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ABSTRACT

The spread of misinformation, propaganda, and flawed argumentation has been amplified in the In-
ternet era. Given the volume of data and the subtlety of identifying violations of argumentation
norms, supporting information analytics tasks, like content moderation, with trustworthy methods
that can identify logical fallacies is essential. In this paper, we formalize prior theoretical work on
logical fallacies into a comprehensive three-stage evaluation framework of detection, coarse-grained,
and fine-grained classification. We adapt existing evaluation datasets for each stage of the evalua-
tion. We employ three families of robust and explainable methods based on prototype reasoning,
instance-based reasoning, and knowledge injection. The methods combine language models with
background knowledge and explainable mechanisms. Moreover, we address data sparsity with strate-
gies for data augmentation and curriculum learning. Our three-stage framework natively consolidates
prior datasets and methods from existing tasks, like propaganda detection, serving as an overarching
evaluation testbed. We extensively evaluate these methods on our datasets, focusing on their robust-
ness and explainability. Our results provide insight into the strengths and weaknesses of the methods
on different components and fallacy classes, indicating that fallacy identification is a challenging task
that may require specialized forms of reasoning to capture various classes. We share our open-source

code and data on GitHub to support further work on logical fallacy identification.

1. Introduction

The purpose of constructing an argument is to prove
conclusions that are in some way unknown or doubtful or
that have been challenged and called into question [8]. A
logical fallacy is a logical mistake in the reasoning used to
transition from one proposition to the next, which results in
a faulty argument [3]. Logical fallacies form a broad cate-
gory of violations of argumentation norms, including struc-
ture, consistency, clarity, order, relevance, and complete-
ness. Detecting whether an argument is fallacious and the
corresponding actual violation, is in practice a subtle task.
Detecting one or more fallacies in an argument, however,
does not prove its conclusion to be false - they merely de-
tect a flaw in the reasoning that attempted to prove that the
conclusion is true.

Logical fallacies have been of interest to social science
since the early days of mathematics and philosophy [4]. More
recently, the societal relevance of logical fallacies has been
greatly amplified due to the wide adoption of the World
Wide Web, which enabled a free exchange of large amounts
of information, including an easy spread of misinformation
[121, 125, 2] and propaganda [29, 10, 49]. Misinformation
and propaganda are thorny issues for social media platforms
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on the Web and have been increasingly addressed through
the growing teams of moderators [41, 86], and are under the
scrutiny of different organizations and governmental bod-
ies, such as the UN [64]. Similarly, the EU plans to ratify
addressing misinformation as part of the Digital Services
Act [27], as the spread of harmful and incorrect arguments
can sway the population and lead to political shifts and civil
unrests [67].

Considering the subtlety and the volume of fallacious
arguments, manually checking each by a human has be-
come impossible. Moreover, the very subjective nature of
the tasks tends to open room for disagreement on the clas-
sification when multiple annotators or moderators are in-
volved. This motivates the need for automated methods
that can quickly process an argument, understand its in-
tent, and detect possible flaws in the reasoning. The algo-
rithms need to be robust, i.e., work well for an argument in
an open domain, and explainable, i.e., provide an explicit
trace of their reasoning for human collaborators like social
media moderators. Prior work on taxonomizing logical fal-
lacies [26, 4, 8] and the initial efforts to develop logical
fallacy benchmarks [62] has set the ground for comprehen-
sive and trustworthy logical fallacy methods. However, as
these works have been attempted in isolation, comprehen-
sive methods and tasks are lacking.

Building a comprehensive evaluation setup and methods
for logical fallacy identification has several key challenges.
First, while prior work has provided a list of taxonomies for
organizing logical fallacies, it is unclear how they can be
organized and aligned with existing benchmarks. Second,
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logical fallacies require an abstraction from syntax to high-
level semantics revolving around structure and soft logic.
This makes pure language model-based methods insufficient
for fully solving the task. Third, arguments rely heavily on
background factual and commonsense knowledge. A robust
and explainable method needs mechanisms to make implicit
(assumed) knowledge in fallacies explicit. Fourth, given the
large set of fallacies and the relatively small amount of an-
notated examples for supervised learning, data sparsity is a
serious issue. To build robust and explainable methods, it
is essential to devise scalable mechanisms that can combat
data sparsity.

In this paper, we consider the research question: How
can we build methods for robust and explainable identifi-
cation of logical fallacies in natural language arguments?
We consolidate prior work on taxonomizing logical fallacies
into a three-stage framework of logical fallacy identification
tasks, ranging from deciding whether there is a logical fal-
lacy in an argument (logical fallacy detection), performing
classification in high-level classes (coarse-grained classifi-
cation), and finally performing classification into a wider
range of specific classes (fine-grained classification). To
deal with the need for abstraction and to fill knowledge gaps,
we experiment with three families of methods: prototype-
based reasoning, instance-based reasoning, and knowledge
injection. We combat data sparsity through suitable meth-
ods for data augmentation and curriculum learning.

The contributions of this paper are as follows:

1. We design a three-stage framework of logical fallacy
identification tasks, inspired by fallacy classification
theories. We map and enhance existing datasets into
this pipeline to provide a well-motivated and repre-
sentative evaluation set.

2. Our framework includes a wide range of methods with
a focus on robustness and explainability: prototype-
based reasoning, instance-based reasoning, and knowl-
edge injection. We complement these methods with
strategies for distant learning from more data based
on data augmentation and curriculum learning.

3. We conduct an extensive evaluation of these meth-
ods on our datasets, focusing on their robustness and
explainability. Our results provide insight into the
strengths and weaknesses of the methods on differ-
ent components and fallacy classes, indicating that
fallacy identification is a challenging task that may
require specialized forms of reasoning to capture var-
ious classes.

The rest of this paper is structured as follows. A compre-
hensive study of different classification schemas on logical
fallacies, together with our three-stage framework, is pre-
sented in Section 2. Prior work that detects logical fallacies
or uses related methods to ours is reviewed in Section 3. We
describe the adopted methods in Section 4 and the experi-
mental setup in Section 5. Our results accompanied by the

extra ablation studies are presented in Section 6. We discuss

our findings and conclude the paper in Sections 7 and 8.
We make all our code and data available on GitHub at

https://github.com/usc-isi-i2/logical-fallacy-identification.

2. Organizing Logical Fallacies

There are two broad categories of fallacies: formal, in-
volving the error in the logical structure of the argument,
and informal, mostly concerned with the content of the argu-
ment or the latent error in their expression of logic [45]. In
this study, we focus on the latter. Within informal fallacies,
various definitions and categorizations of logical fallacies
have been proposed since antique Greek philosophers such
as Aristotle [4]. Aristotle’s Sophistical Refutations [4] and
John Locke’s An Essay Concerning Human Understanding
[73] can be considered as the cornerstones of works on log-
ical fallacies, followed by notable contributions by others,
especially Copi [26], Barker [8], and Watts [122]. We elab-
orate on each of the aforementioned philosophical theories
in Section 2.1. Then, in Section 2.2, we devise our logical
fallacy framework that is rooted in these philosophical theo-
ries, and it formalizes them into three stages: fallacy detec-
tion, coarse-grained classification, and fine-grained classifi-
cation. We describe the coarse- and the fine-grained classes
that constitute our taxonomy of logical fallacies.

2.1. Existing Theories of Categorization for
Logical Fallacies

Aristotle [4] distinguishes several kinds of deductions
(syllogisms) in [4]. Broadly, he groups the fallacies into
the ones dependent on language (In Dictione) and the ones
not dependent on language (Extra Dictionem). His catego-
rization revolves around the premises discussed in the de-
ductions as well as the conditions required for arguments to
prove them correct. According to Aristotle, an argument sat-
isfies three conditions, and “is based on certain statements
made in such a way as necessarily to cause the assertion of
things other than those statements and as a result of those
statements.” Thus an argument may fail to be a syllogism in
three different ways: (1) the premises may fail to necessitate
the conclusion, (2) the conclusion may be the same as one of
the premises, and (3) the conclusion may not be caused by
(or grounded in) the premises. Aristotle’s fallacies are pri-
marily fallacious deductions that appear to be correct on the
surface. There are six classes of fallacies dependent on lan-
guage: Equivocation, Amphiboly, Combination of Words,
Division of Words, Accent, and Form of Expression. Addi-
tionally, there are seven kinds of logical fallacies (sophisti-
cal refutation in Aristotle’s words) that can occur in the cat-
egory of fallacies not dependent on language: Accident, Se-
cundum Quid, Consequent, Non-Cause, Begging the Ques-
tion, Ignoratio Elenchi and Many Questions. In summary,
Aristotle classifies fallacies into thirteen classes.

Barker [8] classifies logical fallacies based on the valid-
ity of the assumptions made when transitioning from premises
to conclusions, as well as the validity of the premise and the
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conclusion themselves. Barker defines validity as follows.
First, a valid argument would comprise premises that are all
true. Second, it would not need the conclusions to satisfy
their validity. And finally, its conclusions can be directly
derived from the premises. This view is closely similar to
Aristotle’s, as well as the requirements that [88] have anal-
ogously proposed. Neglect of the third requirement gives
rise to the fallacies of Non Sequitur that are fallacies that
have an insufficient link between premises and conclusions.
Neglect of the second requirement gives rise to fallacies of
Petitio Principii in which "the premises are related to the
conclusion in such an intimate way that the speaker and his
hearers could not have less reason to doubt the premises than
they have to doubt the conclusion". Neglect of the first re-
quirement gives rise to the remaining category of fallacies in
which premises are present that are not necessarily true all
at once, even if the link between premises and conclusions
is as rigorous as can be. In summary, identifying fallacious
arguments would boil down to analyzing the validity and
soundness of the claims as well as the sufficiency and ne-
cessity of the premise of arguments to satisfy the needs of
the conclusion to be true. There are three levels of classi-
fication proposed in [8] that, on the finest level, would sum
up to twenty classes of fallacies, although his categorization
allows for more as well and he does not argue for a bounded
definition or particular number.

Locke [73] can be credited with the contribution of Ad-
Arguments, which are arguments "that men, in their reason-
ing with others, do ordinarily make use of to prevail on their
assent; or at least so to awe them as to silence their oppo-
sition." Locke discusses three kinds of such arguments: Ad
Verecundiam, Ad Ignorantiam, and Ad Hominem. Accord-
ing to him, these are not fallacies, but have been developed
beyond his conception and have been named as such [48].
Ad Verecundiam, or Appeal to Authority is a fallacy when
it is either on the ground that authorities (experts) are falli-
ble or for the reason that appealing to authority is an aban-
donment of an individual’s epistemic responsibility [53]. Ad
Ignorantiam, or Appeal to Ignorance, happens when one de-
mands “the adversary to admit what they allege as a proof,
or to assign a better.” In other words, the Ad Ignorantiam
fallacy happens when the argument claims a proposition to
be true because there is no evidence against it. According to
Locke, Ad Hominem was a way “to press a man with con-
sequences drawn from his own principles or concessions.”
That is, to argue that an opponent’s view is inconsistent,
logically or pragmatically, with other things he has said or
to which he is committed to [53].

Copi [26] defines fallacies as “a form of argument that
seems to be correct but which proves, upon examination, not
to be so.” Copi discusses both deductive invalidities and in-
ductive weaknesses as sufficient reasons for arguments to be
fallacious. From the eighteen informal fallacies he catego-
rizes, eleven are borrowed from [4] and the other seven can
be traced back to [73]. He breaks down fallacies into formal
fallacies and informal fallacies. With his definition over for-
mal fallacies pertaining to the deductive fallacies, he clas-

sifies Affirming the Consequent, Denying the Antecedent,
The Fallacy of Four Terms, Undistributed Middle, and Illicit
Major as formal fallacies. Focusing on the informal falla-
cies, Copi defines two broad categories as Fallacies of Rel-
evance and Fallacies of Ambiguity. Fallacies of Relevance
include Accident, Converse Accident, False Cause, Petitio
Principii, Complex Question, Ignoratio Elenchi, Ad Bacu-
lum, Ad Hominem Abusive, Ad Hominem Circumstantial,
Ad Ignorantiam, Ad Misericordiam, Ad Populum, and Ad
Verecundiam, while Fallacies of Ambiguity include Equivo-
cation, Amphiboly, Accent, Composition and Division.

We conclude that the described categorizations [4, 26, 8,
73] mostly agree on the definition of fallacious arguments
as well as the broad categorizations of fallacies. The main
difference lies in the fine-grained categorizations: Aristotle
[4] discusses the thirteen ways arguments can be fallacious,
while Copi [26] proposes eighteen different fallacy groups.
Barker [8] categorizes fallacies into twenty classes although
he does not delineate the exact categorization or the num-
ber of classes, and all presumably borrow Ad Fallacies from
Locke [73]. These discrepancies require computational ap-
proaches for logical fallacy identification to choose between
the proposed theories. For our experimental work, we adopt
the broad categorization of [26], and the fine-grained clas-
sification by [54] and [62]. We describe our categorization
further in Section 2.2.

2.2. Logical Fallacy Framework

We design a three-stage framework (Figure 1) as an over-
arching testbed for prior research on logical fallacies. The
first stage of the logical fallacy detection aims to identify
whether a logical statement contains a logical fallacy or not.
The detection is formalized as a binary classification task
to identify the arguments that are logically fallacious in any
sense. If a fallacy has been detected, the goal of the sec-
ond stage is to categorize the fallacy into one of a few broad
classes (e.g., Fallacy of Relevance). In the third stage, the
aim is to further classify a fallacy into a fine-grained class
(e.g., Ad Populum).

Following [26], we consider the following four coarse-
grained classes: Fallacy of Relevance, Fallacy of Defec-
tive Induction, Fallacy of Presumption, and Fallacy of Am-
biguity. Figure 1 shows the sub-categorizations we make
from these coarse-grained classes to fine-grained classes de-
scribed in [62]. To perform the mapping, we use the defini-
tions of fine- and coarse-grained classes given in [26]. We
next describe our fallacies in detail.

Fallacy of Relevance occurs for arguments with premises
that are logically irrelevant to the conclusion. Fallacy of Rel-
evance subsumes the fine-grained classes Ad Hominem, Ad
Populum, Appeal to Emotion, Fallacy of Extension, Inten-
tional Fallacy. All of these fallacy classes present different
means for using peripheral premises as support for claims.
Ad Hominem contains sentences where an attack over the
subject acts as a premise for the claim made in those sen-
tences, while Appeal to Emotion involves manipulating the
recipient’s emotions to prove a claim. Ad Populum involves
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Figure 1: Three-stage taxonomy of logical fallacy identification. Coarse-grained classes
are shown in boldface, while regular font is used to show fine-grained classes. We use
solid and dotted boundaries to distinguish between fine-grained classes that we include
and exclude in our experimental study, respectively.
Table 1

Examples for fallacious arguments belonging to different coarse-grained and fine-
grained classes covered in our work.

Coarse-Grained Class

Fine-Grained Class | Example

Fallacy of Relevance Ad Hominem Boris is not qualified to make suggestions about our penal sys-
tem. As an ex-convict, he would always take the criminals’
side.

Ad Populum Aliens must exist because most people believe in them.
Appeal to Emotion Luke didn’t want to eat his vegetables, but his father told him to

think about the poor, starving children in a third world country
who don’t have anything to eat.
Fallacy of Extension If you don'’t drive a car, you hate the Earth.

Fallacy of Relevance | | know you want to imprison me for having murdered my par-
ents, but judge, have mercy on me, I'm an orphan!
Intentional A woman decides to visit a certain doctor after only asking ad-
vice on the best doctors from ONE friend.
Fallacy of Defective In- | False Causality The temperature has dropped this morning, and | also have a
duction headache. The cold weather must be causing my headache.
False Dilemma Subscribe to our streaming services, or get stuck with cable!

Faulty Generalization | My friend said her Math class was hard, and the one I'm in is
hard, too. All Math classes must be hard!

Fallacy of Credibility My uncle is a mechanic and he says you shouldn’t spank chil-
dren. He says it’s ineffective.

Fallacy of Logic Employees are like nails. Just as nails must be hit in the head
in order to make them work, so must employees.

Fallacy of Presumption Circular Reasoning Quinoa is a delicious, plant-based source of protein because it
tastes so darn good.

Fallacy of Ambiguity Equivocation The officer told me to freeze but it was too hot out to be freez-
ing, so | was justified in running away.
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affirming claims based on popular belief, and Fallacy of Ex-
tension uses exaggeration for affirming claims based on the
corresponding sentences. Intentional Fallacy is directed to-
wards using subconscious choices to incorrectly support an
argument.

Within the broad class of Fallacy of Defective Induc-
tion, the premises seemingly provide ground for the conclu-
sion but upon analysis prove to be insufficient and weak for
supporting the claim made. Fallacy of Defective Induction
is specified via five fine-grained categories, namely False
Causality, False Dilemma, Faulty Generalization, Fallacy
of Logic, and Fallacy of Credibility. Arguments that jump
to a conclusion without implying a causal relationship be-
tween the premise and the claim fall under False Causal-
ity. If the specific causal relationship between the premise
and the claim is generalized to a wider category of subjects,
the argument is categorized as Faulty Generalization. Argu-
ments that cast doubt regarding the credibility of the subject
making a claim constitute for Fallacy of Credibility. When
an argument presents a premise that erroneously limits the
options available, it constitutes a False Dilemma. When the
logical construct of the argument is inaccurate and mislead-
ing, it constitutes a Fallacy of Logic.

Fallacy of Presumption takes place when the inference
to the conclusion depends mistakenly on unwarranted as-
sumptions. Fallacy of Presumption includes the following
fine-grained classes. Circular Reasoning occurs for argu-
ments that come back to the beginning without proving them-
selves. Other classes that fall within Fallacy of Presumption
are: Begging the Question, where the conclusion is treated
like an assumption from the premise of the statement; Com-
plex Question, where the argument is framed as a loaded
question that intends to prove another latent unproved as-
sumption; and Accident, where generalization is applied to
specific cases that are out of scope.

Fallacy of Ambiguity occurs when words or phrases are
used in an equivocal way, thus causing ambiguity in the
logic that connects the premise and the conclusion. The
fallacy class Equivocation is a Fallacy of Ambiguity due
to the presence of phrases in arguments that are used in-
terchangeably in different parts of the sentence, leading to
ambiguity in logic. Other classes in Fallacy of Ambiguity
include Amphiboly, Accent, Composition, and Division. In
the case of Amphiboly, the usage of words that could be
used interchangeably leads to a false interpretation in the
grammatical construction of the sentences. Accent fallacy
is one, where a specific phrase or word carries a different
contextual meaning in the premise and the conclusion. Mis-
taken inferences about parts of a whole argument for draw-
ing inferences about attributes for that argument constitute
the Composition fallacy. Division fallacy is the reverse of
the Composition fallacy, where mistaken inferences about
the whole argument are used for drawing inferences about
attributes of parts of it.

We provide examples for each of the fine-grained and
coarse-grained classes in Table 1. A simplifying assumption
we make in this work is that each fallacious argument be-

longs to exactly one broad class and exactly one fine-grained
class. Prior work [29, 62] has shown that this assumption
does not always hold, for example, “Drivers in Richmond
are terrible. Why does everyone in a big city drive like
that?” as cited in [62], is an example that belongs to Ad
Hominem but does have flavors of Faulty Generalization as
well. This gives room for arguments to be categorized into
different fallacy classes simultaneously. Our simplifying as-
sumption restricts our classification task to a multi-class task
rather than a multi-label task.

3. Related Work

In this section, we review prior computational work on
logical fallacy detection and the related task of propaganda
detection. We also review related work that leverages the
methods of case-based reasoning, knowledge injection, and
curriculum learning.

Logical Fallacy. Prior computational work formalizes
arguments containing logical fallacies to make them suitable
for ingestion by rule-based systems and theoretical frame-
works. Gibson et al. [46] formalize and identifies formal
logical fallacies using Argument Markup Language (AML)
and discusses the theoretical questions that arise in the study
of fallacy. Yaskorska et al. [126] adopt a structure-aware
approach to identify, include, and eliminate formal falla-
cies in natural dialogues. Nakpih and Santini [88] present
a model that discovers non sequitur fallacies in legal ar-
gumentation using Prolog language and check the validity,
soundness, sufficiency, and necessity of argumentation us-
ing logical rules. These works mostly focus on formal fal-
lacies, which are defined in terms of their structure. In our
work, we focus on informal fallacies, whose detection and
classification rely on linguistic and world knowledge.

One of the few studies done on informal fallacies [62]
proposes the task of logical fallacy detection, where argu-
ments are classified into thirteen fine-grained fallacies. This
work evaluates the effect of using large pretrained language
models on two datasets, called LOGIC and LOGIC Cli-
mate. Apart from using large pretrained language models,
Jin et al. [62] try to abstract away from the surface of the
arguments by exploiting coreference resolution and entity
linking, in order to identify logical fallacies that are struc-
turally fallacious in their arguments. Similarly, Goffredo
et al. [47] alongside presenting an annotated dataset of 31
political debates from the U.S. Presidential Campaigns, use
transformer-based language models and process four parts
of arguments, i.e., the dialogue context, argument compo-
nents (premise and claim), fallacious argument snippet, ar-
gument relation (attack or support) separately, classify them,
and train all the models jointly. They show that detecting ar-
gument components, relations, and context (see also [107])
in debates is a necessary step to improve the model’s per-
formance. The main difference between [47] and our study
is the fact that we do not need and use any context to clas-
sify logical fallacies. Furthermore, our framework does not
assume any specific structure for text, and hence can be
more generalizable. In our work, we reuse the dataset from
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[62], and also extend its evaluation framework by: (1) in-
troducing a binary detection and coarse classification stage,
(2) employing methods with robust properties to satisfy the
needs of classification of logical fallacies that go beyond
language understanding brought by vanilla language mod-
els, (3) adapting our methods with native explainability, and
(4) carrying out a more extensive set of experiments and
analyses.

Propaganda Detection. Recent research has developed
benchmarks and techniques for propaganda detection in nat-
ural language documents. A significant portion of these
works focuses on extracting better features as well as novel
methods that would help the model boost its performance
[91, 50, 94, 65, 117]. There has also been a surge focus-
ing on the interpretability of models in propaganda detec-
tion [128, 127, 39]. Dimitrov et al. [34] show that propa-
ganda techniques function as shortcuts in the argumentation
process that connect to the emotions of the audience and of-
ten include logical fallacies. In [51], logical fallacies are
called "hallmarks of propagandist messaging”, which im-
plies that logical fallacies can be seen as components within
the broader task of propaganda detection. However, as pointed
out by Jin et al. [62], the two tasks overlap but are distinct,
since propaganda detection focuses on arguments that aim
to influence people’s opinions often using misinformation
as a tool [74, 61], while logical fallacy detection aims to
understand gaps in argumentation. There is also a practical
difference between the formalization of these two tasks, as
propaganda detection data has typically focused on longer
input documents, while logical fallacy datasets have gener-
ally relied on focused and isolated text inputs. In our study,
we utilize the overlap between some of the propaganda tech-
niques and fallacy classes, by augmenting the training data
for logical fallacy classification with a dataset gathered ex-
plicitly around propaganda detection [81].

Case-Based Reasoning. The case-based reasoning frame-
work has been used to learn from past experiences explic-
itly in medical applications [92, 93] and mechanical engi-
neering [7, 96]. One of the most important aspects of case-
based reasoning is its inherent interpretability. Walia et al.
[118] use case-based reasoning as an interpretation model
for Word Sense Disambiguation, while Briininghaus and Ash-
ley [17] apply case-based reasoning to predict the outcome
of legal cases. Ford et al. [40], Ge et al. [43], Han et al. [52]
advocate for the increase in comprehension of the black-
box models and their explainability as well as transparency
using example-based explanations by the end-users. Simi-
lar to our work, Spensberger et al. [114] explore the effect
of case-based reasoning on the student social workers and
their fallacy recognition abilities and find that those who
have access to worked examples perform better during the
experiment. In this paper, we adopt two complementary
case-based reasoning methods. First, we adopt the instance-
based reasoning method proposed by [112] that enriches
the inputs with similar cases and with different case enrich-
ments (e.g., based on counterarguments), and evaluates the
impact of different modeling decisions and case representa-

tions on the model performance. We apply this method to
our three-stage evaluation framework and perform further
ablation studies to understand its performance in relation
to modeling decisions and against other systems. Second,
we include a prototype-based reasoning method, that maps
novel examples to prototypical ones to classify logical fal-
lacies. With both of these methods, we use case-based rea-
soning both as a means to enhance the performance of our
model and simultaneously as a proxy to explain the behavior
of the model classifying logical fallacies.

Knowledge Injection. The challenge of generalizabil-
ity and transferability for logical fallacy classifiers has been
discussed in [62], by testing the model on a dataset con-
taining unseen domain-specific subjects. This motivates the
need for the injection of background knowledge. Injection
of background, especially commonsense knowledge in lan-
guage models has been proposed within tasks of multiple-
choice question answering. Combining neural language mod-
els with commonsense knowledge graphs (KGs) like Con-
ceptNet [113] or ATOMIC [108] can be done by lexicaliz-
ing knowledge into task-targetted evidence paths and com-
bining them with the task input [76, 84]. The idea in K-
BERT [71] is similar - here a multi-head attention layer
is used to combine evidence from background knowledge
and the input task. Other forms of knowledge injection
have been popular as well, such as using graph and relation
networks [70, 130], or introducing the entire KG at train-
ing time regardless of the task at hand [95, 77]. Notably,
prior work has shown that the impact of the injected knowl-
edge strongly depends on the overlap between the knowl-
edge in these graphs and the downstream question answer-
ing task [77, 59]. Due to the nature of logical fallacies, they
can cover daily-life matters and events spreading through-
out social media, and this calls for domain-specific knowl-
edge for comprehension of certain logical fallacies. How-
ever, to our knowledge, exploiting external knowledge has
not yet been fully explored in logical fallacy detection. Try-
ing to fill in the gap and utilize commonsense knowledge in
the detection of logical fallacies, we use [71] to incorporate
knowledge from arbitrary knowledge bases and benefit from
potential enhancements.

Curriculum Learning. Curriculum learning has been
proposed in [12] and [38] from the computer science and
psychology perspectives respectively. The key idea of cur-
riculum learning is that starting from simple examples and
learning from examples in an organized and meaningful way
can contribute positively to the learning process. Using pure
language model-based methods does not suffice for a reli-
able classification of logical fallacies [62], due to known is-
sues of robustness and induction capabilities of vanilla lan-
guage models on unseen data [119, 78]. This motivates us
to leverage continual curriculum learning to attempt to im-
prove the convergence and robustness capabilities of mod-
els, an idea that has not yet been explored in logical falla-
cies. The application of curriculum learning to logical falla-
cies in our work is facilitated by the availability of datasets
at different granularity levels.
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Figure 2: Three stages of the IBR pipeline. Using the new Case C, retriever finds k
similar examples {5, S,,....S,}, and creates S = C & < SEP > S, S5, ® ... ® S,.
The adapter encodes these two inputs and tries to adapt S based on the new case C.
Finally, the classifier uses the rectified information from the adapter to classify the new
case by outputting the probabilities corresponding to belonging to each class of fallacies
(in the example shown above, k = 1).

4. Method

Due to the difficulty, as well as the contention over the
categorization and classification of logical fallacies [54], we
use methods that humans usually adopt when faced with
problems that require complex reasoning. According to [97,
14, 105], people use similar or prototypical examples of a
situation or problem to solve or approach a new one. The al-
luded similarity can be in the various levels, namely, coarse-
grained features such as the whole argument or statements,
but also in the more fine-grained features and in terms of the
extra knowledge one might have about concepts or entities
discussed in the sentences as discussed by [5]. Having in
mind the simplicity as well as explainability of using simi-
lar examples or experiences to reason about and solve new
problems or situations, we adapt methods for Instance-based
Reasoning, Prototype Learning, and Knowledge Injection
(§4.1). Another approach that humans follow for learning
how to solve problems is starting from easy or simpler tasks
and gradually shifting to harder ones to learn [38], which has
been shown to work even better than other learning strate-
gies by Chen and S. Savage [20]. This has been shown to
be the case for neural networks as well [36], not as a bar-
rier, but as a way of training more robust models referred to
as Curriculum learning (§4.2). Finally, we devise data aug-

mentation strategies to address data sparsity and improve the
stability of our models [129] (§4.3).

4.1. Explainable Reasoning Methods
4.1.1. Instance-Based Reasoning

Instance-based reasoning (IBR) [30] is the process of
solving new problems based on the solutions of similar past
problems [80]. IBR is reported to resemble the way humans
think and approach new problems to save time and effort
instead of starting from scratch [97]. IBR is a formaliza-
tion of the general idea of Case-based reasoning (CBR) [80].
Within CBR, rather than comparing new problem instances
with instances seen before like in IBR, we use past similar
problems and experiences and attempt to perform explicit
generalization or induction.'

IBR starts with a set of cases or training examples; it
forms generalizations of these examples, albeit implicit ones,
by identifying commonalities between a retrieved case and
the target case, and tries to approach the new case using
known solutions to past cases. Our IBR formulation (Fig-
ure 2) follows the three-stage pipeline proposed by [112]
consisting of: (1) Retriever - given a target problem, re-
trieve similar cases with known solutions from memory, (2)

'We cover another variant of CBR, prototype theory, in §4.1.2.
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Adapter - adapt the retrieved similar cases to help the deci-
sion on the new case, and (3) Classifier - classify the new
case based on the adapted exemplars. The last step in this
pipeline corresponds to two steps in the formulation by [1]:
classify the new case based on the previous examples, and
retain the new problem alongside its adapted solution and
resulting experience in memory for later use in a more ex-
plicit way. We next describe the design of the retriever, the
adapter, and the classifier.

Retriever is responsible for finding similar cases .S; to
the new case C from a database and passing them to the
adapter together with the new case (S = C @& < SEP >
S S, & ... d S, extracting k similar examples). The
retriever uses language model encoders to get the feature
vectors for each new case as well as all the previous cases
in the retriever database and uses these features to compute
their cosine similarity.” The retriever obtains the k most
similar examples from the database, which are then passed
on to the adapter module.

We experiment with SimCSE [42], a Transformer-based
retriever that is optimized for capturing overall sentence sim-
ilarity using a contrastive loss function. We also include
sentence encoders that are reportedly able to manipulate a
wide range of concepts, by using Sentence-BERT [100] based
on MiniLM [120]. We also include Transformer models
that have been trained to distinguish emotional expressions,
since it has been shown that emotions can be used to manip-
ulate masses [13] and they are intuitively important to detect
certain logical fallacies, such as Appeal to Emotion. To cap-
ture the usage of empathetic and emotional terminology, we
use a RoBERTa model [72] fine-tuned on the WASSA 2022
Shared Task dataset [9].

Adapter transforms the retrieved cases {5}, S5, ..., S}
together with the new case C denoted as S as well as the
new case C, and prioritizes earlier cases that are most help-
ful. The adapter consists of two parts: an encoder and an
attention mechanism. As an encoder, we use a language
model that takes as input C and .S and produces a set of raw
hidden states E- and Eg respectively without a head layer
on top.

The attention mechanism selects the most important in-
formation to be considered from similar cases. Based on the
second step of the pipeline by [1], after the similar cases are
retrieved, some of these similar cases should be manipulated
or adapted to help the classifier at the end of the pipeline,
since not all similar cases will be equally helpful for the
model. We formalize this step with an attention mecha-
nism on top of the encoded cases (Eg and E() to filter the
retrieved cases or shift the attention to where it helps the
model best to reason about new cases. More concretely, we
use a Multi-headed attention component [116] that fetches
the new case embedding E. as the query and the combined
embeddings Eg as both keys and values. We include both

2We also experiment with encoding the input examples as either AMR
graphs [6], using explanation graphs [106], or their combination, however,
we do not pursue this direction further due to poor performance and ex-
plainability.

the new case as well as similar cases in .S to avoid losing
information from the new case. The output of this compo-
nent, i.e., the attention output A has the same shape as E.
and E ¢ and is fed to the last step of IBR, i.e., the classifier.

Classifier layer at the end of the pipeline is applied on
top of the adapter output A to predict the labels. As a clas-
sifier, we use a two-layer perceptron with a gelu [56] acti-
vation function. Given a number of classes C, we compute
C logits and their corresponding probabilities of belonging
to each class c. We use cross-entropy loss as our learning
objective.

Overall, the IBR method is similar to a language model
with a classification head on top with an important distinc-
tion. By using a retriever and finding similar examples to the
new case and integrating these new examples in the classi-
fication process, we benefit in two ways: (1) we use similar
examples of an argument to help the model classify the argu-
ment more accurately, and simultaneously, (2) enhance the
explainability of the model, showing the end-users similar
examples of an argument to lift end-users’ understanding of
the capabilities and acquired knowledge of the model [101].

4.1.2. Prototype-Based Reasoning

Prototype theory [105] is a theory of categorization in
psychology and cognitive linguistics, in which there is a
graded degree of belonging to a conceptual category, and
some members are more central than others. In prototype
theory, any given concept in any given language has a real-
world example that best represents this concept, i.e., its pro-
totype. Like IBR, prototype-based reasoning (PBR) is also
an instance of case-based reasoning, and there has been some
controversy about the superiority of one over the other. There
are both claims about the superiority of prototypical exam-
ples over normal examples [63], as well as their counterparts
[82] who state that a context theory of classification, which
derives concepts purely from exemplars works better than a
class of theories that included prototype theory (§6.4).

We build on the deep learning adaptation of the proto-
type theory by the Prototex [31] method. The architecture of
Prototex is shown in Figure 3. Prototex is based on the Pro-
totype Classification Network proposed in [69]. The Pro-
totex architecture contains an encoder f and a special pro-
totype layer p, where each unit of that layer stores a weight
vector that resembles a prototypical example. The prototype
layer includes both positive and negative prototypes, aiming
to help the models distinguish between the presence and ab-
sence of features that support any given class. The input
x is first encoded into a latent representation that is shared
between the input data and the prototype layer p. This repre-
sentation is used to calculate the euclidean distance with the
prototype layer p, resulting in a distance vector d. We mask
the distance vector with a distance mask layer m. The role of
the distance mask m is to make the model only optimize the
proximity of input examples of a particular class to a fixed
set of prototypes. In other words, the distance mask directs
the prototypes to represent prototypical examples of a par-
ticular class instead of a mixture of arbitrary classes. The
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Figure 4: Example Sentence Tree Construction in K-BERT.

masked distance vectors between input examples and proto-
types are further fed to a fully connected layer w followed
by a softmax layer s to classify a particular data point. To
have interpretable prototype vectors, the model is optimized
with auxiliary loss terms that bring the embeddings of the
training examples closer to the prototypes and also the em-
beddings of the prototypes closer to the input examples.

The Prototex method was originally designed for binary
classification between propagandistic and non-propagandistic
sentences. We modify the Prototex architecture to support
a multi-class classification setup. Moreover, the original ar-
chitecture uses a sequence-to-sequence model, BART [68].
For a fair comparison to our other methods and inspired
by the best results on logical fallacy reported in [62], we
replace the BART encoder model in Prototex with a self-
supervised language model, Electra [23]. We do not use the
decoder network and instead focus on the learned prototypes
and their explanations.

4.1.3. Knowledge Injection

Many fallacy classes rely on the ambiguous structure of
the logical construct in sentences to introduce flaws in ar-
guments. Let us consider the example sentence The police
asked me to freeze, but it was a hot day. So I was justified
in running away, which belongs to the fallacy class Equivo-
cation (Figure 4). Here, the word freeze is used in two con-

texts, one for where the police asked to freeze and another,
where the antonym of freeze, i.e, hot is used in the sentence.
Such sentences, with latent fallacies, illustrate the need for
models to have access to commonsense knowledge.

We propose a knowledge injection (KI) formulation, where
background commonsense knowledge is combined with the
original input for the language model. We adopt a popu-
lar method for injecting background knowledge in language
models, called K-BERT [71]. K-BERT introduces knowl-
edge injection to a BERT [33] model by querying a struc-
tured knowledge base. This knowledge base consists of a set
of triples of the form (subject, predicate, object). In the first
layer, i.e., the knowledge layer, triples from the knowledge
base are connected along with the tokens of the sentences,
forming a sentence tree, as illustrated in Figure 4. The em-
bedding layer of K-BERT flattens out the sentence tree by
retaining the structural information in the form of a visible
matrix. As stated in [71], a crucial goal of K-BERT is to pre-
vent false semantic changes to the original sentence due to
the addition of sentence trees from the knowledge base. K-
BERT functions similarly to BERT [33] but uses a masked
self-attention mechanism. The masked self-attention mech-
anism takes the visible matrix calculated by the seeing layer
and ensures that the knowledge branches are not isolated
from the tokens they are associated with and do not change
the context of the general sentence that they are connected
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Figure 5: Our Knowledge Injection architecture, which is an
adaptation of the K-BERT method.

to. The classification task in K-BERT uses the Masked Lan-
guage Modeling objective.

Our KI adaptation of the K-BERT method focuses on
the input of the knowledge layer, as shown in Figure 5. We
adapt K-BERT to leverage knowledge from the Common-
sense Knowledge Graph (CSKG) [60], which consolidates
commonly used public commonsense sources like Concept-
Net [113], ATOMIC [108], and WordNet [83]. The infor-
mation in CSKG is structured as (subject, relation, object)
triples. To link to these triples, we extract all non-stopword
tokens from the sentences as individual words and we match
them with triples in CSKG where the words act as subjects.

Since CSKG contains multiple relations associated with
the same subject, a key question is how to prioritize or se-
lect relations (triples) that are most relevant and informa-
tive for the input sentence. Following [77], we only use
the 14 highly semantic relations in CSKG, namely ’Causes’,
"UsedFor’, ’CapableOf”, ’CausesDesire’, "IsA’, ’SymbolOf’,
"MadeOf”, ’LocatedNear’, ’Desires’, ’AtLocation’, ’HasProp-
erty’, "PartOf’, 'HasFirstSubevent’, 'HasLastSubevent’. Fur-
thermore, we add a Similarity Ranking component, which
ranks the retrieved triples according to their relevance to the
original sentence. To do so, we estimate the contextual sim-
ilarity of the triple to the original sentence by using the co-
sine similarity of their BERT [116] embeddings as a proxy.
The cosine similarity is directly used to order the triples
in order of priority. The triples with the highest similarity
are injected into the original sentence, thus enriching it with

Forward Curriculum Learning (FCL)

I I
NLI Fallacy Coarse - Fine -
e Detection Grained Grained
Initializer - - o
Training Training Training

Reverse Curriculum Learning (RCL)

Figure 6: Three-stage curriculum pipelines for Forward Cur-
riculum Learning and Reverse Curriculum Learning.

commonsense knowledge. In our experiments with KI, we
investigate the impact of the width and depth of the knowl-
edge retrieval procedure. For this purpose, we test different
branching factors (b), representing the maximum number
of obtained relations per subject, and different numbers of
hops, representing the path length between the subject and
the subsequent relations discovered iteratively based on the
entities of the previously discovered relation.

Returning to our example in Figure 4, we see that the
knowledge derived from CSKG helps in providing the con-
text for the word freeze, as a synonym for arrest. Similarly,
background knowledge tells us that the word hot is related
to temperature. On the surface, the words freeze and hot
seem to be used in the same context, but the background in-
formation from the knowledge base helps in indicating that
they are based on two completely different contexts. The
background knowledge for police also bolsters that the us-
age of the word freeze was intended for an arrest. This addi-
tional knowledge helps in identifying the ambiguous usage
of words and connects the terms based on making implicit
knowledge explicit. As the additional context (arrest, law
enforcement) is not directly connected, we rely on the abil-
ity of the BERT LM to estimate the contextual similarity
between these terms. Thus, the combination of CSKG and
LMs would lead to the classification of the logical fallacy in
the sentence as one of equivocation.

4.2. Curriculum Learning with Language Models

Curriculum learning (CL) [12] is a strategy that exploits
the varying complexity across ordered tasks in a pipeline
to increase performance. CL uses previously learned con-
cepts in the task pipeline and applies this information to
more complex tasks in the latter half of the pipeline. We fol-
low prior work [103] to formulate two variants of CL (Fig-
ure 6). Our Forward Curriculum Learning (FCL) strategy
exposes the model to increasingly demanding tasks, simi-
lar to how humans learn concepts. We also experiment with
the inverse strategy of Reverse Curriculum Learning (RCL),
which starts with a difficult task and gradually adapts the
model for increasingly easy tasks.

Forward Curriculum Learning (FCL) For FCL, we
primarily experiment with continuous training of Transformer
language model variants. We try to induce fallacy knowl-
edge in a discrete, three-stage curriculum pipeline, going
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Table 2

Augmentation examples.

Original Sentence

| Augmentation Method

Augmented Sentence

Even without watching
the movie, | just know
that it would not be as
good as the book.

WordNet

Word2Vec
RoBERTa

Backtranslation (DE-EN)

Yet without watching the picture show, | just make love that it
would not be as good as the book.

Even without watching the moive, | just know that it could not
be as good regarded the book.

Even without viewing the movie, you just knew that it would not
be as good as the book.

Even without seeing the film, all I know is that it wouldn’t be as
good as the book.

The news is fake be-
cause so much of the
news is fake.

WordNet

Word2Vec

RoBERTa

Backtranslation (DE-EN)

The news be fake because so much of the word is fake.

The news becomes fake anyway so much of the news is bo-
gus.
The data is fake because so much about the information is
fake.
The messages are fake because so many messages are fake.

from the simplest (binary fallacy detection) to the most com-
plex (fine-grained classification) tasks. Through the binary
classification stage, we aim to introduce the structural and

topical knowledge required to identify fallacies in arguments.

The model uses this information in the subsequent (coarse-
grained) stage to learn about the broad categories of falla-
cies. These learned coarse representations are then trans-
ferred to and trained further on the fine-grained fallacy clas-
sification objective.

Reverse Curriculum Learning (RCL) Rohde and Plaut
[103] discovered that learning from simple to complex ex-
amples is sometimes not as effective as learning complex
patterns directly first. Although they revised their claims
in a subsequent paper [104], we explore the capabilities of
the models trained with a reverse curriculum, i.e., moving
inversely from complex to simple examples, which allows
us to compare the different curriculum learning strategies
for the task of logical fallacy identification. For RCL, we
first train on the fine-grained classes and use these weights
for the coarse-grained classification task. We ultimately test
their applicability on the binary fallacy detection task.

4.3. Data Augmentation

Besides curriculum learning, we experiment with using
data augmentation for addressing data sparsity. We devise
two data augmentation strategies: modifying the original
task data and adapting related benchmarks.

Augmentation by Modifying the Original Task Data.
We apply commonly used text augmentation techniques for
improving the performance and enhancing contextual un-
derstanding for logical fallacy detection and classification.
We begin with a basic WordNet [83] similarity-based aug-
mentation. This involves using the synsets to substitute the
words in the input with words that have the closest meaning

according to the synset. Second, we evaluate word embed-
ding substitution methods based on Word2Vec and trans-
former embeddings. These substitutions involve finding word
vectors that are closest to the input word vector in the em-
bedding space and replacing them. Lastly, we experiment
with a more recent technique of back-translation, popular-
ized by [90] and originally proposed by [35]. This involves
translating the input sentence into a language that is syn-
tactically and morphologically dissimilar and subsequently
reverse-translating this translation back to the original lan-
guage. To select languages, we follow the insights from
prior work [90, 35, 110]. As the parental tree for a language
must be analyzed, languages that have fewer cognates are
preferred as they enhance variety. Additionally, the use of
two translation models trained on different datasets has been
found to usually work better and provide more diversity to
the output sentence. The most popular choices for back-
translation model pairs are German < English, Turkish <
English, and French < English.

Table 2 shows representative examples of the obtained
augmentations for two input sentences. We observed that
the WordNet and Word2Vec techniques introduced exces-
sive noise in our trials, which ended up deteriorating the
performance of our models. For the back-translation, we
experiment with German < English translation models for
the augmentation because of the syntactical dissimilarity be-
tween the two languages. Although the back-translation
method was able to broaden the variety of the sentence struc-
ture, it occasionally led to the rephrasing of the actual fal-
lacious components of the sentences. Therefore, while we
believe that back-translation and transformer-based substi-
tution together would work best with improved translation
models, in this work, we focus on augmentation with RoOBERTa
embedding-based synonym substitution (RESS).
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Figure 7: Three-stage taxonomy of propaganda detection.

Augmentation by Adapting Related Benchmarks. We
investigate the possibility of augmenting the training data
with human-curated datasets created for the related task of
propaganda detection. As discussed in §3, this task applies
various logical fallacy techniques including Ad Hominem,
Red Herring, Appeal to Emotion, and Irrelevant Authority.
We adopt the Propaganda Techniques Corpus (PTC) [29],
which includes techniques that can be found in journalis-
tic articles and can be judged intrinsically, without the need
to retrieve supporting information from external resources.
The taxonomy of PTC is illustrated in Figure 7.

The PTC dataset consists of news articles, where each
sentence can have between zero, one or more fallacy anno-
tations. As such, we adapt the PTC dataset for augmenta-
tion as follows. If a sentence contains more than one pro-
paganda technique, then that sentence is duplicated with all
its respective labels. We also combine one previous sen-
tence, as a context, with the original labeled sentence only
if the previous sentence does not belong to another fallacy
class. As some of the fine-grained classes of PTC differ
from those of our logical fallacy framework, we use PTC for
augmentation after mapping its 18 classes to coarse-grained
classes. To do so, we map the fine-grained classes in the
PTC dataset to their closest fine-grained class correspon-
dents in the logical fallacy dataset using the class definitions
and descriptions. We then simply apply the broad class map-
ping created for the logical fallacy dataset and map the PTC
fine-grained classes to the logical fallacy coarse classes. As
the goal of this merging is to use the PTC coarse-grained
classes for augmentation, we only leverage the training set
of PTC and discard its development and test sets. Since
the imbalance of the dataset worsens after merging, we use
the RESS-based augmentation to augment the three under-
represented classes in the merged training setup to a mini-
mum of n = 2000 samples. We cap the augmentation to this
amount so as to avoid repetitions and noise in the augmented
dataset, which become dominant in the case of augmenting

Table 3
Training data augmentation statistics for PTC.

Fallacy Class Pre-augmentation Post-augmentation

Relevance 3950 3950
Defective induction 1040 2000
Presumption 536 2000
Ambiguity 42 2000

until the number of samples in the largest class (# = 4, 000).
We refer the reader to Table 3 for augmentation statistics.

5. Experimental Setup

5.1. Evaluation

Binary Logical Fallacy Detection. BIG Bench [44] is
a benchmarking dataset that is used for probing the repre-
sentations of large language models to check their biases on
various sub-tasks. BIG Bench includes two tasks for prob-
ing fallacies: binary logical fallacy detection and the formal
fallacy syllogism negation. We use the binary fallacy detec-
tion dataset for evaluating whether the methods can distin-
guish between normal and fallacious arguments. We do not
use the formal fallacy syllogism negation dataset since its
format and purpose involve the deduction of the validity of
sentences on the basis of the two provided premises, which
is not directly related to the objective of this paper.

We split the BIG Bench logical fallacy dataset into train-
ing, validation, and testing sets, for which the distributions
are shown in Figure 8a. The dataset is balanced and con-
tributes 2,800 samples across all three splits.

Fine-Grained Classification. For the fine-grained clas-
sification evaluation, we use the LOGIC and LOGIC Cli-
mate datasets introduced in [62]. There are thirteen classes
within the LOGIC and LOGIC Climate fallacy datasets as
described in Table 1. The LOGIC dataset contains everyday
fallacious arguments belonging to various topics. We use
the cleaned and revised version of this dataset.” The LOGIC
Climate dataset consists of climate change news articles and
fallacious arguments detected in them. We use LOGIC Cli-
mate as an evaluation-only dataset. As observed in Figures
8d and 8e, the distributions between the two datasets are dif-
ferent, with Intentional being the largest class in the Climate
dataset, whereas it is one of the under-represented classes
in the LOGIC fine-grained dataset. The LOGIC Climate
dataset is included to test the ability of our models to learn
these under-represented classes as well as the transferability
of the model’s knowledge to unseen topics.

Coarse-Grained Classification. We evaluate the coarse-
grained classification based on data inferred from the LOGIC
and LOGIC Climate datasets. The coarse-grained datasets
are curated by mapping fine-grained classes from these two
datasets to the coarse-grained categories following Figure 1.
In the mapping process, fine-grained classes with k£ < 20
samples were removed from their corresponding coarse class

3https://github.com/tmakesense/logical-fallacy/tree/main/
dataset-fixed
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Figure 8: Dataset Distributions.

if this coarse class was not under-represented. For LOGIC,
we left out the fine-grained classes Fallacy of Relevance,
Fallacy of Logic and Intentional, as their mapping to coarse-
grained classes was mostly ambiguous for the data exam-
ples. This resulted in a four-way coarse classification task
for LOGIC and LOGIC Climate into: Fallacy of Relevance,
Fallacy of Defective Induction, Fallacy of Ambiguity, and
Fallacy of Presumption.

The coarse version of the LOGIC dataset shows a clear
imbalance. A visual representation of the distribution is
shown in Figure 8b. To ensure that the testing and valida-
tion splits are representative of this distribution, we sample
all our splits using stratification. The splits for LOGIC Cli-
mate [62] are created in a similar manner. Their distribution
is shown in Figure 8c.

Evaluation Regime and Metrics. We test the models
on the BIG Bench and LOGIC datasets by fine-tuning and
curriculum learning. We apply the models trained on the
LOGIC dataset for fine- and coarse-grained classification in
a zero-shot fashion to the corresponding LOGIC Climate
data. We report the average model performance over three
runs. We use weighted precision, recall, F1-score, and ac-
curacy to characterize the performance of different models.
Weighted measures are used to assess the per-class scores
more accurately for the available unbalanced testing sets.

5.2. Implementation Details

Baselines. We experiment with six NLI/MNLI base ver-
sion models: BERT [85], DeBERTa [98], DistilBERT [22],
Electra [55] and RoBERTa [99]. We utilize NLI models
because we find that they perform better on the tasks of
logical fallacy identification. This can be expected given
that they are trained on a larger variety of data than MLM
or similar models. NLI models have also been shown to

(b) LOGIC Coarse-Grained Distribution
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have a better grasp of concepts than their MLM counterparts
and to produce embeddings with better semantic represen-
tations [25]. To contextualize the results, we also evaluate
two simple baselines: a random baseline and a baseline that
picks classes based on the relative frequency of classes in
the training set.

Instance-Based Reasoning. For all the experiments, we
use a sweep over the hyperparameters such as weight decay
(L2 regularization), learning rate, and feed-forward network
dropout rate. Since we use a threshold to filter the fetched
similar examples from the retriever, based on cosine simi-
larity, we use a sweep over the used threshold as well. We
then use the best combination on the development set and
report the average performance on three runs using the best
hyperparameters. We use the NLI-initialized Electra-base
LM as the underlying encoder for generating input sentence
embeddings and train our models for ten epochs in each ex-
periment. As we observe that the 0.5 similarity filter for
fetched similar cases from the retrievers yields the best re-
sults, we apply a similarity filter on top of the retrievers dis-
carding any fetched case whose cosine similarity to the new
case is below 0.5. We use multi-head attention with eight
heads. The number of cases (k) used in our experiments
ranges from 1 to 10. We do not experiment with more cases
due to the stable trend seen when increasing the number of
cases.

Prototype-Based Reasoning. We experiment with a
different number of positive and negative prototypes and
find that 49 positive prototypes and 1 negative prototype
works best for the fine-grained classification task. We keep
the same number of prototypes for the binary, coarse-, and
fine-grained classification tasks. To train the negative pro-
totype, we also include a “None” class, supported by the
examples from the negative class in the binary classifica-
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Table 4

The corresponding runtime (in seconds) for the experiments
done with each method and model per epoch, for the best
models on the binary fallacy detection task.

Method Model Binary Coarse Fine
NLI Electra 66.0 89.0 108.5
IBR Electra 103.7 1476 191.2
PBR Electra 15.5 382 114.8
Kl K-BERT 96.4 107.3 123.9

tion task. We use the NLI-initialized Electra-base as the un-
derlying encoder for generating input sentence embeddings
and report the best metrics averaged over three runs. We
monitor the validation loss to choose the best model and use
early stopping (patience = 10) to prevent overfitting. We
also compute class weights to handle any imbalance in the
training dataset.

Knowledge Injection. For the experiments with K-BERT,
we perform a grid search and report the results for the best-
performing set of parameters. We use grid search to find
the optimal parameters: a learning rate of 2 X 107> with a
dropout of 0.5. We use the BERT-base model by injecting
knowledge from CSKG and fine-tune the KI model over dif-
ferent datasets for five epochs.

Curriculum Learning. For a fair comparison of the
curriculum learning pipeline against the baseline model, we
report scores on the default hyperparameters of the fine-
tuned model, though we expect an overall increase for all
metrics of at least 2-3% when these models are tuned. We
train for 5, 8, and 10 epochs for each tuning stage respec-
tively in the curriculum learning pipeline to avoid loss of
knowledge across multiple fine-tuning stages. We fix the
batch size to 32, the learning rate to 5 X 107 , and we use
the cosine learning rate scheduler while keeping the remain-
ing hyperparameters for our experiments unchanged.

Data Augmentation. We conduct experiments with dif-
ferent augmentation techniques for word-based and sentence-
based augmentation using NLPAug [75]. We experiment
with a range of augmentation probabilities and the number
of suitable substitutions for RESS, discovering the best re-
sults with 5 substitutions, while over 10 substitutions leads
to a decrease in performance. Similarly, we obtain the best
results with the augmentation threshold set between 80 —
90%, and a maximum of three replacements per argument.

6. Results

We run all our experiments on a cluster of A100-PCIE-
40GB GPUs. The runtime of our experiments depends on
the family of methods used, the dataset, and the size of the
model being fine-tuned. We report runtimes for our best
models on the binary fallacy detection task as well as coarse-
and fine-grained classification task in Table 4. The recorded
times show that the runtime of the models is mostly within
the same order of magnitude of tens of seconds for binary,

Table 5
Main results for the best models for each method family on
binary logical fallacy detection on the BIG Bench dataset.

BIG Bench (Binary)

Method Model Acc P R F1
Random / 0.499 0.508 0.499 0.499
Frequency / 0.501 0.501 0.501 0.501
NLI Electra 0.995 0.995 0.995 0.995
NLI FCL Electra 0.995 0.995 0.995 0.995
IBR Electra 0.997 0.997 0.997 0.997
PBR Electra 0.984 0.984 0.984 0.984
Kl BERT 0.776 0.779 0.775 0.777

around a hundred seconds for coarse-, and between one and
two hundred seconds for fine-grained classification. The
PBR model is exceptionally efficient to train - its runtime is
lower or comparable to the baseline NLI model. IBR takes
the longest to run, taking one order of magnitude longer than
PBR for binary classification and twice as long for fine-
grained classification. As the encoding stage that is part
of the retriever in the IBR framework is executed as a pre-
processing step and is presented as a look-up table in the
training stage, the time that is needed to encode all training
examples with an encoder is excluded in this table.

6.1. Overview of the Results

Tables 5, 6, and 7 show the obtained results for each
method: NLI baseline, NLI with FCL, IBR, PBR, and KI on
the tasks of logical fallacy detection, coarse-grained classifi-
cation, and fine-grained classification. Here, we present the
best result per method, indicating the corresponding model,
and dive into each method in the subsequent sections. All
presented results use augmentation data based on modifying
the original task data (RESS).

We observe that all methods besides KI can solve the
logical fallacy detection task with a nearly perfect F1-score
(98.4%—99.7%), with the IBR method using an NLI-Electra
language model reaching the best performance (cf. Table
5). The results on the coarse- and fine-grained tasks show
more intriguing patterns. IBR again obtains the best per-
formance on the in-domain task (LOGIC dataset) achieving
82.7% and 62.7% F1-scores on the coarse-grained and fine-
grained datasets, respectively (cf. Tables 6,7). However,
the trends are more mixed when generalizing to the out-of-
domain task of LOGIC Climate. The transfer learning F1-
score of IBR (46.6%) falls behind the PBR model (57.3%)
on the coarse-grained classification of the LOGIC Climate
data (cf. Table 6), while the performance of the NLI method
with curriculum learning performs on par with IBR (~ 24%)
for the LOGIC Climate fine-grained task outperforming the
other models (cf. Table 7). Among the different language
models, most of our methods achieve the best results when
using Electra with NLI initialization.

All in all, we observe that CBR models (IBR and PBR)
perform better than baseline, curriculum learning, and KI,
while offering inherent explainability. We observe a signif-
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Table 6
Main results for the best models for each method family on the coarse-grained classifi-
cation.
LOGIC LOGIC Climate
Type Model Acc P R F1 Acc P R F1
Random / 0.249 0413 0.249 0.298 0.249 0.508 0.249 0.323
Frequency / 0.415 0413 0415 0413 0.446 0.508 0.446 0.468
NLI Electra 0.767 0.765 0.767 0.764 +0.01 0.509 0.602 0.509 0.498 +0.01
NLI FCL DeBERTa 0.758 0.748 0.758 0.751 +£0.02 0.491 0.552 0.491 0.490 +0.02
IBR Electra 0.829 0.827 0.829 0.827 +0.01 0.459 0.585 0.459 0.466 +0.01
PBR Electra 0.708 0.711 0.708 0.695+0.03 0.578 0.570 0.578 0.573 +0.03
Kl BERT 0.787 0.781 0.782 0.781 +0.03 0.385 0.589 0.385 0.415+0.01
Table 7
Main results for the best models for each method family on the fine-grained classifica-
tion.
LOGIC LOGIC Climate
Type Model Acc P R F1 Acc P R F1
Random / 0.076 0.094 0.076 0.079 0.077 0.124 0.077 0.085
Frequency / 0.094 0.094 0.094 0.093 0.079 0.120 0.079 0.080
NLI Electra 0.602 0.614 0.602 0.599 +0.02 0.229 0.276 0.229 0.217 +0.01
NLI FCL Electra 0.613 0.624 0.613 0.610+0.04 0.236 0.304 0.236 0.243 +0.02
IBR Electra 0.631 0.638 0.631 0.627 +0.01 0.254 0.281 0.254 0.245 +0.01
PBR Electra 0.574 0.600 0.574 0.574+0.01 0.199 0.330 0.199 0.166 +0.01
Kl BERT 0.488 0.478 0.488 0.482+0.03 0.106 0.092 0.106 0.090 +0.02

icant gap between the performance of all the models on the
in-domain dataset (LOGIC) and the out-of-domain dataset
(Climate LOGIC), particularly in the fine-grained dataset,
which indicates the complexity of knowledge transfer in log-
ical fallacies from topic to topic. Zooming in on the per-
formance of the CBR models on the out-of-domain setting,
prototypical examples seem to be more helpful for approach-
ing coarse-grained classes, while simply focusing on the se-
mantic similarity of previous cases to approach new ones is
performing better for fine-grained logical fallacies.

These results provide insights into the overall trends be-
tween the method families, however, many questions remain
open. We next investigate the following questions. Does
augmentation help? (§6.2) Does curriculum learning have
a consistent impact across models? (§6.3) Does common-
sense knowledge and reasoning by cases have a robust and
notable effect on the model performance? (§6.4) Do in-
stances, prototypes, and commonsense knowledge provide
intuitive explanatory mechanisms? (§6.5) Which classes are
helped by our methods, and which remain difficult to ad-
dress? (§6.6)

6.2. Effect of Augmentation

As the LOGIC dataset is highly imbalanced, we hypoth-
esize that data augmentation will help to address this gap,
ultimately bringing better performance on this dataset. The
challenge with standard augmentation techniques is that log-
ically fallacious statements have a certain structure and ar-
rangement, which we wish to retain even after applying the

augmentation technique. We experiment with modifying the
original dataset using our RESS method and including data
from the neighboring propaganda dataset, PTC.

The obtained results for our models using Forward Cur-
riculum Learning are shown in Table 8. We observe that
augmentation is overall helpful on the fine-grained task and
harmful on the coarse-grained task. Within the fine-grained
task, the RESS augmentation always outperforms the base-
line which confirms our expectation that data sparsity is an

important challenge and it can be addressed through RoBERTa-

based synonym substitution. The PTC augmentation is par-
tially beneficial for some models, owing to the overlap be-
tween the propaganda and the logical fallacy data. How-
ever, the effect of augmentation with PTC is dominantly
negative, signaling that despite the overlap, this dataset is
prohibitively different from the logical fallacy data. On the
coarse-grained data, we see that augmentation has a nega-
tive impact on four out of five models even for the RESS
augmentation method.

We investigate this further by monitoring the augmenta-
tion impact per class. Comparing the performance of the
models between pre-augmented data and post-augmented
data in the coarse-grained dataset, models trained on the
post-augmented data perform slightly better (up to 11%) on
the Ambiguity class that is initially under-represented. How-
ever, the effects are adversary for the three other classes that
initially have much more data points. We attribute this ob-
servation to the trade-off between enriching the data and
disturbance in the natural distribution that the initial dataset
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Table 8

Data augmentation results on the LOGIC dataset: no data augmentation, augmentation
with RESS, and augmentation with PTC. All the models in the table are trained using
the Forward Curriculum Learning framework — FCL.

Coarse-grained

Fine-grained

Model Augmentation Acc P R

F1 Acc P R F1

BERT 0.747 0.737 0.747
0.727 0717 0.727

0.696 0.651 0.696

RESS
PTC

0.739 +0.01 0.549 0.571 0.549 0.552 +0.01
0.721 £0.03 0.586 0.613 0.586 0.584 +0.02
0.667 +£0.01 0.567 0.590 0.567 0.570 +0.02

DeBERTa 0.765 0.778 0.765
0.758 0.748 0.758

0.710 0.675 0.710

RESS
PTC

0.766 +0.03 0.564 0.627 0.564 0.576 +0.02
0.751 +0.02 0.604 0.632 0.604 0.608 +0.01
0.683 +0.01 0.537 0.590 0.537 0.547 +0.04

DistilBERT 0.711 0.698 0.711
0.713 0.703 0.713

0.704 0.652 0.704

RESS
PTC

0.704 +0.01 0.507 0.529 0.507 0.509 +0.01
0.706 +0.02 0.520 0.550 0.520 0.525 +0.03
0.664 +0.02 0.492 0.534 0.492 0.495 +0.04

RoBERTa 0.752 0.746 0.752
0.713 0.710 0.713

0.699 0.647 0.699

RESS
PTC

0.742 +0.01 0.504 0.538 0.504 0.510 +0.01
0.706 +0.02 0.569 0.578 0.569 0.565 +0.02
0.666 +0.01 0.603 0.620 0.603 0.595 +0.01

0.758 0.745 0.758
0.722 0.711 0.722
0.725 0.689 0.725

Electra -
RESS
PTC

0.749 +0.02 0.602 0.621 0.602 0.608 +0.02
0.716 +0.03 0.613 0.624 0.613 0.610 +0.04
0.690 +0.01 0.578 0.596 0.578 0.581 +0.02

Table 9

Curriculum learning results with different NLI and PBR models on Big Bench and the
LOGIC coarse- and fine-grained datasets. All models use RESS augmentation.

Binary (BIG Bench)

Coarse-grained Fine-grained

Model CL Type P R F1

P R F1 P R F1

BERT 0.848 0.845 0.845 +0.01

FCL

RCL 0.826 0.827 0.826 +0.00

0.714
- 0717
0.783

0.718
0.727
0.779

0.717 +0.04
0.721 +0.03
0.778 +0.02

0.583
0.613

0.583
0.586

0.583 +0.01
0.584 +0.02

DeBERTa 0.988 0.988 0.988 +0.00

FCL

RCL 0.908 0.892 0.889 +0.05

0.746
0.748
0.779

0.592 +0.02
0.608 +0.01

0.593
0.604

0.607
0.632

0.740
0.758
0.785

0.741 +0.03
0.751 +£0.02
0.780 +0.02

DistilBERT 0.848 0.847 0.847 +0.01

FCL

RCL 0.844 0.842 0.841 +0.01

0.684
0.703
0.704

0.513  0.505 +0.02
0.520 0.525 +0.03

0.508
0.550

0.695
0.713
0.719

0.683 +0.02
0.706 +0.02
0.711 +0.03

RoBERTa 0.983 0.983 0.983 +0.01

FCL

RCL 0.900 0.899 0.899 +0.01

0.719
0.710
0.736

0.560
0.578

0.714
0.713
0.741

0.716 +0.01
0.706 +0.02
0.732 +0.01

0.545 0.545 +0.02
0.569 0.565 +0.02

- 0.995 0.995 0.995 +0.00
FCL - - -
RCL 0.957 0.957 0.957 +0.01

Electra

0.765
0.711
0.779

0.764 +0.01 0.614 0.602  0.599 +0.02
0.716 £0.03 0.624 0.613 0.610 +0.04
0.775 +0.03 - - -

0.767
0.722
0.782

possesses. Although by augmenting the dataset we achieve
higher performance on the sparse class, the augmentation
has a negative effect on the other classes. This also ex-
plains the success of data augmentation on the fine-grained
classes, which mostly have a low number of training ex-
amples. In summary, while augmentation does not increase
performance on the coarse-grained task variant, its success
on the fine-grained task and on sparsely represented classes
motivates the need for further analysis and development of
data augmentation methods.

6.3. Effect of Curriculum Learning

The effect of curriculum learning for models trained on
RESS-augmented data can be seen in Table 9. We see clear
trends for all three tasks that are consistent across the NLI
models.* We observe that curriculum learning is beneficial
for the coarse-grained and the fine-grained tasks, whereas it
is detrimental for the binary detection task.

Among the two CL variants tested on the coarse-grained
task, we see that RCL performs better than FCL. With the

4We observe identical trends when using CL together with the PBR-
based Electra model.
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reverse curriculum, we notice that using the fine-grained
weights for coarse-grained classification improves scores con-
siderably for all models, with DeBERTa performing the best
with a 0.78 weighted F1 score. This means that all mod-
els learn more about the coarse-grained task from the fine-
grained task compared to learning from the binary fallacy
detection task (i.e., when we use the BIG Bench initial-
ization weights instead of NLI). Three out of five models
still improve their performance in the FCL setup. However,
Electra and RoBERTa decrease their performance and in-
crease their variance between runs in this setup, which can
be attributed to their sensitivity to hyperparameter values.

On the other two tasks, we only compare a single CL
variant to the baseline models. We do not test FCL on the bi-
nary task, as there is no task that is easier than the binary de-
tection in our pipeline to initialize the weights from. Analo-
gously, we do not test RCL on the fine-grained task, because
our pipeline has no task that is more complex than the fine-
grained classification to initialize the model weights from.
For the fine-grained evaluation, we see that the coarse-grained
initialization performs better than the original NLI initial-
ization. We note that using a forward curriculum leads to
an increase in at least 1% F1-scores throughout, with Elec-
tra performing the best in this category with 0.61 weighted
F1. As described before, we expected the benefit of FCL on
the fine-grained task, as the forward curriculum allows the
model to learn in stages of increasing difficulty, which en-
hances model performance at each granularity. We also ob-
serve that increasing the number of epochs at each level of
the pipeline helps to reduce the forgetting of knowledge dur-
ing downstream, fine-grained tasks. However, we observe a
negative impact when using RCL for binary fallacy detec-
tion, which indicates that this task does not benefit from the
initialization of models on the fallacy classification tasks.

Overall, our results reliably show that the curriculum
learning pipeline is capable of improving performance for
the logical reasoning task of fallacy detection and the coarse
representations are effective in the final stage of tuning even
though they do not always outperform the other initializers
in the coarse stage.

6.4. Analysis of Method Sensitivity and Ablations
Next, we perform ablations of the components of our
methods and investigate key parameter settings.

6.4.1. Instance-Based Reasoning

We observe that the IBR method performs the best among
the methods across all datasets (cf. Table 5, 6, and 7). This
indicates that the idea of using similar instances to solve a
new problem is effective at various levels of granularity. Al-
though considering the common belief about the trade-off
between predictive ability and interpretability ([66], [18],
[21]), IBR models could have not behaved as well as other
methods discussed, inline with [102] and [57], we observe
that IBR models offer good accuracy, as well as potentials
for explainability [101]. We investigate the effect of the op-
timal number of similar cases, and of the designs of the re-
triever and the adapter on the performance of the method.
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Figure 9: Comparing the performance of the model being
exposed to different numbers of similar cases in the IBR
framework.

We do not investigate different design choices for the Clas-
sifier, which is currently a feed-forward neural network, and
as such, a trivial step in the framework.

Optimal number of similar cases. Considering the
complexity of sentences containing a logical fallacy, as well
as the wide range of subjects they cover and revolve around,
it is most likely that for some sentences, there would be
more than one already-seen sentence that would be useful
or essential for the model’s reasoning. It is worth men-
tioning that although similar cases can potentially help the
model classify certain sentences better, due to the fact that
retrievers are imperfect and also language models can only
capture the surface meaning of the sentences (form in the
language) and not necessarily understand the meaning [11],
adding more similar cases to the model can be considered
noise and not useful. On this ground, we check the effect
of the different number of cases shown to the model and
assess their impact on the model’s performance in Figure
9. As can be observed, for the coarse-grained and fine-
grained datasets, there is a soft downward transition be-
tween using fewer examples and more examples that shows
using more similar cases does not help the model as much
as it hinders the process. This pattern differs further be-
tween coarse-grained classes and fine-grained classes. In
the coarse-grained classification, regardless of the number
of cases, the performance of the IBR model is always supe-
rior to the baseline, while in the fine-grained classification,
having more than five similar examples would hurt the per-
formance and cause a drop even below the baseline. Con-
sidering the fact that fewer similar cases means less noise
and more similar cases means better coverage in terms of
the potential aid from similar cases, we conclude that higher
coverage cannot compensate for the excess noise added to
the model.

Design of Retriever. For sentences that contain logical
fallacies, nuances in meaning are vital to distinguish the ac-
tual relevant similar sentences from the ones that are only
revolving around the same subject. Building upon this idea,
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Table 10
Comparing the performance of the model using different re-
trievers to fetch similar cases.

150

100

Protoype bins

110
11-20
21-30

Dataset Retriever P R F1
BIG empathy 0.969 0.969 0.969
Bench

all-MiniLM-L6-v2 0.983 0.983 0.983

paraphrase-MiniLM- 0.861 0.823 0.822

L6-v2

SimCSE 0.997 0.997 0.997
Coarse- empathy 0.815 0.813 0.808
grained

all-MiniLM-L6-v2 0.807 0.801 0.796

paraphrase-MiniLM- 0.788 0.785 0.786

L6-v2

SimCSE 0.827 0.829 0.827
Fine- empathy 0.622 0.607 0.609
grained

all-MiniLM-L6-v2 0.616 0.616 0.611

paraphrase-MiniLM- 0.588 0.567 0.567

L6-v2

SimCSE 0.638 0.631 0.627
Table 11

Comparing the performance of the IBR model with and with-
out using the attention mechanism.

Dataset Attn Acc P R F1
BIG Bench w 0.997 0.997 0.997 0.997
w/o 0.826 0.829 0.826 0.824
Coarse-grained w 0.829 0.827 0.829 0.827
w/o 0.768 0.762 0.768 0.764
Fine-grained w 0.631 0.638 0.631 0.627
w/o 0.620 0.631 0.620 0.619

we investigate different pre-trained language models as the
retriever’s encoder (§4.1.1). The comparison between these
encoders is illustrated in Table 10. We observe the superior
performance of SimCSE on all the datasets with different
granularity levels. We attribute this to the contrastive learn-
ing objective used in SIimCSE. MiniLM with six layers, an
all-round model tuned for many use cases, comes in the sec-
ond rank. Both SimCSE, as well as the all-MiniLM model
trained on NLI, show the relevance and effectiveness of NLI
for logical fallacy prediction. However, the paraphrase mod-
els, though trained on similar tasks such as AIINLI (con-
catenation of SNLI [15] and MultiNLI [124]) and sentence
compression, come in the last rank.

Design of Adapter. We compare our results on three
datasets with and without using the attention mechanism
in the third stage (adaptation). The results of this ablation
study are presented in Table 11. Confirming our hypothesis,
we note better performance in the presence of an attention
mechanism to adjust the weights on similar cases when rea-
soning about the new case C. This observation is consistent
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Figure 10: T-SNE clustering (perplexity=2) of the 50 pro-
totype tensors used for fine-grained classification. We flat-
ten the prototypes thereby reducing the 98,304-dimensional
data to just 2 dimensions.

across all datasets, which means that attention is a robust
adaptation mechanism that helps the model to attend to rel-
evant cases regardless of the granularity of the task.

6.4.2. Prototype Learning

We dive deeper into the connection between prototypes
and classes, and the sensitivity of our PBR model on the
number of prototypes.

Prototypes Characterizing Classes. We find the pro-
totypes responsible for the classification of each training
example and assign them to the respective labels. We ob-
serve that the masking mechanism, which we introduce to
the PBR method, helps to associate certain prototypes to
particular classes. While we expect to see a distinct set of
prototypes representative of each class, we observe a mix
of distinct and common prototypes representing a particular
label. For example, for the class Fallacy of Logic, we get
prototypes 6, 13, 38, and 7 as the strongest representatives.
However, we observe prototype 38 to be a strong represen-
tative for five other class labels as well. We believe this is
because of the nature of the overlap of fallacy classes, e.g.,
a fallacious sentence might have flavors of both Appeal to
Emotion and Ad Populum, even if only one of them is anno-
tated as the correct class. Further, we cluster the 50 proto-
type tensors used for the benchmarking of the fine-grained
classification task and color code the prototypes based on
their indices, as shown in Figure 10. Here, prototypes 1-10
have a light color and as we go towards prototypes 40-50,
the shades get darker. We observe a certain grouping of pro-
totype tensors, which may indicate unique features captured
by the prototypes per class.

Prototypes Characterizing Classes. Figure 11 shows
the trend of F1-score on the fine-grained classification task
for a different number of prototypes. We assign 10% of the
prototypes to the negative class for this specific benchmark-
ing. We observe a high sensitivity of the Prototex model
to the number of prototypes, where having a too low or too
high number of prototypes yields suboptimal results. We
find that having a total of 50 (5 negatives) or 100 (10 neg-
atives) prototypes yields the best performance. The PBR
method is highly sensitive to the number of prototypes, and,
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60 —

F1 score
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Num of prototypes

Figure 11: Comparison of the performance of the PBR
model for different numbers of prototypes on the LOGIC fine-
grained classification task.

Table 12
Comparing the performance of the Kl method with and with-
out using similarity ranking of relations.

Dataset Similarity ranking Acc P R F1
BIG Bench w 0.776 0.779 0.775 0.777
w/o 0.750 0.770 0.740 0.739
Coarse-grained w 0.787 0.781 0.782 0.781
w/o 0.760 0.706 0.746 0.721
Fine-grained w 0.488 0.478 0.488 0.482
w/o 0.468 0.489 0.407 0.419
Exploration of branches
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Figure 12: F1-scores for different branching factors for KI.

thus, it is important to tune this hyperparameter for new
datasets. Moreover, we investigate whether introducing neg-
ative prototypes is beneficial to the PBR model. Similar
to [31], we find that including negative prototypes together
with a “None” prediction class brings better performance
on the logical fallacy coarse- and fine-grained classification
tasks, though the performance gain in our case is more lim-
ited (2-3% increase in absolute F1-scores).

6.4.3. Knowledge Injection

We assess the performance of K-BERT, [71] on identi-
fying logical fallacies in terms of the decisions made when
injecting knowledge from the external KG (namely, CSKG).
The information gained from CSKG is used for forming sen-
tence trees that are used as the primary points for knowledge
injection. In the process of knowledge injection with CSKG,

the tokens of the sentences are broken down and the triples
containing the token are appended to the token to form a
sentence tree. By default, the KI method creates a sentence
tree by using a maximum of two such branches per token.
The exploration depth of the relation is limited to a single
hop. With regards to picking useful relations, the KI method
uses a brute force method for choosing triples for tokens that
have multiple relations present within the knowledge base.
We investigate the effect of different knowledge selection
strategies, numbers of branches, and hops.

Effect of Similarity Ranking of Relations. While in-
formation is appended to the sentence tree, we hypothesize
that it is more meaningful to have a selection strategy in ef-
fect to select relations that add relevant knowledge to the
sentence, and this serves as a point for an ablation study.
This similarity ranking strategy enhances the performance
of the KI method consistently over three different tasks for
the different datasets, as observed in Table 12. The per-
formance gain is around six Fl-score points for each of
the three datasets, confirming our hypothesis that selecting
knowledge based on relevance is important, as also shown in
[77]. This result also motivates the need for more advanced
methods for context-dependent knowledge selection.

Branching Factor Size. In the knowledge layer of K-
BERT, the default branching factor is 2. Here, we analyze
the performance of the model for different branching fac-
tors chosen (with similarity ranking of relations). As ob-
served from Figure 12, a branching factor of 5, gives better
performance over the other branching factors. We take this
branching factor to represent a sweet spot between provid-
ing K-BERT with too little additional knowledge (b < 5)
and too much additional knowledge (b > 5).

Number of hops. The base KI model uses only 1 hop
of knowledge. A single hop corresponds to discovering the
first relation and entity connected with the token, while by
using multiple hops, we discover subsequent depths of rela-
tions based on the entities associated with them. Our anal-
ysis shows that, in the multi-hop setup, the performance of
K-BERT decreases by 3-4%. The drop in performance can
be explained by the noise introduced by including multiple
hops without careful filtering of the expansion. This finding
is consistent with the finding of the best branching factor
size that the KI model works better when presented with a
smaller set of relevant relations. We look closer at the qual-
ity of the retrieved knowledge in the next section.

6.5. Qualitative Analysis

We analyze four cases for which the base model predicts
an incorrect class, and our IBR and PBR methods change
the prediction to the correct class. The KI method predicts
the last two examples correctly as well.

Quality of the Retrieved Cases. For these four exem-
plars, Table 13 shows the retrieved instances by IBR and
prototypical examples by PBR. For PBR, we show the two
nearest training examples to the nearest prototype for a given
input. We note that 6 out of 8 examples for IBR and all 8 ex-
amples for PBR come from the same class, which indicates
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Table 13

Input arguments with their fetched similar cases. We mark the exemplars from the same

class as the input in bold.

Class

Input Sentence

| Similar Cases (IBR)

| Prototypical Cases (PBR)

Ad Populum

Everyone is going to get the new
smart phone when it comes out
this weekend. Why aren’t you?

(1) ’'m gonna get an iPhone be-
cause everybody else has an
iPhone and they’re cool.

(2) Everyone wants the iPhone
11 because it’s the best phone
on the market!

(1) Everyone seems to support
the changes in the vacation
policy, and if everyone likes
them, they must be good.

(2) Everyone is buying the new
iPhone that’s coming out this
weekend. You have to buy it
too.

Fallacy of
Logic

surgeons have X-rays to guide
them during an operation, lawyers
have briefs to guide them during a
trial, carpenters have blueprints to
guide them when they are build-
ing a house. Why, then, shouldn’t
students be allowed to look at
their textbooks during an exami-
nation?

(1) Doctors refer to medical
books all the time when they
are treating patients. In the
same way, | should be allowed
to use a textbook in my medi-
cal exam.

(2) If | say that a surgeon
should be allowed to use a
guidebook to carry out surgery
like a student can use open
notes on a test, | have made a

(1) All Paul Newman movies are
great. All great movies are Os-
car winners. Therefore, all Os-
car winners are Paul Newman
movies.

(2) The lady in the pink dress
is Julia Roberts. The reporter
thinks Julia Roberts drives a
Prius. Therefore, the reporter
thinks the lady in the pink dress
drives a Prius.

Faulty Gen-
eralization

Everyone knows that teenagers
are lazy

(1) If we let teenagers wear
whatever they want to school,
they will no longer respect
the rules and academic perfor-
mance will decline.

(2) If we don’t teach teens to
work harder, the human race is
doomed

(1) If we allow a housing de-
velopment to be built on Sunny
Lake, a resort will come next,
and soon we won’t have any
wilderness left!

(2) Michael is part of the Jack-
son Five. Without Tito and
company, he will never make it.

Faulty Gen-
eralization

If you forget to floss, you will get
cavities, and if you get cavities,
you will lose all your teeth by the
time you’re 30

(1) If you don’t eat breakfast,
you’ll slouch in your desk. If
you slouch in your desk, you’'ll
hurt your back. If you hurt
your back, you’ll never become
President.

(2) four out of five dentists agree
that brushing your teeth makes
your life meaningful

(1) If we allow gay people to
get married, then the next thing
you know people will be want-
ing to marry their pets!

(2) You smoke pot? If you keep
doing that, you’ll be a heroin
addict within two years.

that the modified decision in these cases correlates with ob-
taining helpful (or even representative) examples from the
same class. We note, however, this is not always the case -
the retrieved examples for IBR and PBR can also be from
different classes. We observe that the corrected prediction
of IBR and PBR is based on two scenarios. The first situ-
ation, shown with the first three examples for IBR in Table
13, is when the retrieved examples reflect surface similarity,
which curiously still helps the model to change its decision.
The second situation, observed for the last example of IBR
and most PBR examples, is when the model captures the
structural similarity and more abstract semantics. As we

hypothesize that informal fallacies require a mixture of both
aspects, observing that IBR and PBR capture them to differ-
ent extents is encouraging for future work. At the same time,
we also observe cases where the model correctly changes its
prediction even though some of the retrieved cases belong to
different classes and it is not clear how they help the model
prediction. This shows the impact of the other components
of our methods (the Adapter and Classifier components for
IBR, or the rest of the neural architecture in PBR), but also
motivates the need for future work on better models for re-
trieving semantically and pragmatically similar cases.
Quality of the Retrieved Knowledge. Table 14 shows
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Table 14

Examples of extracted triples with our KI method. We use an asterisk *’ to indicate the
examples that have been classified correctly by KI.

class

Input Sentence

| Sample Triples

Ad Populum

Everyone is going to get the new smart phone
when it comes out this weekend. Why aren’t you?

(phone, able to, communicate),
(phone, intent to, give or get in-
formation), (weekend, related to,
relax)

Fallacy of Logic

surgeons have X-rays to guide them during an op-
eration, lawyers have briefs to guide them dur-
ing a trial, carpenters have blueprints to guide
them when they are building a house. Why, then,
shouldn’t students be allowed to look at their text-
books during an examination?

(surgeons, related to, operation),
(operations, related to, surgery),
(student, related to, education),
(lawyers, related to, law), (stu-
dents, able to, give exams)

Faulty Generalization

*Everyone knows that teenagers are lazy

(teenager, capable of, looking),

(teenager, capable of, perform-
ing), (teenager, is a, juvenile
person), (teenager, located near,
street)

Faulty Generalization

time you'’re 30

*If you forget to floss, you will get cavities, and if
you get cavities, you will lose all your teeth by the

(floss, used for, good oral hy-
giene), (floss, related to, teeth),
(floss, related to, dental floss),
(floss, related to, mouth)

the commonsense triples retrieved by KI as background knowl- serve that qualitatively CL has the best performance on the

edge. As mentioned above, the KI method predicts the first
two examples incorrectly, and the last two examples cor-
rectly. In example 1, we see that while the retrieved triples
focus on the word phone, it is the word everyone in the sen-
tence that is the main clue to the fact that the sentence be-
longs to the class Ad Populum. The second example shows a
case where the background knowledge misleads the model
about the subject of the sentence, thus hindering it to per-
form a correct classification. In the third and fourth exam-
ples, the model is able to correctly classify the example as
Faulty Generalization, and we believe that this correlates
with the quality of the retrieved knowledge. For instance, in
the last example, BERT receives relevant knowledge such as
flossing being used for good oral hygiene and floss related
to teeth, which may have helped the model to overturn the
wrong prediction into a correct one.

6.6. Per-Class Analysis

Table 15 shows the per-class performance of our mod-
els on the fine-grained LOGIC task. Across the different
classes, IBR performs best for eight out of thirteen classes
and CL comes second, which is consistent with the over-
all results (cf. Table 7). While we do not observe a clear
pattern in terms of the superiority of methods in terms of
coarse-grained classes, we do observe that the classes with
more data points (top rows in Table 15) are handled bet-
ter by the CL model, showing that the CL model is able
to reach its best performance when more data is available.
This is somewhat counterintuitive, as we expect that CL can
help the classes with more sparse data. However, we do ob-

Ad classes: False Causality, Ad Populum, and Ad Hominem,
indicating that the CL models are able to benefit from trans-
ferring knowledge within the same class from the coarse-
to the fine-grained task. The fact that the two least popu-
lated classes are handled best by the methods KI and PBR
indicates a potential for data-efficient reasoning with these
methods.

Curiously, we do not see a significant improvement us-
ing any of the models on the Equivocation class. We at-
tribute the consistent poor performance in this class to two
important factors: (1) lack of training data: although we
perform augmentation, this augmentation only modifies the
original data slightly and does not add substantial variety to
help our models understand this class better. (2) as Equiv-
ocation is the only fine-grained class that belongs to the
broader class of Ambiguity, our models do not have enough
data points to distinguish ambiguous arguments from argu-
ments belonging to the other classes.

7. Discussion

Our evaluation shows that the methods perform rela-
tively well across tasks and even on out-of-domain argu-
ments, while further analysis shows that curriculum learn-
ing and data augmentation are promising components of a
robust methodology for identifying logical fallacies in nat-
ural language (§6.3 & §6.2). While our methods rely heav-
ily on language models, the additional components such as
retrieval, attention-based mechanisms, and prototype net-
works, provide a consistent advantage of the models over
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Table 15

F1 Scores per class for LOGIC test dataset using the models trained on the augmented
train split with each class having 281 data points (The number of the data points shown
for the training split in the table is before augmentation).

F1-Scores
fine-grained class coarse-grained class Baseline NLICL IBR ProtoTex Kl  #test #train
Faulty Generalization  Defective Induction 0.656 0.614 0.660 0.612 0.549 60 281
Ad Hominem Relevance 0.596 0.633 0.627 0.624 0.607 39 185
Ad Populum Relevance 0.812 0.844 0.814 0.751 0.656 31 144
False Causality Defective Induction 0.596 0.727 0.708 0.698 0.526 28 132
Circular Reasoning Presumption 0.524 0.708 0.719 0.686 0.450 23 110
Appeal to Emotion Relevance 0.426 0.473 0.624 0.445 0.300 23 109
Fallacy of Relevance = Relevance 0.512 0.436 0.526 0.374 0.286 22 102
Fallacy of Logic Defective Induction 0.322 0.619 0.622 0.453 0.138 22 101
Intentional Relevance 0.482 0.356 0.500 0.419 0.345 20 92
Fallacy of Credibility =~ Defective Induction 0.400 0.390 0.486 0.473 0.231 19 89
False Dilemma Defective Induction 0.800 0.765 0.824 0.791 0.636 19 87
Fallacy of Extension Relevance 0.482 0.629 0.541 0.598 0.649 18 80
Equivocation Ambiguity 0.000 0.000 0.000 0.065 0.000 7 32

their corresponding baselines (§6.4). Looking closer at the
retrieved exemplars in the IBR and PBR methods, we ob-
serve that they are often from the same class even when
they are not syntactically similar to the input case (§6.5),
which contributes to both the accuracy and the explainabil-
ity of our models. Commonsense knowledge is also useful
in particular cases, and potentially misleading in others, sig-
nifying the need for better grounding and path retrieval or
generation. Looking at the performance per fallacy class,
we observe that curriculum learning is able to benefit from
knowledge transfer between Ad classes, while KI and PBR
perform best in the most sparse classes.

This paper pursues robust and explainable methods for
reasoning about fallacies in arguments, a task that is not only
understudied but also vital to support critical thinking in an
educational setting [109, 37]. Our study points to research
paths that should be addressed in future work.

Further Innovation on Robust and Explainable Meth-
ods. We observe that our models are often unable to perform
abstraction and comprehend the classes in a more general
sense. This has been apparent from the mixed prototype of
PBR (see §6.4.2), the mixed relevance of the examples of
IBR (see table 13), and the occasionally confusing triples
retrieved by KI (see table 14). We note, however, that de-
tecting and classifying logical fallacies is a challenging task
both for modern-day Al as well as for humans, as it requires
a complex (and possibly ambiguous) combination of a wide
range of knowledge, including an understanding of rhetori-
cal structures and inclusion of background knowledge about
affordances and symbolism of concepts [58]. We see two
parallel streams of Al methods that should be explored in
depth for logical fallacies. On the one hand, a promising
new stream relies on neural language models through meth-
ods like chain-of-thought reasoning [123], self-rationalization
[89], and prompt decomposition [28], coupled with large
language models like GPT-3 [16] and Codex [19]. On the

other hand, neuro-symbolic methods that, e.g., pose reason-
ing as a soft logic problem [24] may provide an alternative
approach to generalizable reasoning. We invite future work
to explore these directions, as well as their intersection, for
the challenge of logical fallacy identification.

Focused Evaluation in Realistic and Open-Ended Set-
tings. The task of logical fallacy identification, and even its
related task of propaganda detection, has been introduced
relatively recently in the field of Al. As such, not only the
methods but also the evaluation settings for these tasks are
limited at present. In this study, we take a broad perspective,
starting from theories of logical fallacies from social science
disciplines, and we provide a unified framework that can
support a more comprehensive evaluation of fallacies. We
plan to extend the evaluation datasets in this paper by further
annotation of data for the remaining categories like Begging
the Question and Amphiboly in Figure 1. Moreover, beyond
identifying fallacies in the context of propaganda and misin-
formation, we also propose that logical fallacy identification
should be considered in a broader set of use cases, such as
forecasting [87], where detecting wrong or misleading argu-
ments may be central to the judgment of the trustworthiness
of predictions. It is also important to consider the relation
of (formal) logical fallacies to boolean satisfiability (SAT)
problems [79], which have been proven to be NP-complete.

Application and Misuse of This Work. Logical falla-
cies hold the promise to prevent the spread of propaganda,
misinformation, and wrong argumentation among the very
expansive content circulating daily on social media plat-
forms. This could benefit both industry and governments,
and ultimately ordinary social media users. However, strong
logical fallacy identification models may also be misused
to increase or enhance the diffusion of manipulative dis-
course [32, 32, 115]. We believe that analogously to the
idea that encryption algorithms can be made robust if pub-
lished and tested by the community [111], our social media
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systems and communication channels will become more re-
silient with the progress in developing methods and evalua-
tion tasks for logical fallacy identification.

8. Conclusions

This paper presented an effort to consolidate social sci-

ence work on logical fallacy organization into a formal frame-

work that can be used to develop and evaluate Al meth-
ods. The framework consisted of three stages: fallacy detec-
tion, coarse-grained classification, and fine-grained classifi-
cation. We designed a framework with three methods with
native explainability and robustness: instance-based reason-
ing, prototype learning, and commonsense knowledge injec-

tion.

To deal with the inherent data sparsity, we paired our

methods with approaches for data augmentation and cur-
riculum learning. Extensive experiments on in- and out-of-
domain data showed that our methods have the ability to
perform robustly across tasks, and retain much of their ac-
curacy on out-of-domain evaluation. Curriculum learning
was most helpful for coarse- and fine-grained evaluation,
whereas data augmentation brought clear benefits for the
most difficult task of fine-grained classification. We found
that the explanation by the models in terms of known train-
ing instances or structured knowledge is easy to interpret,
however, we noticed that the models still largely rely on sur-
face form patterns and similarity in their reasoning. Guided
by these insights, we proposed that future research should
focus on further innovation in building robust and explain-
able methods, extending the evaluation to more realistic and
open-ended settings, and facilitating open-source applica-
tions for social good while minimizing the possibility for
misuse of the developed solutions.
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