experimental approach utilizing

the GreenDFL framework to evaluate the sustainability of
DFL systems systematically. The experiments are designed
to address the the research questions defined in Section 3.1.

Based on these research questions, this study designs
various experimental settings to systematically assess the
impact of different DFL configurations and sustainability-
aware optimizations.
5.1. Experiments Setup

This section describes the experimental setup used to
evaluate the sustainability of DFL under different config-
urations. The experiments systematically analyze various
factors, including datasets, model architectures, communica-
tion mediums, geographical distribution, network topology,
and aggregation algorithms. Table 5 summarizes the key
experimental parameters.
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Table 5
Summary of Experimental Setup

Category Experimental Configurations

Datasets MNIST, EMNIST, FashionM-
NIST, CIFAR10

Models MLP, ResNet-9, MobileNetV3
Communication Mediums Electrical Signal, Optical Fiber,

Mobile Network
Geographical Distribution Switzerland, Spain
Number of Nodes 5, 10, 15, 20
Hardware Accelerators CPU, GPU
Data Distribution IID, Non-IID (Dirichlet 𝛼 = 0.1)
Network Topologies Fully Connected, ER (𝑝 = 0.5),

Ring
Aggregation Algorithms FedAvg, Krum, GreenDFL-SA,

GreenDFL-SN

Datasets and Models The experiments utilize MNIST,
EMNIST, FashionMNIST, and CIFAR-10, representing dif-
ferent task complexities and dataset sizes. These datasets
are widely adopted in the FL research [41]. Moreover, these
datasets were selected to provide a representative evaluation
across different levels of complexity and data distributions.
For RQ1, standard benchmark datasets allow measuring
energy consumption consistently across the full DFL life-
cycle (training, communication, and aggregation).For RQ2,
datasets with different distributions and varying scales are
used to examine how topology, geographic location, and
environmental factors influence sustainability. For RQ3, more
complex datasets such as CIFAR-10 amplify the impact
of optimization strategies, making it possible to assess the
effectiveness of sustainability-aware algorithms.

• MNIST [27] dataset is a widely used benchmark for
handwritten digit classification in FL and CV)research.
It consists of 10 classes, where each sample is a 28×28
grayscale image. The dataset contains 60,000 training
samples and 10,000 test samples. For this task, two
different neural network architectures are employed: a
three-layer MLP with 256-128-10 hidden units (with
2.35×105 trainable parameters), and a ResNet-9 model
(with 1.6 × 106 trainable parameters) [18].

• EMNIST [7] dataset is an extension of MNIST, incor-
porating both digits and handwritten English letters.
This work used the "bymerge" configuration for the
dataset, which consists of 47 classes. Like MNIST,
each sample is a 28×28 grayscale image, but the
EMNIST dataset is significantly larger, containing
731,668 training samples and 82,587 test samples. The
model architectures used for EMNIST are similar to
those employed for MNIST, with modifications to the
output layer to accommodate the 47-class classification
task.

• FashionMNIST [44] dataset a 10-class classification
task involving grayscale images of fashion items. It

serves as a more challenging alternative to MNIST.
The dataset structure is similar to MNIST, with each
sample being a 28×28 grayscale image. It includes
60,000 training samples and 10,000 test samples. For
this task, the same MLP and ResNet-9 architectures
are applied.

• CIFAR10 [24] dataset is a 10-class classification
task involving objects such as animals and vehicles.
It presents a higher level of complexity compared
to MNIST and FashionMNIST, as each sample is a
32×32 RGB image with three color channels. The
dataset consists of 50,000 training samples and 10,000
test samples. To handle the increased complexity,
two different convolutional neural network (CNN)
architectures are used: MobileNetV3 (with 1.36 × 105
trainable parameters) [19] and ResNet-9 (with 1.6×106
trainable parameters).
This dataset and model selection allows the evaluation
of model complexity and dataset difficulty on energy
consumption and sustainability in DFL systems.

Communication Mediums The choice of communication
medium influences the energy consumption of DFL com-
munication, thereby affecting the overall sustainability of
the DFL system. To evaluate this impact, the experiments
compare the energy consumption and carbon emissions of
three different communication mediums: Electrical Signal
(Wired Ethernet), Optical Fiber, and Mobile Network (4G).
Geographical Distribution The carbon intensity of elec-
tricity grids varies significantly across different regions,
influencing the carbon emissions of DFL systems. To analyze
this effect, the experiment compares DFL deployments in
two regions with different carbon intensities:

• Spain: Represents a moderate-carbon-intensity region,
with an electricity grid carbon intensity of 217.422
grams of CO2 equivalents per kilowatt-hour (gCO2).

• Switzerland: Represents a low-carbon-intensity re-
gion, with an electricity grid carbon intensity of 41.279
gCO2.

By comparing the carbon emissions of DFL nodes in
these two regions, this study aims to quantify the impact
of geographical distribution on the sustainability of DFL.
The selection of Switzerland and Spain is motivated by
their distinct energy mixes—Switzerland’s grid is largely
powered by low-carbon hydropower, while Spain still relies
more heavily on fossil fuels despite its growing renewable
capacity. This contrast provides a representative proof-of-
concept to demonstrate how regional carbon intensity affects
DFL sustainability.
Federation Size Experiments are conducted with 5, 10, 15,
and 20 nodes to assess the effect of federation size on energy
consumption and the scalability of the proposed aggregation
algorithm.
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Table 6
Carbon Emissions (gCO2) and Energy Consumption (kWh) Across Different Datasets with 10 Nodes in Fully Connected Topology

Dataset Train CE Train EC Agg. CE Agg. EC Comm. CE Comm. EC Total CE Total EC
(gCO2) (kWh) (gCO2) (kWh) (gCO2) (kWh) (gCO2) (kWh)

CIFAR10 4.047 0.019 0.534 0.002 1.02 × 10−5 4.69 × 10−8 4.581 0.021
EMNIST 6.047 0.028 0.432 0.002 1.74 × 10−5 8.02 × 10−8 6.479 0.030
FashionMNIST 1.300 0.006 0.413 0.002 1.72 × 10−5 7.89 × 10−8 1.714 0.008
MNIST 1.256 0.006 0.416 0.002 1.70 × 10−5 7.83 × 10−8 1.672 0.008

Abbreviations: CE: Carbon Emissions, EC: Energy Consumption, Agg.: Aggregation, Comm.: Communication.

Hardware Accelerators Training is performed on CPU-
based computing and GPU-accelerated computing to com-
pare energy efficiency. The experiments are conducted on a
device equipped with an AMD EPYC 7702 64-core Processor
with a TDP of 200W and an NVIDIA T4 GPU with a TDP
of 70W. Each node is virtualized using Docker containers to
ensure reproducibility and efficient resource allocation.
Data Distribution The distribution of training data across
nodes significantly affects the performance of DFL mod-
els [14]. However, its impact on sustainability, particularly in
terms of energy consumption and carbon emissions, remains
largely unexplored.

To investigate this relationship, the experiment adopts
two different data partitioning strategies:

• IID (Independent and Identically Distributed): Each
node receives an evenly distributed subset of the
dataset, ensuring uniform data representation across
all nodes.

• Non-IID (Dirichlet Sampling, 𝛼 = 0.1): Data is
sampled using a Dirichlet distribution with 𝛼 = 0.1,
leading to highly skewed and heterogeneous data
distributions among nodes.

By comparing these two data partitioning methods, this
study aims to assess how data heterogeneity influences the
sustainability of DFL.
Network Topology Network topology defines the com-
munication between nodes in a DFL system and influences
the aggregation of models. Different levels of connectivity
affect the efficiency of model updates and the overall energy
consumption of the system. To analyze its impact on sustain-
ability, the following network topologies are considered:

• Fully Connected (Dense): Each node is connected to all
others, providing the highest level of communication
redundancy and synchronization.

• Erdős-Rényi (ER) Random Graph (𝑝 = 0.5): A proba-
bilistic model where each link exists with probability
𝑝 = 0.5, representing a moderately dense network.

• Ring Topology (Sparse): Nodes are arranged in a
circular manner, with each node connected only to
its immediate neighbors.

These topologies range from dense to sparse and are used
to examine their effects on energy consumption, communica-
tion overhead, and overall sustainability in a DFL system.
Aggregation Aggregation algorithms influence the energy
consumption of the model aggregation process in DFL. To
evaluate this impact, three different aggregation strategies
are studied:

• FedAvg [30]: A widely used federated averaging
algorithm that computes the weighted average of local
models.

• Krum [5]: A Byzantine-robust aggregation algorithm
that selects a single model update closest to the
majority of other updates.

• GreenDFL-SA: An algorithm designed to optimize
sustainability by considering energy efficiency during
aggregation.

• GreenDFL-SN: An algorithm optimizes sustainability
by considering energy efficiency during the local
training phase.

All experiments are conducted using 20 aggregation
rounds, with each round consisting of 3 local epochs.
5.2. Analysis of Environmental Impact Across DFL

Lifecycle Phases
While the training phase is often seen as the most

computation-intensive, it is not guaranteed to be the most
energy-consuming. The first experiment investigates which
phase in the DFL learning lifecycle contributes the most
to environmental sustainability impact. This experiment is
conducted on four datasets using a fully connected topology
DFL system with 10 nodes. Communication is performed
using Electrical Signal, training is executed on GPU. In this
experiment, FedAvg was selected as the baseline aggregation
method because it is the most widely adopted and well-
studied algorithm in the FL and DFL literature. Besides,
FedAvg provides a clear and reproducible baseline. Moreover,
MNIST, FashionMNIST, and EMNIST were trained with the
MLP model, while the CIFAR-10 dataset was trained with
the MobileNetV3 model. All federation nodes are located in
Spain, where data distribution follows an IID pattern across
nodes.
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Table 6 presents the total energy consumption and carbon
emissions across all nodes for each of the three phases in the
DFL lifecycle. The results indicate that the DFL training
on the EMNIST dataset consumed the most energy. The
differences in energy consumption and carbon emissions
across datasets primarily stem from variations in DFL training
time. The total learning duration for each dataset is as follows:
CIFAR10 takes 14 minutes 46.598 seconds, EMNIST re-
quires 21 minutes 41.565 seconds, FashionMNIST completes
in 6 minutes 5.294 seconds, and MNIST finishes in 5 minutes
42.212 seconds. Among these, EMNIST has the longest
training time due to its larger dataset size. Although CIFAR10
is the most complex dataset, its smaller data volume results in
the second-longest training time. FashionMNIST and MNIST
have similar dataset sizes and complexity, leading to nearly
identical training durations.

Compared to communication and aggregation, the train-
ing phase exhibits the highest energy consumption and carbon
emissions. The average local training time for one round
on MNIST and FashionMNIST requires approximately 5
seconds per round, whereas EMNIST takes 20 seconds,
and CIFAR10 takes 15 seconds per round. In contrast, the
aggregation phase takes less than one second for all datasets.
Since the computational overhead of training significantly
exceeds that of aggregation, the training phase dominates
overall energy consumption and carbon emissions.

Although a substantial portion of DFL runtime is spent
in the model communication phase, this stage involves
minimal computational overhead, resulting in negligible
energy consumption compared to training. Consequently,
the training phase remains the most energy-intensive stage,
contributing the most to overall carbon emissions.

Overall, these findings provide a clear answer to RQ1.
Across multiple datasets, the training phase is identified as
the primary contributor to carbon emissions. Consequently,
optimizing the sustainability of the training process should
be prioritized in DFL system design. Additionally, energy
consumption and emissions from aggregation and communi-
cation should not be overlooked.
5.3. Factors Influencing the Sustainability of DFL

Systems
This section analyzes multiple factors that influence the

sustainability of DFL systems, including model architecture,
communication medium, geographical distribution of nodes,
hardware accelerators, data distribution across nodes, net-
work topology, and federation size. A controlled-variable
methodology is adopted, where one factor is varied at a
time while others are held constant, to assess its impact on
sustainability metrics. The results demonstrate how each
factor contributes differently to energy consumption and
carbon emissions, providing guidance for sustainable DFL
deployment strategies.
5.3.1. Communication Medium

This experiment evaluates the impact of different com-
munication media on DFL’s energy consumption and carbon

emissions. The experiment compares three communication
mediums: Electrical Signal, Optical Fiber, and Mobile Net-
work. This experiment was conducted on four datasets using
a 10-node DFL system with a fully connected topology.
Training was performed on GPUs, with FedAvg as the ag-
gregation method. For the models, MNIST, FashionMNIST,
and EMNIST were trained with an MLP, while CIFAR-10
was trained with MobileNetV3. All federation nodes were
deployed in Spain with data distributed in an IID manner.
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Figure 4: Carbon Emissions (gCO2) and Energy Consumption
(kWh) During the Communication Phase With Various Com-
munication Medium Across Different Datasets (Log-scaled)

The communication medium mainly affects energy con-
sumption during the communication phase of the DFL
system. Figure 4 illustrates the energy consumption and
carbon emissions during the communication phase across
four datasets using three different communication mediums.

The results indicate that optical fiber, which has the lowest
per-byte energy consumption, results in the lowest communi-
cation energy consumption and carbon emissions under the
same setup. In contrast, mobile communication exhibits the
highest per-byte energy consumption, leading to the highest
communication energy consumption and emissions. However,
even when using mobile communication, the total carbon
emissions from the communication phase over 20 rounds
remain relatively low, contributing only approximately 0.01
gCO2e across all four datasets.
5.3.2. Geographical Distribution

The geographic distribution of nodes affects the carbon
intensity of the electricity grid they utilize, thereby influenc-
ing the overall carbon emissions of the DFL system. This
experiment compares the energy consumption and carbon
emissions of DFL systems deployed in Spain and Switzerland,
as illustrated in Figure 5. This experiment was conducted
on four datasets using a 10-node DFL system with a fully
connected topology implemented on the Electrical Signal
testbed. Training was executed on GPUs with FedAvg as the
aggregation method. MNIST, FashionMNIST, and EMNIST
were trained with an MLP, while CIFAR-10 was trained with
MobileNetV3. All federation nodes were deployed with data
distributed in an IID manner.

The comparison between Switzerland and Spain high-
lights the effect of regional energy mixes on DFL sustain-
ability. Switzerland relies largely on renewable sources,
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Figure 5: Total Carbon Emissions (gCO2) and Energy Con-
sumption (kWh) of DFL Systems in Spain and Switzerland

particularly hydropower, leading to low carbon intensity,
whereas Spain, despite increasing use of wind and solar, still
maintains a higher share of fossil fuels, resulting in higher
carbon intensity.

Under the same configuration, the geographic distribution
of nodes does not impact energy consumption; however, it
significantly affects carbon emissions. Although the DFL
systems deployed in Switzerland and Spain consume a similar
amount of energy under comparable settings, the difference
in grid carbon intensity results in substantial disparities in
carbon emissions. Specifically, Switzerland’s electricity grid
has a carbon intensity of 41.279 gCO2/kWh, which is about
one-fourth of Spain’s 217.422 gCO2/kWh. According to
Equation 8, the total carbon emissions are therefore approxi-
mately one-fourth in Switzerland compared to Spain. These
results suggest that optimizing the geographic distribution
of nodes can effectively reduce the environmental impact of
DFL systems. In particular, selecting nodes in regions with
lower carbon intensity for training further minimizes overall
carbon emissions.
5.3.3. Hardware Accelerator

The choice of hardware accelerator significantly affects
the sustainability of a DFL system by influencing computa-
tional efficiency during local training and aggregation. Due
to their superior performance in tensor computations, GPUs
can significantly reduce training time compared to CPUs.
Additionally, GPUs offer better power management, resulting
in lower overall energy consumption. This experiment was
conducted on a 10-node DFL system with a fully connected
topology by using electrical signal. FedAvg was employed
as the aggregation method. MNIST, FashionMNIST, and
EMNIST were trained with an MLP, while CIFAR-10 was
trained with MobileNetV3. All federation nodes were de-
ployed in Spain. Figure 6 compares the energy consumption
and carbon emissions of DFL systems using CPUs and GPUs
as accelerators.

For the EMNIST, FashionMNIST, and MNIST datasets,
training with the MLP model exhibits similar learning
durations on both CPU and GPU, resulting in similar energy
consumption. However, for the CIFAR10 dataset, training
on the CPU takes nearly 80 minutes while operating at full
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Figure 6: Total Carbon Emissions (gCO2) and Energy Con-
sumption (kWh) of DFL Systems with Using GPU and CPU
Accelerators

capacity. Consequently, its energy consumption is approx-
imately ten times that of GPU-based training, leading to a
nearly tenfold increase in equivalent CO2 emissions.

The results show that DFL systems utilizing GPU ac-
celerators achieve better energy efficiency and lower carbon
emissions under the same configuration. In contrast, CPU-
only systems require longer training times, leading to higher
energy consumption and carbon emissions.
5.3.4. Model Architecture

More complex models often yield better performance
but require higher computational resources. This experiment
was conducted on a 10-node DFL system with a fully
connected topology located in Spain, using GPUs for training
and FedAvg as the aggregation algorithm. This experiment
evaluates the effect of simple models (MLP for MNIST,
FashionMNIST, and EMNIST; MobileNet for CIFAR10)
versus a more complex model (ResNet-9) for all four datasets
on the sustainability of DFL systems.
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Figure 7: Total Carbon Emissions (gCO2), Energy Consumption
(kWh) and Test F1 Score of DFL Systems with Different Model
Architectures
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Figure 7 compares different model architectures’ carbon
emissions, energy consumption, and F1 score. The results
indicate that while ResNet-9 improves the F1 score in all
datasets, it also leads to higher carbon emissions. This is due
to its significantly larger parameter count (1.6 × 106), ap-
proximately seven times that of MLP and MobileNet models.
Consequently, ResNet-9 has a higher computational density
and requires longer training time, resulting in increased
energy consumption and carbon emissions.
5.3.5. Network Topology

Network topology determines how models are transmitted
between nodes and how many models are aggregated, influ-
encing energy consumption and carbon emissions during the
communication and aggregation phases. To assess this impact,
the experiment evaluated three topologies: fully connected,
ER (𝑝 = 0.5), and ring topology. This experiment was
conducted on four datasets using a 10-node DFL system.
FedAvg was employed as the aggregation method. MNIST,
FashionMNIST, and EMNIST were trained with an MLP,
while CIFAR-10 was trained with MobileNetV3. All feder-
ation nodes were deployed in Spain with data distributed
in an IID manner. Figure 8 shows the energy consumption
and carbon emissions in the communication and aggregation
phases across four datasets.
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Figure 8: Total Carbon Emissions (gCO2) and Energy Consump-
tion (kWh) of DFL Systems with Different Network Topologies

The results indicate that under different network topolo-
gies, the energy consumption and carbon emissions during the
aggregation phase remain similar. This suggests that although
sparse topologies, such as the ring topology, require fewer
models to be processed during aggregation, the computational
time for aggregation is relatively short, and the overall
computational overhead remains low. Consequently, energy
consumption during aggregation does not show significant
differences between sparse and dense networks.

However, the communication phase exhibits differences.
The total number of model exchange in a DFL system per

round is theoretically twice the number of edges in the
network. In a fully connected network with 𝑁 nodes, the
total number of edges is 𝑁(𝑁 − 1)∕2, meaning that in each
round, the system transmits 𝑁(𝑁 − 1) model updates. In an
ER random graph with 𝑝 = 0.5, the expected number of edges
is 𝑁(𝑁 − 1)∕4, resulting in 𝑁(𝑁 − 1)∕2 model exchange
per round. In contrast, a ring topology has exactly 𝑁 edges,
leading to only 2𝑁 model exchange per round.

In the 10-node DFL system used in this experiment,
a fully connected topology required 90 model exchange
per round, while the ER topology required 45, and the
ring topology only 20. Experimental results confirm this
theoretical analysis. Using CIFAR10 as an example, over
20 training rounds, the fully connected topology consumed
4.69439 × 10−8 kWh in communication, while the ER
topology consumed 2.29197 × 10−8 kWh, approximately
half of the fully connected network’s consumption. The ring
topology exhibited the lowest energy consumption, around
1.02738 × 10−8 kWh, aligning with theoretical expectations.
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Figure 9: Total Carbon Emissions (gCO2), Energy Consumption
(kWh) and Test F1 Score of DFL Systems with Different Data
Distribution

5.3.6. Data Distribution
Figure 9 presents the carbon emissions and energy

consumption under IID and non-IID 𝛼 = 0.1 distributions.
This experiment was conducted on four datasets using a 10-
node DFL system with fully connected topology. FedAvg
was employed as the aggregation method. MNIST, Fash-
ionMNIST, and EMNIST were trained with an MLP, while
CIFAR-10 was trained with MobileNetV3. All federation
nodes were deployed in Spain. Under non-IID conditions,
the overall energy consumption and carbon emissions of the
system remain similar to those observed under IID settings
when using the same model and aggregation algorithm. This
suggests that data distribution has a minimal impact on the
environmental sustainability of DFL.
5.3.7. Federation Size

This experiment evaluates the differences in energy
consumption and carbon emissions when the number of
participating nodes is varied between 5, 10, 15, and 20.
This experiment was conducted on fully connected topology.
FedAvg was employed as the aggregation method. MNIST,
FashionMNIST, and EMNIST were trained with an MLP,
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Table 7
Comparison of Sustainability Metrics and Model Performance Across Aggregation Algorithms

Dataset Alg. Train. CE Train. EC Agg. CE Agg. EC Comm. CE Comm. EC Total CE Total EC F1 Score
(gCO2) (kWh) (gCO2) (kWh) (gCO2) (kWh) (gCO2) (kWh)

CIFAR10

FedAvg 4.047 0.019 0.534 0.002 1.021 ×10−5 4.694 ×10−8 4.581 0.021 0.822
Krum 4.016 0.018 1.283 0.006 1.019 ×10−5 4.688 ×10−8 5.299 0.024 0.785
GreenDFL-SA 4.068 0.019 0.497 0.002 1.022 ×10−5 4.702 ×10−8 4.565 0.021 0.817
GreenDFL-SN 2.761 0.013 0.674 0.003 1.017 ×10−5 4.675 ×10−8 3.435 0.016 0.785

EMNIST

FedAvg 6.047 0.028 0.432 0.002 1.743 ×10−5 8.017 ×10−8 6.479 0.030 0.726
Krum 6.069 0.028 0.807 0.004 1.740 ×10−5 8.003 ×10−8 6.876 0.032 0.622
GreenDFL-SA 6.090 0.028 0.410 0.002 1.738 ×10−5 7.994 ×10−8 6.500 0.030 0.718
GreenDFL-SN 5.612 0.026 0.448 0.002 1.737 ×10−5 7.991 ×10−8 6.060 0.028 0.713

FashionMNIST

FedAvg 1.300 0.006 0.413 0.002 1.715 ×10−5 7.890 ×10−8 1.714 0.008 0.884
Krum 1.324 0.006 0.895 0.004 1.698 ×10−5 7.808 ×10−8 2.219 0.010 0.851
GreenDFL-SA 1.304 0.006 0.397 0.002 1.692 ×10−5 7.781 ×10−8 1.701 0.008 0.881
GreenDFL-SN 1.155 0.005 0.467 0.002 1.700 ×10−5 7.817 ×10−8 1.623 0.007 0.873

MNIST

FedAvg 1.256 0.006 0.416 0.002 1.702 ×10−5 7.830 ×10−8 1.672 0.008 0.978
Krum 1.227 0.006 0.820 0.004 1.698 ×10−5 7.811 ×10−8 2.047 0.009 0.961
GreenDFL-SA 1.269 0.006 0.392 0.002 1.698 ×10−5 7.810 ×10−8 1.661 0.008 0.976
GreenDFL-SN 1.056 0.005 0.422 0.002 1.697 ×10−5 7.806 ×10−8 1.478 0.007 0.971

Abbreviations: CE: Carbon Emissions, EC: Energy Consumption, Agg.: Aggregation, Comm.: Communication

while CIFAR-10 was trained with MobileNetV3. All federa-
tion nodes were deployed in Spain. The results are presented
in Figure 10.
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Figure 10: Total Carbon Emissions (gCO2) and Energy
Consumption (kWh) of DFL Systems with Different Federation
Sizes

As the number of nodes in the federation increases, the
energy consumption and carbon emissions per node remain
similar. However, the total energy consumption of the system
increases proportionally with the number of participating
nodes. A larger number of nodes in training leads to higher
overall energy consumption and carbon emissions.

In conclusion, factors such as geographical distribution,
hardware accelerators, model architecture, and federation
size significantly impact DFL sustainability. While commu-
nication medium and network topology influence carbon
emissions during the communication phase, their overall
impact on the sustainability of the DFL system is relatively
small. However, data distribution has minimal effect on the
system’s sustainability. These insights provide an answer to
RQ2.

5.4. Analysis of GreenDFL-SA and GreenDFL-SN
This experiment evaluates the proposed GreenDFL-SA

and GreenDFL-SN algorithms in comparison with FedAvg
and Krum. This experiment was conducted on a 10-node
DFL system with IID data partitioning and a fully connected
network topology. MNIST, FashionMNIST, and EMNIST
were trained with an MLP, while CIFAR-10 was trained
with MobileNetV3. All federation nodes were deployed in
Spain. The evaluation focuses on three key aspects: energy
consumption, carbon emissions, and model performance
(Test F1 Score).

Table 7 compares the sustainability metrics and model
performance across four training algorithms. The results
indicate that the test F1 scores of all four algorithms are
similar, demonstrating that the proposed GreenDFL-SA and
GreenDFL-SN methods do not compromise model perfor-
mance.

Regarding sustainability metrics, FedAvg, Krum, and
the GreenDFL-SA exhibit comparable energy consumption
and carbon emissions. This similarity arises because these
three methods differ mainly in the aggregation phase, which
contributes relatively little to the system’s overall energy con-
sumption. Consequently, variations in aggregation complex-
ity do not significantly impact total energy usage, particularly
for lightweight models such as MLP on MNIST, FashionM-
NIST, and EMNIST datasets. However, at the aggregation
phase level, Krum exhibits higher energy consumption due to
its increased computational complexity compared to FedAvg.
The GreenDFL-SA reduces energy consumption during
aggregation, contributing to improved sustainability. The
GreenDFL-SN algorithm, by dynamically excluding energy-
intensive nodes, achieves the best overall energy efficiency,
with its benefits becoming more pronounced for complex
tasks such as MobileNet on CIFAR-10.
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In summary, the proposed GreenDFL-SA and GreenDFL-
SN algorithms reduce energy consumption and carbon emis-
sions at different stages of the DFL lifecycle, thereby enhanc-
ing the environmental sustainability of DFL systems. These
findings provide a positive answer to RQ3, demonstrating the
potential for sustainability-aware optimization in decentral-
ized learning.

6. Discussion
This work constructs an environmental sustainability

assessment framework for DFL systems and employs em-
pirical research to identify key influencing factors. The
experiments also demonstrate that optimizing aggregation
and node selection strategies can enhance the environmental
sustainability of DFL. This section presents best practices for
improving the sustainability of DFL systems.
6.1. Balancing Model Performance and

Sustainability
Achieving a balance between model performance and

sustainability is challenging. Optimizing model architecture
by selecting a model with a sufficient yet minimal number of
parameters appears to be a reasonable approach. However,
determining the optimal model size before deployment is
complex, and such optimization often becomes a post-training
consideration.

The proposed GreenDFL-SN algorithm offers an in-
training strategy to effectively reduce DFL carbon emissions.
However, its effectiveness relies on all nodes’ accurate and
timely reporting of sustainability metrics. In decentralized
environments, this information may not always be reliable,
limiting the applicability of the approach to scenarios where
all nodes are honest. Another straightforward strategy to
reduce DFL energy consumption and carbon emissions is
adopting the early stopping mechanism.
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Figure 11: Validation F1 Score Across Different Datasets

Typically, DFL systems follow a predetermined num-
ber of training rounds, regardless of whether the model
has already converged. The early stopping strategy allows
nodes to monitor their validation metrics, such as loss or
accuracy, over multiple rounds and terminate training when
the improvement falls within a predefined threshold. Figure 11
illustrates a DFL system’s validation loss and sustainability

metrics on the MNIST dataset across training rounds. The
results indicate that although the model converges by round
5, training continues for the predetermined 20 rounds. If early
stopping were applied at round 7, energy consumption could
be reduced by approximately 60%. Therefore, automated
convergence detection mechanisms, such as early stopping,
can significantly improve DFL systems’ energy efficiency
and environmental sustainability.

While early stopping clearly improves energy efficiency,
it also introduces trade-offs that deserve further discussion.
Early stopping may risk underfitting if validation metrics
fluctuate or plateau temporarily, especially in heterogeneous
data distributions common in DFL. This risk is amplified
for complex datasets and tasks. For example, as shown in
the Figure 11 CIFAR-10 results, the model performance
continues to improve even after 12 rounds, suggesting that
applying early stopping too aggressively may hinder full
convergence.
6.2. Utilization of Renewable Energy

In the conducted experiments, it was assumed that
all nodes exclusively relied on grid electricity. However,
many data centers and households are generating their own
renewable energy as an alternative power source. As shown
in Figure 12, when nodes utilized 50% locally generated
renewable energy, the system’s total carbon emissions were
reduced by approximately 50%. Investing in and adopting
local clean energy sources reduces electricity costs and
enhances environmental sustainability.
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Figure 12: Total Carbon Emissions (gCO2) and Energy
Consumption (kWh) of DFL Systems with Different Local
Renewable Energy Ratio

7. Threats to Validity
This section discusses the threats to validity, including

internal, external, construct, and conclusion validity.
7.1. Internal Validity

The measurement of energy consumption may be in-
fluenced by the limitations of GPU power sampling tools,
such as sampling frequency or reporting accuracy, while
CPU and communication overheads may be underestimated.
To mitigate this, frequent runtime GPU power sampling
was applied instead of relying on static TDP values, and
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communication metrics were explicitly incorporated into the
overall energy model.

The estimation of carbon emissions depends on regional
carbon intensity values and renewable energy ratios, which
represent approximations and may not fully capture the actual
local energy mix; this threat was mitigated by using publicly
available datasets from trusted energy agencies.

Although the experiments followed a controlled-variable
methodology, unobserved system-level factors (e.g., schedul-
ing behavior or hardware-specific optimizations) could still
affect the outcomes.
7.2. External Validity

The experiments were conducted on a limited number
of datasets (MNIST, FashionMNIST, EMNIST, CIFAR-10)
and models (MLP, MobileNetV3, and ResNet-9), which
may not capture the full diversity of real-world applications
of DFL. Geographical experiments compared only Spain
and Switzerland, leaving other regional energy profiles
unexplored. These factors constrain the generalizability of
the findings. To mitigate this, this work considers tasks of
varying complexity, datasets with different sample sizes,
and models of different complexity, which strengthens the
applicability of the results across diverse DFL scenarios,
providing reasonable representativeness.
7.3. Construct Validity

The work uses energy consumption and carbon emissions
as the primary sustainability metrics. While these indicators
capture important aspects of environmental impact, they may
not fully reflect broader sustainability dimensions such as
hardware lifecycle costs or embodied carbon in devices. In
addition, the estimation of GPU power consumption relies
on sampled runtime measurements, which may introduce
minor deviations compared to true energy usage. Despite
these limitations, the chosen metrics align with prior work on
Green AI and FL sustainability, providing a consistent basis
for evaluation.
7.4. Conclusion Validity

The validity of the conclusions depends on the correctness
of the experimental design and the consistency of the evalua-
tion metrics. While absolute values of energy consumption
and carbon emissions may vary depending on hardware
and environmental settings, the relative comparisons across
algorithms, datasets, and topologies remain valid. The use of
multiple datasets, models, and network configurations helps
ensure that the observed trends are not artifacts of a particular
setup, thereby supporting the robustness of the conclusions.

8. Summary and Future Work
This work presents a comprehensive framework, called

GreenDFL, for assessing the environmental sustainability
of DFL systems. Through empirical analysis, it investigates
the impact of key factors such as model architecture, hard-
ware accelerators, communication medium, data distribution,
network topology, and federation size on sustainability.

The results demonstrate that local training is the primary
contributor to energy consumption and carbon emissions,
while communication overhead remains relatively minor. The
experiments further show that optimizing aggregation and
node selection strategies can effectively reduce the carbon
footprint of DFL without significantly compromising model
performance. Additionally, findings indicate that deploying
models in regions with lower carbon intensity, leveraging
early stopping mechanisms, and utilizing renewable energy
sources can enhance the sustainability of DFL systems.

Despite these contributions, this study has certain limita-
tions that provide avenues for future research. The proposed
GreenDFL-SN algorithm assumes that all nodes honestly
report their energy consumption and carbon intensity, which
may not always hold in real-world decentralized settings.
Further research is needed to design incentive mechanisms
or verification strategies to ensure reliable reporting. Addi-
tionally, this study estimates energy consumption based on
hardware specifications and utilization metrics; incorporating
real-time energy profiling can enhance accuracy. Future
work can explore adaptive model selection strategies that
dynamically adjust model complexity based on resource
constraints and sustainability requirements. Moreover, in-
tegrating renewable energy-aware scheduling mechanisms
and incentive models to encourage sustainable participation
in DFL could further improve its environmental impact.
Finally, extending the framework to account for dynamic
carbon intensity profiles, such as time-of-day variations
in renewable generation, represents an important avenue
for future work. Larger-scale deployments across multiple
countries could further enhance the analysis, although such
settings face practical challenges related to data availability
and deployment feasibility.
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