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Abstract

The computing device deployment explosion experienced in recent years, motivated by the advances of technologies such
as Internet-of-Things (IoT) and 5G, has led to a global scenario with increasing cybersecurity risks and threats. Among
them, device spoofing and impersonation cyberattacks stand out due to their impact and, usually, low complexity required
to be launched. To solve this issue, several solutions have emerged to identify device models and types based on the
combination of behavioral fingerprinting and Machine/Deep Learning (ML/DL) techniques. However, these solutions are
not appropriate for scenarios where data privacy and protection are a must, as they require data centralization for
processing. In this context, newer approaches such as Federated Learning (FL) have not been fully explored yet, especially
when malicious clients are present in the scenario setup. The present work analyzes and compares the device model
identification performance of a centralized DL model with an FL one while using execution time-based events. For
experimental purposes, a dataset containing execution-time features of 55 Raspberry Pis belonging to four different models
has been collected and published. Using this dataset, the proposed solution achieved 0.9999 accuracy in both setups,
centralized and federated, showing no performance decrease while preserving data privacy. Later, the impact of a label-
flipping attack during the federated model training is evaluated using several aggregation mechanisms as countermeasures.
Zeno and coordinate-wise median aggregation show the best performance, although their performance greatly degrades
when the percentage of fully malicious clients (all training samples poisoned) grows over 50%.
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1 Introduction

Currently, a vast number of devices are deployed world-
wide, from smart cars, traffic lights, and security systems,
to smart homes and industries. The IoT market has grown
to a total of 31 billion connected devices by 2020, with a
forecast of ~ 30 billion devices connected to each other by

P< Pedro Miguel Sanchez Sanchez
pedromiguel.sanchez@um.es

Department of Information and Communications
Engineering, University of Murcia, 30100 Murcia, Spain

Communication Systems Group (CSG), Department of
Informatics (IfI), University of Zurich UZH, 8050 Ziirich,
Switzerland

Cyber-Defence Campus within armasuisse Science &
Technology, 3602 Thun, Switzerland

2023, according to Cisco [1]. One of the main reasons for
this growth is the fourth industrial revolution, or Industry
4.0, with the explosion of a set of technologies and para-
digms such as 5G, machine and deep learning (ML/DL),
robotics, and cloud computing.

The emergence of such technologies poses new chal-
lenges to be solved to ensure a safe and efficient environ-
ment [2]. In this sense, there are billions of connected
devices, many of them performing critical tasks where
failures can be fatal, such as autonomous car driving or
industrial operations. In addition, the growing popularity of
these technologies makes them a desirable target for
cybercriminals. Between the possible security threats
affecting resource-constrained devices, device imperson-
ation is one of the most serious problems of large organi-
zations with proprietary hardware where one device model
could be impersonated for malicious purposes, such as
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industrial espionage. In addition, there are a multitude of
counterfeit devices on the market, some of which are dif-
ficult to differentiate from the original [3].

To solve these issues, device model and type identifi-
cation based on performance fingerprinting arises as a
solution [4]. The main benefit of device model identifica-
tion is to prevent third-party attacks such as spoofing, as
well as to identify malicious or counterfeit devices.
Although there are numerous works in the literature
exploring the identification of models from different per-
formance characteristics, such as execution time, network
connections or system logs, and leveraging ML/DL for data
processing, these solutions mostly require data centraliza-
tion, making them not suitable for scenarios where data
leakage protection and privacy is critical. In this sense,
Federated Learning (FL) based techniques have recently
gained enormous prominence [5]. In FL approaches, the
training data of the ML/DL models remain private and
while the locally trained models are shared. Later, these
models are aggregated (usually by a central party) into a
joint model that goes back to the clients for further training,
cyclically repeating the process. This approach improves
the privacy of the data, as it does not leave the client, and
the communication overhead, as sharing only model
parameters is usually less resource-consuming than sharing
the complete data used for training.

In addition, there are few datasets modeling the per-
formance of IoT devices for identification [4], and any of
them is focused on execution time performance or FL-
based scenarios. Moreover, most of the current solutions in
the literature do not explore the impact of possible adver-
sarial attacks targeting the ML/DL models during their
generation and deployment [6]. These attacks may happen
when one of the clients participating in the federation
maliciously sends corrupted model updates. These prob-
lems have additional importance in FL setups, where the
control of the clients is no longer under the entity gener-
ating the joint ML/DL model.

Therefore, this work explores the following three main
areas to improve the completeness of the literature: (i) the
identification of device models using centralized Machine
Learning (ML) algorithms and execution time data, (ii) the
decentralization of this training using the FL techniques,
and (iii) the use of the Adversarial Machine Learning
(AML) techniques to evaluate and improve the robustness
of the generated models. In this sense, its main contribu-
tions are:

e An execution time-based performance dataset collected
in 55 different Raspberry Pi (RPi) devices from four
different models, and intended for model identification.
This dataset is generated using physical devices under
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normal functioning, reflecting a real scenario where
many devices are operating.

e The comparison between a centralized and a federated
Multi-Layer Perceptron (MLP) model with identical
configuration, only changing its training approach. It is
shown how the federated setup maintains an almost
identical model identification accuracy of 0.9999,
without losing performance and improving data leakage
protection and privacy.

e The comparison of different aggregation methods as
countermeasure for the federated model under a label-
flipping attack. Federated averaging, coordinate-wise
median, Krum, and Zeno aggregation methods are
compared, showing median and Zeno the best results
regarding attack resilience.

The remainder of this paper is structured as follows. Sec-
tion 2 describes the closest works in the literature, moti-
vating this research. Section 3 explains the procedure
followed to extract the model identification data. Later,
Sect. 4 compares the performance of a DL-based classifier
when it is trained from a centralized and a federated
approach. Section 5 explains the adversarial setup followed
to test the solution resilience against attacks. Finally, Sect.
6 draws the conclusions extracted from the present research
and future lines to explore.

2 Related work

This section will review how the device identification
problem has been addressed to date from different
approaches and techniques. Likewise, some works in the
literature on FL and Adversarial Machine Learning will be
analyzed.

Device type and model identification has been widely
explored in the literature, with varied data sources and ML/
DL-based processing techniques [4]. As one of the closest
works to the present one, the authors of [7] proposed a
novel challenge-response fingerprinting framework called
STOP-AND-FRISK (S & F) to identify classes of Cyber-
Physical Systems (CPS) devices and complement tradi-
tional CPS security mechanisms based on hardware and
OS/kernel. It is exposed that unauthorized and spoofed
devices may include manipulated pieces of software or
hardware components that may adversely affect CPS
operations or collect vital CPS metrics from the network.
Another interesting paper showing a fingerprinting tech-
nique using hardware performance is [8]. Such a technique
is based on the execution times of instruction sequences
available in API functions. Due to its simplicity, this
method can also be performed remotely. Additionally, the
network is the main data source employed in the literature
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for device model and type identification [9], as it can be
collected from an external gateway.

Regarding the application of FL in device identification,
the authors of [10] leveraged FL for device type identifi-
cation using network-based features. Here, the authors
experienced a slightly reduced performance compared to a
centralized setup, 0.851 Fl-score in the centralized and
0.849 in the federated, but the training process was faster
and safer. Additionally, in [11], the authors performed
application-type classification based on network traffic
using FL to build the models. Although the authors of [12]
proposed a distributed solution for network-based model
identification, data is shared with an aggregator that per-
forms clustering for model inference. Therefore, no privacy
is preserved in this solution.

Moreover, datasets available in the literature for device
type or model identification are focused on dimensions
such as network connection [13] or radio frequency fin-
gerprinting [14]. However, there is no execution time-
based datasets modeling device performance for identifi-
cation, just some benchmark datasets focused on other
tasks [15].

Concerning adversarial ML in FL, the authors of [16]
exposed the impossibility of the central server controlling
the clients of the federated network. A malicious client
could send poisoned model updates to the server in order to
worsen learning performance. A new framework for FL is
proposed in which the central server learns to detect and
remove malicious model updates using a detection model.
Finally, the authors of [17] considered the presence of
adversaries in their solution for FL-based network attack
detection. However, no model identification experiments
were carried out.

In conclusion, although each research topic, namely
hardware-based model identification, FL, and adversarial

ML, has been separately explored. To the best of our
knowledge, and as Table 1 shows, there is no work in the
literature analyzing device model identification from a
federated learning perspective. Besides, there is no dataset
focused on model identification based on execution time-
based features. Furthermore, there is no solution evaluating
the impact of adversarial attacks when some clients are
malicious, together with the main aggregation-based attack
mitigation techniques.

3 Scenario and dataset creation

This section describes the scenario and the procedure fol-
lowed to generate the execution time dataset used in the
present work. Besides, it provides some insights into the
data distribution that can be useful for understanding the
model identification performance.

3.1 Scenario description

In total, a setup of 55 RPis from different models but
identical software images are employed for data collection,
running using Raspbian 10 (buster) 32 bits as OS and Linux
kernel 5.4.83. The generated dataset is composed of
2.750.000 vectors (55 devices x 50,000 vectors per
device). Each vector has two associated labels, one
regarding the individual device that generated it and
another regarding the model of this device. Data collection
was performed under normal device functioning and
default frequency and power configuration, where the CPU
frequency is automatically adjusted according to the
workload. The list of devices contained in the dataset is
shown in Table 2.

Table 1 Comparison of the most relevant model identification literature works

Work Model FL Adv. attack Conclusions
identification

[7] v/ (Hardware- X X 0.9873 average accuracy using correlation-based algorithms to recognize 11
based) device classes

[8] v/ (Hardware- X X 4200 computers individually identified based on execution-time statistical
based) comparison

[10] v (Network- 4 X 0.882 accuracy using a federated LSTM network to identify 10 IoT device
based) types

[11] — (app v X 0.92 accuracy using a federated CNN to identify user-level applications
identification)

[12] v (Network- X X ~0.97 accuracy for clustering-based IoT device type classification
based) (Distributed)

This v’ (Hardware- v v/ (Label- 0.9999 accuracy identifying RPi models and adversarial impact analysis.

work based) flipping)
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Table 2 Devices employed in data collection

No. of devices Model No. of samples
12 RPi 4 Model B 660,000

22 RPi 3 Model B+ 1,210,000

5 RPi 2 Model B 275,000

16 RPi 1 Model B 880,000

3.2 Dataset creation

The generated dataset has been made publicly available
[18] for download and research of other authors. The
published data includes both identifiers for the RPi model
and for individual devices, so new research could be done
regarding individual device identification.

For the device performance dataset generation, the CPU
performance of the device was leveraged as the data
source. In this sense, the time to execute a software-based
random number generation function was measured in
microseconds.

To minimize the impact of noise and other processes
running in the device, the monitored function was executed
in groups of 1000 runs a total number of 50,000 times per
group. Then, for each 1000-run group, a set of statistical
features was calculated, generating a performance finger-
print composed of 50,000 vectors per device. In total, 13
statistical features are calculated: maximum, minimum,
mean, median, standard deviation, mode sum, minimum
decrease, maximum decrease, decrease summation, mini-
mum increase, maximum increase, and increase summa-
tion. Decrease and increase values are calculated as the
negative or positive difference between two consecutive
values in each 1000-run group. Besides, the device model
is added as label. Table 3 shows an example of a vector in
the dataset belonging to a Raspberry Pi 4 device.

3.3 Data exploration

Figure 1 shows the data distribution for min, max, mean
and median features. It can be observed how the values
vary according to the model that generated the vector,
resulting in a presumably good model identification
performance.

Table 3 Vector example for a RPi4 device

4 Centralized vs federated model
identification performance

This section seeks to evaluate firstly the performance of the
generated dataset when identifying the different device
models in a DL-based centralized setup, and secondly the
performance variation when the model is generated in a
distributed manner, following an FL-based approach.

4.1 Centralized setup

For the centralized experiment, the dataset described in
Section 3 is divided into 80% for training/validation and
20% for testing, without data shuffling. Min-max normal-
ization is applied then using the training data to set the
boundaries.

, X — min(x)

~ max(x) — min(x) M
To measure the centralized classification performance, a
(MLP) classifier is implemented. After several iterations
testing different numbers of layers and neurons per layer,
the chosen MLP architecture is composed of 13 neurons in
the input layer (one per feature), two hidden layers with
100 neurons each one using relu (Rectified Linear Unit) as
activation function [19], and 4 neurons in the output soft-
max layer (one per model class). Adam [20] was used as
optimizer with a 0.001 learning rate, and 0.9 and 0.999 as
first and second-order moments. Table 4 shows the details
of the model.

With this setup, the MLP is trained for 100 epochs using
early stopping if no validation accuracy improvement
occurs in 20 epochs.

Figure 2 shows the confusion matrix resultant of the
evaluation of the test dataset. As it can be seen, almost a
perfect identification is achieved, with only 15 samples
being misclassified out of ~ 550,000 (0.999972 accuracy).
These results are aligned with the expectations, as having
different CPUs in each RPi model makes the execution
time of the same functions different between them. How-
ever, model identification performance is not the main
focus of the present work, where the priority is to prove the
effectiveness of a federated setup and the impact of
adversarial attacks and countermeasures.

Min Max Mean Median SD Mode Sum Min decr.

Max decr.

Decr. sum  Min incr. Max Incr.  Incr. sum  Model

2.1 127 42 4.5 1.3 35 42218 —113.74

— 87

— 0.001 117.8 0.001 7.81 RPi4

Values show the microseconds required to execute a function
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Fig. 1 Min, max, mean and median feature distributions

Table 4 MLP architecture for model identification

Layer Neurons Activation
1 13 -

2 100 relu

3 100 relu

4 4 softmax
Optimizer Adam

4.2 Federated scenario and results

Once the centralized model has been obtained, the decen-
tralized model is implemented using FL to compare the
performance of both approaches. The FL approach is based
on horizontal FL, where the clients have datasets with the
same features but from different data samples.
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Fig. 2 Centralized evaluation confusion matrix
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For implementation, the IBM Federated Learning
library [21] is used, which incorporates the necessary tools
to perform the training in a decentralized manner.

4.2.1 Scenario

For the decentralization of the training phase, a scenario has
been created in which there are 5 independent organizations
in which the available data are distributed. Each of them has a
certain number of devices belonging to different models, but
not all of them have information on all models, i.e. there are
organizations that only have devices of type 4 model, others
that only have devices of type 2 and 3 models, etc. Figure 3
provides the details of the device distribution in each orga-
nization. Therefore, the 5 organizations intend to generate a
global model capable of identifying all the existing device
models among all of them. This setup leads to a scenario of
Non-IID (Non-Independent and Identically Distributed)
data, harder to solve with FL as model aggregation will be
negatively influenced in the aggregated models are very
different from each other.

4.2.2 Federated architecture design

In order to test the performance of an FL-based setup, first
it is necessary to define the architecture to be implemented.
In this sense, Fig. 4 shows the organization of the different
clients which will hold the data and upload their local
models to the aggregator in order to cyclically build a
common model capable of making predictions based on the
local data of all clients.

4.2.3 Performance evaluation

In order to fairly compare the models, the MLP architec-
ture to be trained will be the same as the one used in the
centralized model (see Table 4, i.e. the layers will have 13,

Model 1

Model 2

B Vodel 3

Model 4

Fig. 3 Data division in the FL scenario
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Local model training Local model training

Local data
preprocessing

Local
dataset

100, 100, 100, and 4 neurons, from input to output. As
aggregation method, Federated Averaging is applied as
proposed in [22]. As initialization step, the aggregation
server performs two tasks: (1) to initialize the weights of
the model that the clients will start to train, so all clients
start from the same setup; (2) to retrieve for each client its
min-max values of each feature for common dataset nor-
malization, having a min-max normalization for each
dataset x in organization o € x defined as:

, Xo — min(Xicp))

o= max(Xicfy) — min(Xicjy))

(2)

Algorithm 1 defines the iterative training process for the
model generation, assuming previous dataset normaliza-
tion. Each client performs local updates of the model and

Algorithm 1 FederatedAveraging. The K
clients are indexed by k; B is the local minibatch
size, E is the number of local epochs, and 7 is the
learning rate; w are the model weights; Py is the
local dataset of client k. [22]

1: Server executes:

2 initialize wq

3 for each round ¢t = 1,2... do

4 m — maz(C - K, 1)

5 Sy « (random set of m clients)

6 for each client k € S; in parallel do
7 wy,, « ClientUpdate(k, w;)

8

9

K .
Weg1 — D opey %wﬁ_l //Aggregation

0: ClientUpdate(k,w): //Run on client k
11: B« (split Py into batches of size B)

12:  for each local epoch ¢ from 1 to W do
13: for batch b € B do

14: w «— w —n v I(w; b) //Local update
15:  return w to server

=
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returns them to the server for aggregation, repeating then
the process for the desired number of rounds.

The training process was executed for 90 federated
rounds, with one epoch per round. Figure 5 shows the
evolution of the local validation accuracy for each one of
the clients during the training process. It can be appreciated
how the maximum performance is reached around epoch
50, and then the accuracy scores for each client keep
oscillating between 0.95 and 1 until round 90.

Regarding performance, Fig. 6 shows the results of the
test dataset evaluation, the same dataset than in the cen-
tralized setup. Here, the results are almost identical, with
only 17 errors in ~ 55,0000 test samples and an accuracy
of 0.999969.

From the previous results, the main conclusion can be
extracted: no performance loss has been introduced in the
resultant model due to the application of an FL-based
approach. Besides, as no data has left each organization in
the process, the privacy of the information has been kept
private successfully.

5 Adversarial attack and robust aggregation

After testing the effectiveness of FL, its robustness will be
tested using adversarial attacks, specifically the label-flip-
ping technique, using different aggregation algorithms in
order to see which one best fits the proposed scenario in the
presence of attacks.

5.1 Label flipping attack

The label-flipping adversarial technique is applied during
the training process, using the same scenario described
above with the difference that this time part of the data will
be poisoned.

In this sense, the federated training is carried out by
poisoning 25, 50, 75, and 100% of the data of 1, 2, and 3

— ORG?
ORG2
— ORG3
— ORG4
ORGS

0 20 a & &
Epochs

Fig. 5 Federated training validation accuracy evolution

- 0 50026 1 0

~ 0 0 0
m - 16 0 0
| i | v
0 1 2 3

Fig. 6 Federated evaluation confusion matrix

different organizations, representing 20%, 40%, and 60%
malicious clients, respectively. These configurations are
used because potential malicious clients may not poison all
their data and just one portion, in order to go undetected
and make their activity more difficult to identify. So, a total
of 12 adversarial scenarios have been created (4 poising
percentages x 3 possible malicious organizations). This
setup is generated by modifying the labels of the training
data, changing the value of each label to a random value
between 1 and 4 which is not the value of the original label.
The poisoned organizations are ORG1, ORG2, and ORG4
(in that order for 1, 2, and 3 malicious clients).

Figure 7 shows the results when FedAvg is applied as
the aggregation algorithm in the 12 previous adversarial
scenarios (as well as when no label-flipping attack is
applied).

As can be seen, aggregation by averaging offers good
performance up to 50% poisoning, maintaining an accuracy
over 0.9. However, accuracy drops rapidly to hit rates close
to 0% when the poisoning is 75% or higher. Therefore,
FedAvg cannot be considered a robust aggregation method
in the presence of a label-flipping attack. Next, 3 different
aggregation methods will be analyzed in the following in
order to check which one offers better performance.

10 —— 10RG

08

06

04

02

00

0 0 ) &0 80 100

Fig. 7 FedAvg performance against label-flipping attack (X axis
depicts the poisoning percentage, Y axis depicts accuracy)
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5.2 Robust aggregation methods

Next, several aggregation methods focused on improving
the model resilience to malicious clients will be evaluated
and compared to the default FedAvg algorithm.

5.2.1 Coordinate-wise median aggregation

Coordinate-wise median [23] follows the scheme of the
aggregation by average with the difference that the com-
bination of the weights is done by calculating the median of
each weight of the local models. In short, following
Algorithm 1, the averaging aggregation step is substituted
by a median operation.

Next, Fig. 8 depicts the accuracy results when the dif-
ferent attack setups are applied when using median
aggregation. Coordinate-wise median follows a similar
pattern to FedAvg aggregation, dropping from 50% poi-
soning rate. However, it has performed better especially
when there is only one poisoned organization (20% mali-
cious clients). While FedAvg dropped to 0.20-0.40, the
median has remained around ~ 0.9.

5.2.2 Krum aggregation

The idea behind Krum [24] is to select as the global model
the local model which is most similar to the rest. The idea
is that even if the selected model is a poisoned model, the
impact would not be so great since it would be similar to
other models that are probably not poisoned. The aggre-
gator calculates the sum of the distances between each
model and its closest local models. Krum selects the local
model with the smallest sum of distances as the global
model. Figure 9 shows the results when Krum is applied as
the aggregation algorithm.

As can be seen, Krum has remained constant for all con-
figurations with an accuracy of 0.6896. This is because this
aggregation method chooses a single local model as the
global model and discards the information from the rest of

08

06

04

02

0.0

0 20 a0 0 80 100

Fig. 8 Coordinate-wise median aggregation performance against
label-flipping attack (X axis depicts the poisoning percentage, Y axis
depicts accuracy)
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Fig. 9 Krum performance against label-flipping attack (X axis depicts
the poisoning percentage, Y axis depicts accuracy)

the local models. Therefore, what is happening is that it
always chooses the same local model, and this one belongs to
an organization that has not been poisoned, so the hit rate
remains constant. Figure 10 shows that the resulting global
model only recognizes device models of types 0 and 2.

On the other hand, this organization has not been poi-
soned, which explains that the performance remains constant
since the resulting global model is identical regardless of the
percentage of poisoning. Therefore, it can be concluded that
Krum is selecting the resulting local model of organization 3
in all scenarios, losing the information regarding the classes
not seen in this organization (see Fig. 3).

5.2.3 Zeno aggregation

Zeno [25] is suspicious of potentially malicious organiza-
tions and uses a ranking-based preference mechanism. The
number of malicious organizations can be arbitrarily large,
and only the assumption that ’clean’ organizations exist (at
least one) is used. Each organization is ranked based on the
estimated descent of the loss function. The algorithm then
aggregates the organizations with the highest scores. The
score roughly indicates the reliability of each organization.
In this sense, it could be seen as a combination of Krum
and averaging aggregation mechanisms. Figure 11 shows

0 50027 0

- 0 5615 0
0 1 ) 3

Fig. 10 Krum confusion matrix during the label-flipping attack
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Fig. 11 Zeno performance against label-flipping attack (X axis
depicts the poisoning percentage, Y axis depicts accuracy)
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Fig. 12 Zeno confusion matrix with one malicious client

the results when Zeno is applied as the aggregation
algorithm.

In this case, Zeno has outperformed the aggregation by
median and Krum when only one client is malicious (20%
of the total), achieving 0.9072 accuracy. Zeno remains
constant without being altered by this attack when there is
only one poisoned organization. Figure 12 shows the
confusion matrix of Zeno when one client is malicious. It
can be appreciated how the performance decrease comes
from the impossibility of classifying the second class, the
one underrepresented in the scenario, as there are only 5
RPi2 in the dataset.

When there are 2 or 3 poisoned organizations, Zeno
performance drops once the poisoning rate reaches 75%
and 100%. However, it still manages to maintain an
acceptable performance above 0.50, considering the degree
of the attack. Figure 13 compares the performance evolu-
tion of Zeno and coordinate-wise median with different
number of poisoned organizations. As it can be appreci-
ated, median performance is higher in all scenarios until
the poisoning percentage goes above 50%. After that, Zeno
shows a better or equal performance in all cases, being the
greatest difference when three organizations are com-
pletely malicious (60% malicious clients).
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(a) One organization poisoned.
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(b) Two organizations poisoned.
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(c) Three organizations poisoned.

Fig. 13 Zeno and coordinate-wise median aggregation with different
poisoned clients (X axis depicts poisoning percentage, Y axis depicts
accuracy)

6 Conclusions and future work

In the present work, it has been demonstrated that it is
possible to identify device models using only statistical
data concerning the CPU execution time of the device. An
MLP model has been obtained capable of identifying four
RPi device models with a 99.99% accuracy rate. Besides,
the effectiveness of the FL technique has been tested
against centralized learning. For this setup, a scenario has
been proposed where a total of five organizations aim to
create a model capable of identifying the device models
without sharing the actual data with each other. The
resulting model has obtained identical performance in both
cases, centralized and distributed. Thus taking advantage of
the benefits offered by FL, training data privacy and data
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security preserving model while maintaining the efficiency
of the model obtained through a traditional approach. On
the other hand, different aggregation algorithms have been
tested in order to check which one best fits the proposed
scenario facing a label-flipping attack. Zeno has turned out
to be the best-performing aggregation method in the pres-
ence of attacks due to combining the Krum and mean
aggregation methods. By selecting the m best models and
aggregating them using mean aggregation, less information
is lost than with Krum by ignoring certain organizations
that are considered malicious. Finally, the data collected
for the previous experimentation has been made publicly
available due to the lack of performance fingerprinting
datasets focused on device identification and prepared for
FL-based setups.

In future work, the efforts will be focused on experi-
mentation with more types of device models with more
complex scenarios, such as making each device a single
client instead of being grouped into organizations.
Regarding device identification, it is planned to focus on
identifying individual devices with a high hit rate and not
just identifying device models, as well as testing other
modes of identification by collecting data from hardware
elements other than the CPU. It would also be interesting to
poison the local model weights instead of the local data
(model poisoning) or experiment with other adversarial
attack techniques, such as Evasion attacks, where the goal
is to trick the model once it is trained and not to poison the
training process.
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