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Abstract
The computing device deployment explosion experienced in recent years, motivated by the advances of technologies such

as Internet-of-Things (IoT) and 5G, has led to a global scenario with increasing cybersecurity risks and threats. Among

them, device spoofing and impersonation cyberattacks stand out due to their impact and, usually, low complexity required

to be launched. To solve this issue, several solutions have emerged to identify device models and types based on the

combination of behavioral fingerprinting and Machine/Deep Learning (ML/DL) techniques. However, these solutions are

not appropriate for scenarios where data privacy and protection are a must, as they require data centralization for

processing. In this context, newer approaches such as Federated Learning (FL) have not been fully explored yet, especially

when malicious clients are present in the scenario setup. The present work analyzes and compares the device model

identification performance of a centralized DL model with an FL one while using execution time-based events. For

experimental purposes, a dataset containing execution-time features of 55 Raspberry Pis belonging to four different models

has been collected and published. Using this dataset, the proposed solution achieved 0.9999 accuracy in both setups,

centralized and federated, showing no performance decrease while preserving data privacy. Later, the impact of a label-

flipping attack during the federated model training is evaluated using several aggregation mechanisms as countermeasures.

Zeno and coordinate-wise median aggregation show the best performance, although their performance greatly degrades

when the percentage of fully malicious clients (all training samples poisoned) grows over 50%.
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1 Introduction

Currently, a vast number of devices are deployed world-

wide, from smart cars, traffic lights, and security systems,

to smart homes and industries. The IoT market has grown

to a total of 31 billion connected devices by 2020, with a

forecast of � 30 billion devices connected to each other by

2023, according to Cisco [1]. One of the main reasons for

this growth is the fourth industrial revolution, or Industry

4.0, with the explosion of a set of technologies and para-

digms such as 5G, machine and deep learning (ML/DL),

robotics, and cloud computing.

The emergence of such technologies poses new chal-

lenges to be solved to ensure a safe and efficient environ-

ment [2]. In this sense, there are billions of connected

devices, many of them performing critical tasks where

failures can be fatal, such as autonomous car driving or

industrial operations. In addition, the growing popularity of

these technologies makes them a desirable target for

cybercriminals. Between the possible security threats

affecting resource-constrained devices, device imperson-

ation is one of the most serious problems of large organi-

zations with proprietary hardware where one device model

could be impersonated for malicious purposes, such as
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industrial espionage. In addition, there are a multitude of

counterfeit devices on the market, some of which are dif-

ficult to differentiate from the original [3].

To solve these issues, device model and type identifi-

cation based on performance fingerprinting arises as a

solution [4]. The main benefit of device model identifica-

tion is to prevent third-party attacks such as spoofing, as

well as to identify malicious or counterfeit devices.

Although there are numerous works in the literature

exploring the identification of models from different per-

formance characteristics, such as execution time, network

connections or system logs, and leveraging ML/DL for data

processing, these solutions mostly require data centraliza-

tion, making them not suitable for scenarios where data

leakage protection and privacy is critical. In this sense,

Federated Learning (FL) based techniques have recently

gained enormous prominence [5]. In FL approaches, the

training data of the ML/DL models remain private and

while the locally trained models are shared. Later, these

models are aggregated (usually by a central party) into a

joint model that goes back to the clients for further training,

cyclically repeating the process. This approach improves

the privacy of the data, as it does not leave the client, and

the communication overhead, as sharing only model

parameters is usually less resource-consuming than sharing

the complete data used for training.

In addition, there are few datasets modeling the per-

formance of IoT devices for identification [4], and any of

them is focused on execution time performance or FL-

based scenarios. Moreover, most of the current solutions in

the literature do not explore the impact of possible adver-

sarial attacks targeting the ML/DL models during their

generation and deployment [6]. These attacks may happen

when one of the clients participating in the federation

maliciously sends corrupted model updates. These prob-

lems have additional importance in FL setups, where the

control of the clients is no longer under the entity gener-

ating the joint ML/DL model.

Therefore, this work explores the following three main

areas to improve the completeness of the literature: (i) the

identification of device models using centralized Machine

Learning (ML) algorithms and execution time data, (ii) the

decentralization of this training using the FL techniques,

and (iii) the use of the Adversarial Machine Learning

(AML) techniques to evaluate and improve the robustness

of the generated models. In this sense, its main contribu-

tions are:

• An execution time-based performance dataset collected

in 55 different Raspberry Pi (RPi) devices from four

different models, and intended for model identification.

This dataset is generated using physical devices under

normal functioning, reflecting a real scenario where

many devices are operating.

• The comparison between a centralized and a federated

Multi-Layer Perceptron (MLP) model with identical

configuration, only changing its training approach. It is

shown how the federated setup maintains an almost

identical model identification accuracy of 0.9999,

without losing performance and improving data leakage

protection and privacy.

• The comparison of different aggregation methods as

countermeasure for the federated model under a label-

flipping attack. Federated averaging, coordinate-wise

median, Krum, and Zeno aggregation methods are

compared, showing median and Zeno the best results

regarding attack resilience.

The remainder of this paper is structured as follows. Sec-

tion 2 describes the closest works in the literature, moti-

vating this research. Section 3 explains the procedure

followed to extract the model identification data. Later,

Sect. 4 compares the performance of a DL-based classifier

when it is trained from a centralized and a federated

approach. Section 5 explains the adversarial setup followed

to test the solution resilience against attacks. Finally, Sect.

6 draws the conclusions extracted from the present research

and future lines to explore.

2 Related work

This section will review how the device identification

problem has been addressed to date from different

approaches and techniques. Likewise, some works in the

literature on FL and Adversarial Machine Learning will be

analyzed.

Device type and model identification has been widely

explored in the literature, with varied data sources and ML/

DL-based processing techniques [4]. As one of the closest

works to the present one, the authors of [7] proposed a

novel challenge-response fingerprinting framework called

STOP-AND-FRISK (S & F) to identify classes of Cyber-

Physical Systems (CPS) devices and complement tradi-

tional CPS security mechanisms based on hardware and

OS/kernel. It is exposed that unauthorized and spoofed

devices may include manipulated pieces of software or

hardware components that may adversely affect CPS

operations or collect vital CPS metrics from the network.

Another interesting paper showing a fingerprinting tech-

nique using hardware performance is [8]. Such a technique

is based on the execution times of instruction sequences

available in API functions. Due to its simplicity, this

method can also be performed remotely. Additionally, the

network is the main data source employed in the literature
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for device model and type identification [9], as it can be

collected from an external gateway.

Regarding the application of FL in device identification,

the authors of [10] leveraged FL for device type identifi-

cation using network-based features. Here, the authors

experienced a slightly reduced performance compared to a

centralized setup, 0.851 F1-score in the centralized and

0.849 in the federated, but the training process was faster

and safer. Additionally, in [11], the authors performed

application-type classification based on network traffic

using FL to build the models. Although the authors of [12]

proposed a distributed solution for network-based model

identification, data is shared with an aggregator that per-

forms clustering for model inference. Therefore, no privacy

is preserved in this solution.

Moreover, datasets available in the literature for device

type or model identification are focused on dimensions

such as network connection [13] or radio frequency fin-

gerprinting [14]. However, there is no execution time-

based datasets modeling device performance for identifi-

cation, just some benchmark datasets focused on other

tasks [15].

Concerning adversarial ML in FL, the authors of [16]

exposed the impossibility of the central server controlling

the clients of the federated network. A malicious client

could send poisoned model updates to the server in order to

worsen learning performance. A new framework for FL is

proposed in which the central server learns to detect and

remove malicious model updates using a detection model.

Finally, the authors of [17] considered the presence of

adversaries in their solution for FL-based network attack

detection. However, no model identification experiments

were carried out.

In conclusion, although each research topic, namely

hardware-based model identification, FL, and adversarial

ML, has been separately explored. To the best of our

knowledge, and as Table 1 shows, there is no work in the

literature analyzing device model identification from a

federated learning perspective. Besides, there is no dataset

focused on model identification based on execution time-

based features. Furthermore, there is no solution evaluating

the impact of adversarial attacks when some clients are

malicious, together with the main aggregation-based attack

mitigation techniques.

3 Scenario and dataset creation

This section describes the scenario and the procedure fol-

lowed to generate the execution time dataset used in the

present work. Besides, it provides some insights into the

data distribution that can be useful for understanding the

model identification performance.

3.1 Scenario description

In total, a setup of 55 RPis from different models but

identical software images are employed for data collection,

running using Raspbian 10 (buster) 32 bits as OS and Linux

kernel 5.4.83. The generated dataset is composed of

2.750.000 vectors (55 devices 9 50,000 vectors per

device). Each vector has two associated labels, one

regarding the individual device that generated it and

another regarding the model of this device. Data collection

was performed under normal device functioning and

default frequency and power configuration, where the CPU

frequency is automatically adjusted according to the

workload. The list of devices contained in the dataset is

shown in Table 2.

Table 1 Comparison of the most relevant model identification literature works

Work Model

identification

FL Adv. attack Conclusions

[7] 4 (Hardware-

based)

7 7 0.9873 average accuracy using correlation-based algorithms to recognize 11

device classes

[8] 4 (Hardware-

based)

7 7 ?200 computers individually identified based on execution-time statistical

comparison

[10] 4 (Network-

based)

4 7 0.882 accuracy using a federated LSTM network to identify 10 IoT device

types

[11] – (app

identification)

4 7 0.92 accuracy using a federated CNN to identify user-level applications

[12] 4 (Network-

based)

7

(Distributed)

7 �0.97 accuracy for clustering-based IoT device type classification

This

work

4 (Hardware-

based)

4 4 (Label-

flipping)

0.9999 accuracy identifying RPi models and adversarial impact analysis.
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3.2 Dataset creation

The generated dataset has been made publicly available

[18] for download and research of other authors. The

published data includes both identifiers for the RPi model

and for individual devices, so new research could be done

regarding individual device identification.

For the device performance dataset generation, the CPU

performance of the device was leveraged as the data

source. In this sense, the time to execute a software-based

random number generation function was measured in

microseconds.

To minimize the impact of noise and other processes

running in the device, the monitored function was executed

in groups of 1000 runs a total number of 50,000 times per

group. Then, for each 1000-run group, a set of statistical

features was calculated, generating a performance finger-

print composed of 50,000 vectors per device. In total, 13

statistical features are calculated: maximum, minimum,

mean, median, standard deviation, mode sum, minimum

decrease, maximum decrease, decrease summation, mini-

mum increase, maximum increase, and increase summa-

tion. Decrease and increase values are calculated as the

negative or positive difference between two consecutive

values in each 1000-run group. Besides, the device model

is added as label. Table 3 shows an example of a vector in

the dataset belonging to a Raspberry Pi 4 device.

3.3 Data exploration

Figure 1 shows the data distribution for min, max, mean

and median features. It can be observed how the values

vary according to the model that generated the vector,

resulting in a presumably good model identification

performance.

4 Centralized vs federated model
identification performance

This section seeks to evaluate firstly the performance of the

generated dataset when identifying the different device

models in a DL-based centralized setup, and secondly the

performance variation when the model is generated in a

distributed manner, following an FL-based approach.

4.1 Centralized setup

For the centralized experiment, the dataset described in

Section 3 is divided into 80% for training/validation and

20% for testing, without data shuffling. Min-max normal-

ization is applied then using the training data to set the

boundaries.

x0 ¼ x�minðxÞ
maxðxÞ �minðxÞ ð1Þ

To measure the centralized classification performance, a

(MLP) classifier is implemented. After several iterations

testing different numbers of layers and neurons per layer,

the chosen MLP architecture is composed of 13 neurons in

the input layer (one per feature), two hidden layers with

100 neurons each one using relu (Rectified Linear Unit) as

activation function [19], and 4 neurons in the output soft-

max layer (one per model class). Adam [20] was used as

optimizer with a 0.001 learning rate, and 0.9 and 0.999 as

first and second-order moments. Table 4 shows the details

of the model.

With this setup, the MLP is trained for 100 epochs using

early stopping if no validation accuracy improvement

occurs in 20 epochs.

Figure 2 shows the confusion matrix resultant of the

evaluation of the test dataset. As it can be seen, almost a

perfect identification is achieved, with only 15 samples

being misclassified out of � 550;000 (0.999972 accuracy).

These results are aligned with the expectations, as having

different CPUs in each RPi model makes the execution

time of the same functions different between them. How-

ever, model identification performance is not the main

focus of the present work, where the priority is to prove the

effectiveness of a federated setup and the impact of

adversarial attacks and countermeasures.

Table 2 Devices employed in data collection

No. of devices Model No. of samples

12 RPi 4 Model B 660,000

22 RPi 3 Model B? 1,210,000

5 RPi 2 Model B 275,000

16 RPi 1 Model B 880,000

Table 3 Vector example for a RPi4 device

Min Max Mean Median SD Mode Sum Min decr. Max decr. Decr. sum Min incr. Max Incr. Incr. sum Model

2.1 12.7 4.2 4.5 1.3 3.5 4221.8 - 113.74 - 8.7 - 0.001 117.8 0.001 7.81 RPi4

Values show the microseconds required to execute a function
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4.2 Federated scenario and results

Once the centralized model has been obtained, the decen-

tralized model is implemented using FL to compare the

performance of both approaches. The FL approach is based

on horizontal FL, where the clients have datasets with the

same features but from different data samples.

Fig. 1 Min, max, mean and median feature distributions

Table 4 MLP architecture for model identification

Layer Neurons Activation

1 13 –

2 100 relu

3 100 relu

4 4 softmax

Optimizer Adam

Fig. 2 Centralized evaluation confusion matrix
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For implementation, the IBM Federated Learning

library [21] is used, which incorporates the necessary tools

to perform the training in a decentralized manner.

4.2.1 Scenario

For the decentralization of the training phase, a scenario has

been created in which there are 5 independent organizations

inwhich the available data are distributed. Each of themhas a

certain number of devices belonging to different models, but

not all of them have information on all models, i.e. there are

organizations that only have devices of type 4 model, others

that only have devices of type 2 and 3 models, etc. Figure 3

provides the details of the device distribution in each orga-

nization. Therefore, the 5 organizations intend to generate a

global model capable of identifying all the existing device

models among all of them. This setup leads to a scenario of

Non-IID (Non-Independent and Identically Distributed)

data, harder to solve with FL as model aggregation will be

negatively influenced in the aggregated models are very

different from each other.

4.2.2 Federated architecture design

In order to test the performance of an FL-based setup, first

it is necessary to define the architecture to be implemented.

In this sense, Fig. 4 shows the organization of the different

clients which will hold the data and upload their local

models to the aggregator in order to cyclically build a

common model capable of making predictions based on the

local data of all clients.

4.2.3 Performance evaluation

In order to fairly compare the models, the MLP architec-

ture to be trained will be the same as the one used in the

centralized model (see Table 4, i.e. the layers will have 13,

100, 100, 100, and 4 neurons, from input to output. As

aggregation method, Federated Averaging is applied as

proposed in [22]. As initialization step, the aggregation

server performs two tasks: (1) to initialize the weights of

the model that the clients will start to train, so all clients

start from the same setup; (2) to retrieve for each client its

min-max values of each feature for common dataset nor-

malization, having a min-max normalization for each

dataset x in organization o 2 x defined as:

x0o ¼
xo � minðxi2½n�Þ

maxðxi2½n�Þ � minðxi2½n�Þ
ð2Þ

Algorithm 1 defines the iterative training process for the

model generation, assuming previous dataset normaliza-

tion. Each client performs local updates of the model and

Fig. 3 Data division in the FL scenario

Aggregator

Model initialization
and preprocessing

Model aggregation

Client 1 Client 2 Client N

...Local data
preprocessing

Local data
preprocessing

Local data
preprocessing

Local model training Local model training Local model training

Local models Aggregated models

Local 
dataset

Local 
dataset

Local 
dataset

Fig. 4 Designed federated architecture for experimentation

Algorithm 1 FederatedAveraging. The K
clients are indexed by k ; B is the local minibatch
size, E is the number of local epochs, and η is the
learning rate; w are the model weights; Pk is the
local dataset of client k. [22]
1: Server executes:
2: initialize w0
3: for each round t = 1,2... do
4: m ← max(C · K, 1)
5: St ← (random set of m clients)
6: for each client k ∈ St in parallel do
7: wk

t+1 ← ClientUpdate(k,wt)
8: wt+1 ← ∑K

k=1
nk

n wk
t+1 //Aggregation

9:

10: ClientUpdate(k, w): //Run on client k
11: B ← (split Pk into batches of size B)
12: for each local epoch i from 1 to W do
13: for batch b ∈ B do
14: w ← w − η � l(w; b) //Local update
15: return w to server

318 Cluster Computing (2024) 27:313–324
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returns them to the server for aggregation, repeating then

the process for the desired number of rounds.

The training process was executed for 90 federated

rounds, with one epoch per round. Figure 5 shows the

evolution of the local validation accuracy for each one of

the clients during the training process. It can be appreciated

how the maximum performance is reached around epoch

50, and then the accuracy scores for each client keep

oscillating between 0.95 and 1 until round 90.

Regarding performance, Fig. 6 shows the results of the

test dataset evaluation, the same dataset than in the cen-

tralized setup. Here, the results are almost identical, with

only 17 errors in � 55;0000 test samples and an accuracy

of 0.999969.

From the previous results, the main conclusion can be

extracted: no performance loss has been introduced in the

resultant model due to the application of an FL-based

approach. Besides, as no data has left each organization in

the process, the privacy of the information has been kept

private successfully.

5 Adversarial attack and robust aggregation

After testing the effectiveness of FL, its robustness will be

tested using adversarial attacks, specifically the label-flip-

ping technique, using different aggregation algorithms in

order to see which one best fits the proposed scenario in the

presence of attacks.

5.1 Label flipping attack

The label-flipping adversarial technique is applied during

the training process, using the same scenario described

above with the difference that this time part of the data will

be poisoned.

In this sense, the federated training is carried out by

poisoning 25, 50, 75, and 100% of the data of 1, 2, and 3

different organizations, representing 20%, 40%, and 60%

malicious clients, respectively. These configurations are

used because potential malicious clients may not poison all

their data and just one portion, in order to go undetected

and make their activity more difficult to identify. So, a total

of 12 adversarial scenarios have been created (4 poising

percentages 9 3 possible malicious organizations). This

setup is generated by modifying the labels of the training

data, changing the value of each label to a random value

between 1 and 4 which is not the value of the original label.

The poisoned organizations are ORG1, ORG2, and ORG4

(in that order for 1, 2, and 3 malicious clients).

Figure 7 shows the results when FedAvg is applied as

the aggregation algorithm in the 12 previous adversarial

scenarios (as well as when no label-flipping attack is

applied).

As can be seen, aggregation by averaging offers good

performance up to 50% poisoning, maintaining an accuracy

over 0.9. However, accuracy drops rapidly to hit rates close

to 0% when the poisoning is 75% or higher. Therefore,

FedAvg cannot be considered a robust aggregation method

in the presence of a label-flipping attack. Next, 3 different

aggregation methods will be analyzed in the following in

order to check which one offers better performance.

Fig. 5 Federated training validation accuracy evolution

Fig. 6 Federated evaluation confusion matrix

Fig. 7 FedAvg performance against label-flipping attack (X axis

depicts the poisoning percentage, Y axis depicts accuracy)
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5.2 Robust aggregation methods

Next, several aggregation methods focused on improving

the model resilience to malicious clients will be evaluated

and compared to the default FedAvg algorithm.

5.2.1 Coordinate-wise median aggregation

Coordinate-wise median [23] follows the scheme of the

aggregation by average with the difference that the com-

bination of the weights is done by calculating the median of

each weight of the local models. In short, following

Algorithm 1, the averaging aggregation step is substituted

by a median operation.

Next, Fig. 8 depicts the accuracy results when the dif-

ferent attack setups are applied when using median

aggregation. Coordinate-wise median follows a similar

pattern to FedAvg aggregation, dropping from 50% poi-

soning rate. However, it has performed better especially

when there is only one poisoned organization (20% mali-

cious clients). While FedAvg dropped to 0.20-0.40, the

median has remained around � 0:9.

5.2.2 Krum aggregation

The idea behind Krum [24] is to select as the global model

the local model which is most similar to the rest. The idea

is that even if the selected model is a poisoned model, the

impact would not be so great since it would be similar to

other models that are probably not poisoned. The aggre-

gator calculates the sum of the distances between each

model and its closest local models. Krum selects the local

model with the smallest sum of distances as the global

model. Figure 9 shows the results when Krum is applied as

the aggregation algorithm.

As can be seen, Krum has remained constant for all con-

figurations with an accuracy of 0.6896. This is because this

aggregation method chooses a single local model as the

global model and discards the information from the rest of

the local models. Therefore, what is happening is that it

always chooses the same localmodel, and this one belongs to

an organization that has not been poisoned, so the hit rate

remains constant. Figure 10 shows that the resulting global

model only recognizes device models of types 0 and 2.

On the other hand, this organization has not been poi-

soned, which explains that the performance remains constant

since the resulting global model is identical regardless of the

percentage of poisoning. Therefore, it can be concluded that

Krum is selecting the resulting local model of organization 3

in all scenarios, losing the information regarding the classes

not seen in this organization (see Fig. 3).

5.2.3 Zeno aggregation

Zeno [25] is suspicious of potentially malicious organiza-

tions and uses a ranking-based preference mechanism. The

number of malicious organizations can be arbitrarily large,

and only the assumption that ’clean’ organizations exist (at

least one) is used. Each organization is ranked based on the

estimated descent of the loss function. The algorithm then

aggregates the organizations with the highest scores. The

score roughly indicates the reliability of each organization.

In this sense, it could be seen as a combination of Krum

and averaging aggregation mechanisms. Figure 11 shows

Fig. 8 Coordinate-wise median aggregation performance against

label-flipping attack (X axis depicts the poisoning percentage, Y axis

depicts accuracy)

Fig. 9 Krum performance against label-flipping attack (X axis depicts

the poisoning percentage, Y axis depicts accuracy)

Fig. 10 Krum confusion matrix during the label-flipping attack
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the results when Zeno is applied as the aggregation

algorithm.

In this case, Zeno has outperformed the aggregation by

median and Krum when only one client is malicious (20%

of the total), achieving 0.9072 accuracy. Zeno remains

constant without being altered by this attack when there is

only one poisoned organization. Figure 12 shows the

confusion matrix of Zeno when one client is malicious. It

can be appreciated how the performance decrease comes

from the impossibility of classifying the second class, the

one underrepresented in the scenario, as there are only 5

RPi2 in the dataset.

When there are 2 or 3 poisoned organizations, Zeno

performance drops once the poisoning rate reaches 75%

and 100%. However, it still manages to maintain an

acceptable performance above 0.50, considering the degree

of the attack. Figure 13 compares the performance evolu-

tion of Zeno and coordinate-wise median with different

number of poisoned organizations. As it can be appreci-

ated, median performance is higher in all scenarios until

the poisoning percentage goes above 50%. After that, Zeno

shows a better or equal performance in all cases, being the

greatest difference when three organizations are com-

pletely malicious (60% malicious clients).

6 Conclusions and future work

In the present work, it has been demonstrated that it is

possible to identify device models using only statistical

data concerning the CPU execution time of the device. An

MLP model has been obtained capable of identifying four

RPi device models with a 99.99% accuracy rate. Besides,

the effectiveness of the FL technique has been tested

against centralized learning. For this setup, a scenario has

been proposed where a total of five organizations aim to

create a model capable of identifying the device models

without sharing the actual data with each other. The

resulting model has obtained identical performance in both

cases, centralized and distributed. Thus taking advantage of

the benefits offered by FL, training data privacy and data

Fig. 11 Zeno performance against label-flipping attack (X axis

depicts the poisoning percentage, Y axis depicts accuracy)

Fig. 12 Zeno confusion matrix with one malicious client

Fig. 13 Zeno and coordinate-wise median aggregation with different

poisoned clients (X axis depicts poisoning percentage, Y axis depicts

accuracy)
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security preserving model while maintaining the efficiency

of the model obtained through a traditional approach. On

the other hand, different aggregation algorithms have been

tested in order to check which one best fits the proposed

scenario facing a label-flipping attack. Zeno has turned out

to be the best-performing aggregation method in the pres-

ence of attacks due to combining the Krum and mean

aggregation methods. By selecting the m best models and

aggregating them using mean aggregation, less information

is lost than with Krum by ignoring certain organizations

that are considered malicious. Finally, the data collected

for the previous experimentation has been made publicly

available due to the lack of performance fingerprinting

datasets focused on device identification and prepared for

FL-based setups.

In future work, the efforts will be focused on experi-

mentation with more types of device models with more

complex scenarios, such as making each device a single

client instead of being grouped into organizations.

Regarding device identification, it is planned to focus on

identifying individual devices with a high hit rate and not

just identifying device models, as well as testing other

modes of identification by collecting data from hardware

elements other than the CPU. It would also be interesting to

poison the local model weights instead of the local data

(model poisoning) or experiment with other adversarial

attack techniques, such as Evasion attacks, where the goal

is to trick the model once it is trained and not to poison the

training process.
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kan, N., Sadeghi, A.: DÏot a federated self-learning anomaly

detection system for IoT. In: 39th IEEE International Conference

on Distributed Computing Systems, pp. 756–767 (2019). https://

doi.org/10.1109/ICDCS.2019.00080

7. Babun, L., Aksu, H., Uluagac, A.S.: Cps device-class identifi-

cation via behavioral fingerprinting: from theory to practice.

IEEE Trans. Inf. Forensics Security 16, 2413–2428 (2021)

8. Sanchez-Rola, I., Santos, I., Balzarotti, D.: Clock around the

clock: time-based device fingerprinting. In: 2018 ACM SIGSAC

Conference on Computer and Communications Security,

pp. 1502–1514 (2018)

9. Meidan, Y., Bohadana, M., Shabtai, A., Guarnizo, J.D., Ochoa,

M., Tippenhauer, N.O., Elovici, Y.: Profiliot: A machine learning

approach for IoT device identification based on network traffic

analysis. In: Proceedings of the Symposium on Applied Com-

puting, pp. 506–509 (2017)

10. He, Z., Yin, J., Wang, Y., Gui, G., Adebisi, B., Ohtsuki, T.,

Gacanin, H., Sari, H.: Edge device identification based on fed-

erated learning and network traffic feature engineering. IEEE

Trans. Cogn. Commun. Netw. 8(4), 1898–1909 (2021)

11. Mun, H., Lee, Y.: Internet traffic classification with federated

learning. Electronics 10(1), 27 (2021)

12. Thangavelu, V., Divakaran, D.M., Sairam, R., Bhunia, S.S.,

Gurusamy, M.: DEFT: a distributed IoT fingerprinting technique.

IEEE Internet Things J. 6(1), 940–952 (2019)

13. Aksoy, A., Gunes, M.H.: Automated IoT device identification

using network traffic. In: ICC 2019-2019 IEEE International

Conference on Communications (ICC), pp. 1–7. IEEE, Piscat-

away (2019)

14. Abbas, S., Nasir, Q., Nouichi, D., Abdelsalam, M., Talib, M.A.,

Waraga, O.A., et al.: Improving security of the Internet of Things

via RF fingerprinting based device identification system. Neural

Comput. Appl. 33, 14753–14769 (2021)

15. Varghese, B., Wang, N., Bermbach, D., Hong, C.-H., Lara, E.D.,

Shi, W., Stewart, C.: A survey on edge performance bench-

marking. ACM Comput. Surv. 54(3), 66:1-66:33 (2021). https://

doi.org/10.1145/3444692

16. Li, S., Cheng, Y., Wang, W., Liu, Y., Chen, T.: Learning to detect

malicious clients for robust federated learning. arXiv preprint
(2020). arXiv:2002.00211 (2020)

322 Cluster Computing (2024) 27:313–324

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.17632/vr9wztmfxg.2
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://doi.org/10.1109/COMST.2021.3064259
https://doi.org/10.1109/COMST.2021.3064259
https://doi.org/10.1109/ICDCS.2019.00080
https://doi.org/10.1109/ICDCS.2019.00080
https://doi.org/10.1145/3444692
https://doi.org/10.1145/3444692
http://arxiv.org/abs/2002.00211


17. Rey, V., Sánchez, P.M.S., Celdrán, A.H., Bovet, G., Jaggi, M.:

Federated learning for malware detection in IoT devices. arXiv

preprint (2021). arXiv:2104.09994

18. Bovet, G., Sánchez Sánchez, P.M.: RPi model device identifica-

tion (2021). https://doi.org/10.17632/vr9wztmfxg.2

19. Agarap, A.F.: Deep learning using rectified linear units (RELU).

arXiv preprint (2018).arXiv:1803.08375

20. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimiza-

tion. arXiv preprint (2014). arXiv:1412.6980

21. Ludwig, H., Baracaldo, N., Thomas, G., Zhou, Y., Anwar, A.,

Rajamoni, S., Ong, Y., Radhakrishnan, J., Verma, A., Sinn, M.,

et al.: Ibm federated learning: an enterprise framework white

paper v0. 1. arXiv preprint (2020). arXiv:2007.10987

22. McMahan, H.B., Moore, E., Ramage, D., Hampson, S., y Arcas,

B.A.: Communication—efficient learning of deep networks from

decentralized data. In: Proceedings of the 20th International

Conference on Artificial Intelligence and Statistics (AISTATS)

2017, Fort Lauderdale, FL (2017)

23. Yin, D., Chen, Y., Kannan, R., Bartlett, P.: Byzantine-robust

distributed learning: towards optimal statistical rates. In: Inter-

national Conference on Machine Learning, PMLR,

pp. 5650–5659 (2018)

24. Blanchard, P., El Mhamdi, E.M., Guerraoui, R., Stainer, J.:

Machine learning with adversaries: Byzantine tolerant gradient

descent. In: Proceedings of the 31st International Conference on

Neural Information Processing Systems, pp. 118–128 (2017)

25. Xie, C., Koyejo, S., Gupta, I.: Zeno: distributed stochastic gra-

dient descent with suspicion-based fault-tolerance. In: Interna-

tional Conference on Machine Learning, PMLR, pp. 6893–6901

(2019)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Pedro Miguel Sánchez Sánchez
is pursuing his Ph.D. in com-

puter science at the University

of Murcia. He received the MSc

degree in Computer Science

from the University of Murcia,

Spain. His research interests

focus on continuous authentica-

tion, networks, 5G, cybersecu-

rity, and machine learning and

deep learning.

Alberto Huertas Celdrán is

senior researcher at the Com-

munication Systems Group

CSG, Department of Informat-

ics IfI, University of Zurich

UZH. He received the M.Sc.

and Ph.D. degrees in Computer

Science from the University of

Murcia, Spain. His scientific

interests include cybersecurity,

machine and deep learning,

continuous authentication, and

computer networks.
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