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A B S T R A C T

In the last years, the number of IoT devices deployed has suffered an undoubted explosion, reaching the scale
of billions. However, some new cybersecurity issues have appeared together with this development. Some of
these issues are the deployment of unauthorized devices, malicious code modification, malware deployment, or
vulnerability exploitation. This fact has motivated the requirement for new device identification mechanisms
based on behavior monitoring. Besides, these solutions have recently leveraged Machine and Deep Learning
(ML/DL) techniques due to the advances in this field and the increase in processing capabilities. In contrast,
attackers do not stay stalled and have developed adversarial attacks focused on context modification and
ML/DL evaluation evasion applied to IoT device identification solutions. However, literature has not yet
analyzed in detail the impact of these attacks on individual identification solutions and their countermeasures.
This work explores the performance of hardware behavior-based individual device identification, how it is
affected by possible context- and ML/DL-focused attacks, and how its resilience can be improved using defense
techniques. In this sense, it proposes an LSTM-CNN architecture based on hardware performance behavior for
individual device identification. Then, the most usual ML/DL classification techniques have been compared
with the proposed architecture using a hardware performance dataset collected from 45 Raspberry Pi devices
running identical software. The LSTM-CNN improves previous solutions achieving a +0.96 average F1-Score
and 0.8 minimum TPR for all devices. Afterward, context- and ML/DL-focused adversarial attacks were applied
against the previous model to test its robustness. A temperature-based context attack was not able to disrupt the
identification, but some ML/DL state-of-the-art evasion attacks were successful. Finally, adversarial training
and model distillation defense techniques are selected to improve the model resilience to evasion attacks,
improving its robustness from up to 0.88 attack success ratio to 0.17 in the worst attack case, without degrading
its performance in an impactful manner.
1. Introduction

The advances in processing and communication technologies
achieved in recent years, enabled by more powerful chips and en-
hanced connectivity, have motivated an explosion in the deployment
of Internet-of-Things (IoT) devices [1]. These devices have generated
various use cases and scenarios [2], such as Industry 4.0, Smart Cities
and Homes, or Healthcare. Therefore, the typology of IoT devices
is also very heterogeneous depending on the required capabilities of
each scenario. In this context, Single-Board Computers (SBC), such as
Raspberry Pi, have gained prominence due to their flexibility, relatively
high processing power and reduced cost.
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However, this increase in processing power not only comes with
advantages. Cybersecurity issues have a greater impact when more
powerful IoT devices are compromised, as they can perform stronger
attacks such as more petitions in a Distributed Denial of Service (DDoS)
or calculations for cryptojacking [3]. Therefore, the securitization of
the IoT scenario leveraging SBCs is a key factor in guaranteeing its
correct functioning. One of the most important aspects is the correct
identification of each device deployed, avoiding the presence of unau-
thorized devices. Static identifiers such as credentials or certificates
were traditionally assigned to the devices, but attackers can clone or
modify these to introduce illegitimate entities [4]. To solve this issue,
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the literature has widely explored the usage of device behavior and
hardware to identify the devices deployed [5].

Behavior-based IoT device identification tasks can be tackled from
different granularity levels depending on the environment require-
ments [5]. There exist two main approaches: device model or type
identification (e.g., camera, light bulb, etc.), based on characteristics
such as network activities or running processes [6], and individual
device identification, where devices from the same model are differ-
entiated based on hardware manufacturing variations using low-level
component analysis or radio frequency fingerprinting [7]. Individual
device identification is the one offering the best security guarantees.
However, it requires lower-level behavior monitoring, as chip man-
ufacturing variations must be analyzed to differentiate devices with
the same hardware and software [8]. This work focuses on individual
device identification and the attacks that can be used to spoil the
identification: attacks on the data (through manipulation of the device
or environment/context) and attacks on the identification techniques
(poisoning). In this sense, hardware performance analysis is one of the
most exploited techniques for identification, monitoring how compo-
nents such as CPU, GPU, or RAM behave or perform when executing a
certain task [7]. However, in these solutions, an attacker might exploit
the component usage or device context to modify the values generating
the fingerprint for device identification and interrupt the identification
process.

Following the trend in other fields, the application of Machine
Learning (ML) and Deep Learning (DL) techniques has gained promi-
nence in IoT security during the last years, including the device iden-
tification task [9]. But with the deployment of these techniques, ad-
versarial attacks against ML/DL models have appeared [10], trying to
affect the training process or fool the model predictions [11]. These
attacks can affect various steps of the ML/DL pipeline. Usually, they
target: (i) the training data to poison the model or include backdoors in
it [12]; (ii) the testing data to find vulnerabilities in the trained model
and change its predictions [13]; or (iii) privacy to infer data from the
model and its gradients [14].

ML/DL-based IoT identification solutions have recently been an
objective for adversarial attacks [15], demonstrating that these solu-
tions are also affected by context modifications [16] or when malicious
adversarial samples are employed in the identification process [17,18].
However, several questions remain when joining hardware behavior-
based individual device identification, ML/DL techniques, and adver-
sarial attacks. Some of these research questions are: (i) which is the
best-performing ML/DL technique for device identification based on
hardware behavior?; (ii) which is the threat model faced by these solu-
tions?; (iii) how device context affects the identification performance?;
(iv) how ML/DL-focused adversarial attacks affect the identification
process?; (v) how defense techniques improve the resilience to context-
and ML/DL-focused adversarial attacks?

To tackle the previous challenges, the main contributions of the
present work are:

• A LSTM-CNN neural network architecture for individual device
identification based on hardware performance behavior of device
CPU, GPU, memory and storage. Hardware monitoring and data
collection are performed from the device itself, leveraging the
different components as internal reference points to avoid the
usage of external sensors. Then, the proposed model considers
performance measurements as data points in a time series for
data processing and pattern extraction. The architecture per-
formance is compared with different ML/DL classification ap-
proaches using the LwHBench dataset [19]. This dataset contains
hardware performance and behavior data from 45 Raspberry Pi
devices running identical software images. The proposed LSTM-
CNN architecture achieves an average F1-Score of +0.96, cor-
rectly identifying all the devices with a +0.80 True Positive
31

Rate. i
• The threat model definition of the adversarial situations that
might affect a self-contained hardware behavior-based individ-
ual device identification solution. It encompasses the complete
data lifecycle, from the internal fingerprint generation to its
evaluation, usually using ML/DL techniques.

• The analysis of the impact of different context- and ML/DL-
focused adversarial evasion attacks on the individual identifica-
tion framework. In terms of context attacks, this analysis shows
that temperature does not have a big impact on the performance
of the identification solution, and that other context conditions,
such as kernel interruptions, can be mitigated during data col-
lection. Regarding ML/DL evasion attacks, the state-of-the-art
approaches are successful when performing a targeted attack
during evaluation, achieving up to 0.88 attack success rate, and
performing a successful device spoofing.

• The application of different defense techniques aiming to improve
the model robustness against the previous adversarial attacks. The
defense techniques selected are adversarial training and model
distillation. The results show that the combination of both tech-
niques reduces the attack impact to ≈0.18 success rate in the
worst case. Additionally, state-of-the-art robustness metrics such
as empirical robustness or loss sensitivity also show an effective
increase.

The code, data, and DL models associated with the previous re-
sults and experiments are publicly available in [20] for reproducibility
purposes.

The remainder of this article is structured as follows. Section 2
gives an overview of hardware-based individual device identification,
context-focused attacks, and ML/DL-focused attacks. Section 3 de-
scribes the ML- and hardware-based device fingerprinting solution for
individual device identification. Section 4 gives an overview of the
threat model that an IoT device identification solution suffers. Section 5
gives an overview of the implementation and impact of the adversarial
attack on device identification. Next, Section 6 describes how the
application of defense mechanisms enhances the solution resilience
against adversarial attacks. Section 7 contrasts the key takeaways
and acknowledges limitations. Finally, Section 8 gives an overview of
the conclusions extracted from the present work and future research
directions.

2. Related work

This section gives the insights required to understand the concepts
used in the following sections and reviews the main works in the
literature associated with the present one.

2.1. Hardware-based individual device identification

In [7], the authors compared the deviation between the CPU and
GPU cycle counters in Raspberry Pi devices to perform individual
identification of 25 devices. The identification was performed using
XGBoost, achieving a 91.92% True Positive Rate (TPR). Similarly, [16]
performed identical device identification using GPU performance be-
havior and ML/DL classification algorithms. Accuracy between 95.8%
and 32.7% was achieved in nine sets of identical devices, including
computers and mobile devices. Only the impact of temperature changes
was verified.

Sanchez-Rola et al. [21] identified +260 identical computers by
easuring the differences in code execution performance. They em-
loyed the Real-Time Clock (RTC), which includes its own physical
scillator, to find slight variations in the performance of each CPU.
n [8], the author compared the drift between the CPU time counter, the
TC chip, and the sound card Digital Signal Processor (DSP) to identify

dentical computers. Finally, Deb Paul et al. [22] were able to uniquely

dentify 20 IoT devices by using an external sensor to leverage the delay
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in the signals going through the printed circuit boards (PCBs) of the
device. They also verified the identification stability under different
temperature conditions, emulating context-attacks.

Other works have explored the usage of Physical Unclonable Func-
tions (PUFs) for IoT device identification [23]. PUFs are digital finger-
printing technologies that leverage inherent manufacturing variations
as unique identifiers. It generates hardware-specific cryptographic keys,
enhancing security by making the devices virtually impossible to clone
or impersonate. However, PUFs are out of the scope of this work,
as their usage requires the addition of new hardware components or
the low-level modification of the hardware components or firmware,
limiting the real-world scalability and usability of the solutions based
on this technology [7].

2.2. Context-focused attacks

In hardware-based identification solutions, the context in which the
identification code or tasks are executed might influence the collected
data and, therefore, the results achieved. In this sense, the temperature
can affect the frequency of crystal oscillators or hardware load might
introduce delays due to the scheduling between processes. Therefore,
a malicious attacker could change these context conditions to affect
the identification, making it unusable or generating measurements that
mimic another device.

The works described in the previous section briefly discussed con-
text issues that may affect the identification process. [7] showed that
device rebooting and other processes running in the device impacted
the identification results if proper process isolation mechanisms for
data collection were not implemented. Besides, they checked that
usual temperature changes based on device load did not affect the
results. [16] demonstrated that environment temperatures between
26.4 ◦C and 37 ◦C did not affected to the identification results. How-
ver, rebooting had an impact on the identification, dropping the
esults to 50.3% accuracy. The authors also leave voltage variations as a
uture line to evaluate. In [21], the authors evaluated the identification
pplication under different CPU loads and temperatures, with positive
esults in both cases. Finally, [8] only mentioned temperature impact
nalysis as part of future work and no context-based experiments were
erformed.

As can be seen, none of the previous works on device fingerprinting
nd identification based on hardware performance behavior has exten-
ively explored the impact that context-focused attacks may have on
heir results.

.3. ML/DL-focused adversarial attacks

Adversarial ML/DL [11] is a research field that seeks to develop not
nly accurate models, but also highly robust models against tampering.
t studies the possible attacks against ML/DL models as well as the
efense techniques that can secure these. There exist a wide variety
f taxonomies for the attacks that an ML/DL model may suffer. In
his sense, attacks can be classified in: (i) Poisoning, when the model
s attacked during training using malicious samples; (ii) Evasion, when
he model evaluation process is attacked, trying to fool a legitimately
rained model; and (iii) Model Extraction attacks, where the attacker
ries to infer the model based on its predictions.

In this work, the focus is on evasion attacks, as the intention is to
ull a model trained for device identification, making it misclassify a
alicious device for the legitimate one. Here, the main types of attacks

re: non-targeted attacks, when the objective is just to misclassify a
ample to any different class that is not the original one, and targeted
ttacks, when the objective is to evaluate the malicious sample as a
oncrete objective class. Several evasion attacks can be found as the
32

ost common ones in the literature: a
• As one of the first evasion attacks for DL, Goodfellow et al. [24]
proposed the Fast Gradient Sign Method (FGSM). This attack
performs one-step updates in the adversarial sample following the
direction of the gradient loss, trying to move the sample into the
boundary of a different class. The equation characterizing FGSM
can be seen as:

𝑋𝑎𝑑𝑣 = 𝑋 + 𝜖 ∗ 𝑠𝑖𝑔𝑛(∇𝑥𝐽 (𝑋, 𝑌 )) (1)

where 𝜖 is a parameter defining the size of the perturbation
update and ∇𝑥𝐽 (𝑋, 𝑌 ) is the gradient loss function for the sample
𝑋.

• Basic Iterative Method (BIM) [25] is a improvement over FGSM
by including iterative optimization. This is, applying FGSM sev-
eral times with small perturbation steps.

• Momentum Iterative Method (MIM) [26] integrates momentum
into the iterative FGSM or BIM, avoiding local minimum or
overfitting influence in the generated adversarial samples.

• Projected Gradient Descent (PGD) [27] is a generalization of BIM
that has no constraints on the iteration steps.

• DeepFool 𝐿2 attack [28] minimizes the Euclidean distance be-
tween the original and the adversarial samples by estimating the
model decision boundary using a linear classifier.

• Jacobian-based Saliency Map Attack (JSMA) [29] is another com-
mon attack in the literature. It uses the Jacobian matrix [30] of
the model to find the sensitivity direction of the model and per-
form feature selection to minimize the number of characteristics
modified from the original data sample.

• Boundary Attack [31] generates a random adversarial sample and
then performs optimizations in the 𝐿2 − 𝑛𝑜𝑟𝑚 of the perturbation
to make the sample similar to the original legitimate vector, but
maintaining the misclassification result.

• Carlini&Wagner (C&W) Attack [32] proposes a optimization-
based adversarial sample generation. It can be applied to three
distance metrics: 𝐿0, 𝐿2, 𝐿∞. 𝐿0 measures the number of features
to be modified, 𝐿2 measures the Euclidean distance between a
benign and adversarial sample, and 𝐿∞ measures the maximum
change to any feature.

• Generative Adversarial Network (GAN)-based attack [33] uses
GAN models to generate realistic adversarial samples able to fool
the classifier.

Numerous defense mechanisms have arisen against the previous
ttacks and others that may be found in the literature [34]. The
bjective of these countermeasures is to make the models resistant to
dversarial samples. Generally, these can be classified into detection
nd robustness methods, depending if the aim is to detect crafted
alicious samples prior to evaluation or make the model resistant to

he evaluation of these, respectively. Besides, defense mechanisms can
e attack-specific or attack-agnostic, depending on whether they are
ocused on improving resilience against a specific attack.

One of the most extended defense techniques to avoid evasion
ttacks is Adversarial training [35], where malicious samples are em-
loyed for model training, avoiding the impact of the attacks that
enerated those samples. Knowledge distillation [36] has also been ap-
lied for robustness improvement at training. This technique seeks
o generate smaller models using the base model outputs as features,
ence making the knowledge of the larger model more accessible
nd efficient to use. It can improve the model robustness by gener-
ting smoother decision boundaries and less sensitivity to adversarial
amples [37].

.3.1. Robustness metrics
Robustness metrics provide a quantitative measure to gauge the

tability and resilience of neural networks against adversarial pertur-
ations and input variations. The main metrics found in the literature

re:
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• CLEVER score [38], denoted as Cross Lipschitz Extreme Value for
Network Robustness, measures the smallest perturbation required
to alter the classification result by utilizing the local Lipschitz con-
stant [39]. The higher the Lipschitz constant, the more sensitive
the network is to input perturbations.

• Loss sensitivity [40] calculates the largest variation of the output
of a neural network under a small change in its input. Overall, it
quantifies the smoothness of a model [41]. A model is considered
smoother when there is minimal variation in its output. In math-
ematical terms, loss sensitivity is depicted by the gradient of the
loss function concerning the input data. The gradient magnitude
reveals how the loss changes in response to variations in the
input. Eq. (2) calculates Loss sensitivity (g), where  represents
the loss function. A smaller value of g (i.e., a smaller variation
in the output for perturbed inputs) indicates that the model
is smoother and potentially more robust to input variations or
adversarial attacks.

𝑔 =
‖

‖

‖

‖

𝜕
𝜕𝑥

‖

‖

‖

‖1
(2)

• Empirical robustness, as defined in [28], quantifies the aver-
age smallest disturbance necessary to alter a model prediction.
This is mathematically represented in Eq. (3), where 𝐶 stands
for a trained classifier, 𝜌 denotes an untargeted attack, and 𝑋
represents the test data. Initially, adversarial inputs, 𝜌(𝑥𝑖), are
generated, and the classifier is evaluated against these inputs.
Notably, the equation only accounts for the adversarial inputs
that successfully deceive the model. Hence, only the indices 𝐼 ∈
1, 2, 𝑛 where 𝐶(𝑥𝑖) ≠ 𝐶(𝜌(𝑥𝑖)) are considered. The selection of
appropriate attacks is intricate, typically relying on the success
rate and computational efficiency of FGSM, C&W, and DeepFool
attacks.

𝐸𝑅(𝐶, 𝜌,𝑋) = 1
|𝐼|

∑

𝑖∈𝐼

‖𝜌(𝑥𝑖) − 𝑥𝑖‖
‖𝑥𝑖‖

(3)

• Confidence Score measures the likelihood of accurate sample pre-
dictions. It assesses the consistency of predictions; a model with
more stable predictions is deemed more robust [41]. Eq. (4)
calculates the confidence score as the average of precision scores
across all thresholds. Here, 𝑇 represents the labels, and 𝑇ℎ𝑟𝑠
denotes the probabilities that a vector is classified correctly.

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = 1
|𝑇ℎ𝑟𝑠|

𝛴𝑇
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(4)

Each metric offers a unique perspective on robustness, ranging from
everaging local Lipschitz constants to quantifying model smoothness
nd evaluating the average minimal perturbations required to alter
odel predictions.

.3.2. Adversarial ML in IoT identification and security
In this sense, [17] is the closest work to the one at hand. The

uthors analyzed the impact of different non-targeted and targeted ad-
ersarial attacks (FGSM, BIM, PGD and MIM) over a CNN implemented
or radiofrequency-based individual device identification. Similarly,
amvar et al. [18] evaluated the resilience of network-based IoT identi-

ication ML solutions against adversarial samples generated with FGSM,
IM, and JSMA. They showed how classifier models giving +90%
ccuracy decrease their performance to 75%–55% when exposed to
aliciously crafted samples. From a different perspective, Benegui and

onescu [42] evaluated the impact of adversarial samples over ML/DL
odels for user identification based on motion sensors, achieving near

o 100% attack success rates with FGSM, JSMA, DeepFool, and Bound-
ry Attacks. Later, [43] demonstrated that a GAN-based attack has
ore impact than the previous attacks in the user identification context.

From a more generic perspective, [15,44] reviewed the threat of
33

dversarial attacks in ML solutions applied in network security. They
proved the high impact of adversarial attacks over ML-based security
systems, highlighting the need for more research on attack and defense
methods in the area.

Table 1 shows a comparison between the different solutions re-
viewed in this section. It can be seen how none of the previous works
combines the application of context- and ML/DL-focused attacks. Be-
sides, some solutions require external sensors or components to perform
the hardware-based identification. Finally, the ML/DL-focused attack
papers in the context of device or user identification have not explored
the reward from the defense mechanisms available in the literature.
Therefore, the present work solves a gap in the literature, providing
useful insights in the impact of attack and defense techniques on the
context of hardware- and ML/DL-based individual device identification.

3. Individual device identification

The present section describes the ML/DL framework implemented
for hardware-based individual device identification. It sets the baseline
results for later attack and defense technique impact analysis. This
approach follows the higher privilege principle [45]. This is, using
the highest privileges for the data collection and processing software
deployed in the sensor, isolating it from other processes that might
potentially tamper the process. Even though this countermeasure is
taken, in the next sections, it is assumed that an attacker could tamper
with the solution.

3.1. Dataset collection and preprocessing

This subsection describes how the hardware behavior of the device
is monitored from the device itself in order to generate the fingerprint
representing its internal characteristics.

3.1.1. Dataset collection
For individual device identification based on hardware behavior,

the imperfections in the chips contained in the device should be mon-
itored to be later evaluated. As seen in Section 2, this task has usually
been tackled in the literature by comparing components using different
crystal oscillators or base frequencies, as deviations in the performance
of these components can be noticed from the device itself.

To implement the individual device identification framework, a
dataset leveraging metrics related to the hardware components con-
tained in some devices was required. The dataset was named LwHbench
and more details are available in [19]. In this sense, the dataset col-
lected performance metrics from CPU, GPU, Memory, and Storage from
45 Raspberry Pi devices from different models for 100 days, enough
time to accurately model the performance of the hardware contained
in each device. Different functions were executed in these components,
using other hardware elements (running at different frequencies) as
references for performance measurement. Table 2 summarizes the set
of functions monitored. These functions represent a list of common
operations executed in each component, trying to measure its perfor-
mance. Note that other similar operations could be leveraged in the
data collection process.

The dataset contains per device model: 505 584 samples from 10
RPi 1B+, 784 095 samples from 15 RPi4, 547 800 samples from 10
RPi3 and 548 647 samples from 10 RPiZero. During the data collec-
tion process, several countermeasures were taken to avoid the effect
of noise introduced by other processes running in the devices: fixed
component frequency, so the hardware performance is stable; kernel
level priority, so other processes cannot interrupt the execution of the
code; code executed in an isolated CPU core (in multi-core devices),
so other processes are not present in the CPU trying to get resources;
and the disabling of memory address randomization, so the memory
performance is not degraded by accessing at random points of the
stack. Besides, the dataset was collected under several temperature
conditions, allowing the impact analysis of this context characteristic
in the component performance.
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Table 1
Comparison of previous works on Context and ML/DL-focused adversarial attacks in identification solutions.

Work Platform and
Objective

Attack type Attack technique Defense Results

si te [8]
(2007)

Computer
identification

✗ ✗ ✗ Computer identification based on the comparison
of three physical oscillators using t-test statistic

[21] (2018) Computer
identification

Context-focused CPU load, temperature Process isolation 265 computers uniquely identified. No effect from
CPU load and temperature

[16] (2022) Computer and
mobile
identification

Context-focused Temperature changes and device
reboot

✗ 95.8% and 32.7% accuracy in nine sets of identical
devices. Accuracy drop with device rebooting

[22] (2022) IoT device
identification

Context-focused Temperature and voltage changes ✗- ML attacks
theoretically
considered

20 IoT devices identified using the delay in the
PCB signals. Temperature and voltage changes
impact analyzed.

[7] (2023) IoT device
identification

Context-focused Temperature changes and device
rebooting

Process isolation 91.92% average TPR in 25 devices. No effects
from temperature changes and device rebooting

[42] (2020) User
identification

DL-focused Non-targeted and targeted attacks
(FGSM, JSMA, DeepFool,
Boundary)

✗ Near to 100% attack success over CNNs models
with different depths (from 4 to 12 layers)

[43] (2021) User
identification

DL-focused GAN-based attack ✗ GAN-generated samples were more effective than
FGSM, Deepfool and Boundary when performing
adversarial attacks

[18] (2021) IoT device
identification

ML/DL-focused Non-targeted attacks (FGSM, BIM,
JSMA)

✗ Accuracy decreased from +90% to 75%–55%

[17] (2021) IoT device
identification

ML/DL-focused Non-targeted and targeted attacks
(FGSM, BIM, PGD and MIM)

✗ Proven vulnerability to targeted attacks with
+80% attack success rate.

This work
(2023)

IoT device
identification

Context and
ML/DL-focused

Context: Temperature changes,
CPU load, device rebooting
ML/DL: FGSM, BIM, MIM, PGD,
JSMA, Boundary Attack, C&W

Process isolation,
Adversarial training,
Model distillation

+0.96 average F1-Score. Resilience to temperature
and process-based context attacks. ML/DL evasion
attack resilience improved using model distillation
and adversarial training.
Table 2
Features available in LwHBench dataset [19].

Component Function Monitored feature

– timestamp Unix timestamp
temperature Device core temperature

CPU 1 s sleep GPU cycles elapsed during 1 s CPU sleep
2 s sleep GPU cycles elapsed during 2 s CPU sleep
5 s sleep GPU cycles elapsed during 5 s CPU sleep
10 s sleep GPU cycles elapsed during 10 s CPU sleep
120 s sleep GPU cycles elapsed during 120 s CPU sleep

string hash GPU cycles elapsed during a fixed string
hash calculation

pseudo random GPU cycles elapsed while generating a
software pseudo-random number

urandom GPU cycles elapsed while generating 100
MB using /dev/urandom interface

fib GPU cycles elapsed while calculating
Fibonacci number for 20 using the CPU

GPU matrix mul CPU time taken to execute a GPU-based
matrix multiplication

matrix sum CPU time taken to execute a GPU-based
matrix summation

scopy CPU time taken to execute a GPU-based
graph shadow processing

Memory list creation CPU time taken to generate a list with 1000
elements

mem reserve CPU time taken to fill 100 MB in memory
csv read CPU time taken to read a 500 kB csv file

Storage read × 100 100 CPU time measurements for 100 kB
storage read operations

write × 100 100 CPU time measurements for 100 kB
storage write operations
34
Table 3
Feature set extracted for validation.

Operation
collected

Python code
function

Sliding windows Statistics
extracted

No.
features

10 s sleep time.sleep(10) 40
120 s sleep time.sleep(120) 40
string hashing hashlib.sha256(str) 10 Sliding windows. 40
urandom os.urandom() Group sizes: Minimum, 40
matrix mul vc.cond_mul() 10, 20, 30, 40, maximum, 40
matrix sum vc.cond_add() 50, 60, 70, mean, 40
list creation list.append() 80, 90, 100 median 40
memory reserve cgroup.set_memory() 40
CSV read pandas.read_csv() 40
1st storage read os.read() 40
1st storage write os.read() 40

Total 440

3.1.2. Data preprocessing
As the first preprocessing technique and following the approach

of [7], sliding-window-based feature extraction was performed per de-
vice, extracting statistical features such as median, average, maximum,
minimum, and summation. The reasoning behind this preprocessing
is that the distribution of raw feature values from each device may
overlap due to the limited variability in the component performance.
Therefore, statistical values such as median or average help to differ-
entiate between partially overlapping distributions. Only some of the
available raw features were selected for this step, as keeping a low
feature number helps to lighten the ML/DL model training. Table 3
describes the set of features extracted from the dataset of each device.

In addition to sliding windows, it was decided to directly evaluate
the raw data vectors without the sliding window processing described
above. The reasoning behind this approach is that having a large
dataset of raw values can work well in the case of DL models, which can
automatically extract internal insights from the data. In this approach,
only timestamp and temperature features were filtered, using the rest
of the values (215 values in total) as features for the models.



Future Generation Computer Systems 152 (2024) 30–42P.M. Sánchez Sánchez et al.

.

Fig. 1. LSTM-1DCNN architecture proposed.

Finally, it is also decided to perform a time series-based evaluation,
concatenating together the available samples in groups of 10 vectors.
This grouping technique allows the application of time series DL meth-
ods such as LSTM and 1D-CNN models [46,47]. These models can
extract complex trends in the data that may achieve better results than
the isolated processing and evaluation of individual samples.

3.2. LSTM-1DCNN architecture

This work proposes a client–server framework that leverages an
LSTM-1DCNN neural network architecture for the classification of the
performance samples obtained from the device. These models have
shown good performance in very varied time series scenarios, such as
human activity recognition [48], gold price forecast [49], or DNA pro-
tein binding [50]. The data generated and preprocessed in the device
are sent to a server for model training and later device evaluation and
identification.

The network architecture combines LSTM and 1D-CNN layers to
extract patterns in the series fed as input. The main benefit of this
approach is that combines the recursion patterns extracted by the LSTM
layer, due to its memory capabilities, with the space patterns extracted
by the 1D-CNN layer, as kernels are applied to close features to derive
more complex ones.

Fig. 1 describes the neural network architecture explained above,
depicting the size of each layer. The LSTM layer is configured to return
sequences, so the 1D-CNN layer can be applied afterward in those
sequences. After the 1D-CNN layer, Max-Pooling is applied. Finally, a
fully connected layer of 100 neurons is added before the last layer with
45 outputs, one per device. In the implementation, the LSTM layer has
64 neurons, the 1D-CNN layer uses ReLU is used as activation function
in the hidden layers and ADAM is used as optimizer during training
(Table 4 show the complete list of hyperparameters tested).

3.3. Classification-based device identification performance

Once the two data preprocessing approaches were applied to gen-
erate two datasets, one with raw values and another with sliding-
window-based features, the next step was to compare the proposed
LSTM-1DCNN model with the most common ML/DL classification ap-
proaches. In [7], the authors directly applied ML classifiers using CPU
and GPU-related statistical features similar to the ones described in
the previous section. Moreover, LSTM and 1D-CNN networks were
also tested for the time series approaches. Finally, a more complex
multi-input network that combined one LSTM and one 1D-CNN input
layer was also implemented for comparison, this model is denoted
as Multi_1DCNN_LSTM. The experiments were performed in a server
equipped with an AMD EPYC 7742 CPU and an NVIDIA A100 GPU.
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Table 4
Classification algorithms and hyperparameters tested against the proposed architecture

Model Hyperparameters tested

Naive Bayes No hyperparameter tunning required
k-NN 𝑘 ∈ [3, 20]

SVM 𝐶 ∈ [0.01, 100], 𝑔𝑎𝑚𝑚𝑎 ∈ [0.001, 10]
𝑘𝑒𝑟𝑛𝑒𝑙 ∈ {‘𝑟𝑏𝑓 ’, ‘𝑙𝑖𝑛𝑒𝑎𝑟’, ‘𝑠𝑖𝑔𝑚𝑜𝑖𝑑’, ‘𝑝𝑜𝑙𝑦’}

AdaBoost 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 ∈ [10, 100]

XGBoost 𝑙𝑟 ∈ [0.01, 0.3], 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ ∈ [3, 15]
𝑚𝑖𝑛_𝑐ℎ𝑖𝑙𝑑_𝑤𝑒𝑖𝑔ℎ𝑡 ∈ [1, 7], 𝑔𝑎𝑚𝑚𝑎 ∈ [0, 0.5],
𝑐𝑜𝑙𝑠𝑎𝑚𝑝𝑙𝑒_𝑏𝑦𝑡𝑟𝑒𝑒 ∈ [0.3, 0.7]

Decision Tree 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ ∈ [𝑁𝑜𝑛𝑒, 5, 10, 15, 20]
𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑠𝑝𝑙𝑖𝑡 ∈ [2, 3, 4, 5]

Random Forest 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓 _𝑡𝑟𝑒𝑒𝑠 ∈ [50, 1000]
𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ ∈ [𝑁𝑜𝑛𝑒, 5, 10, 15, 20]
𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑠𝑝𝑙𝑖𝑡 ∈ [2, 3, 4, 5]

MLP 𝑛_𝑙𝑎𝑦𝑒𝑟𝑠 ∈ [1, 3], 𝑛𝑒𝑢𝑟𝑜𝑛𝑠_𝑙𝑎𝑦𝑒𝑟 ∈ [100, 500],
𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 ∈ [32, 64, 128, 256, 512]
𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢, 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 = [𝑆𝐺𝐷, 𝑎𝑑𝑎𝑚, 𝑎𝑑𝑎𝑚𝑎𝑥]

1D-CNN 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = [16, 32, 64, 128], 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = [3, 5, 7],
𝑛_𝑙𝑎𝑦𝑒𝑟𝑠 = [1, 2, 3], 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 = [𝑆𝐺𝐷, 𝑎𝑑𝑎𝑚, 𝑎𝑑𝑎𝑚𝑎𝑥]

LSTM 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 = [10, 100], 𝑛_𝑙𝑎𝑦𝑒𝑟𝑠 = [1, 2, 3],
𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 = [𝑆𝐺𝐷, 𝑎𝑑𝑎𝑚, 𝑎𝑑𝑎𝑚𝑎𝑥]

Multi_1DCNN_LSTM 𝑖𝑛𝑝𝑢𝑡_𝑙𝑎𝑦𝑒𝑟𝑠 = [2, 3], 𝑐𝑛𝑛_𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = [16, 32, 64, 128],
𝑐𝑛𝑛_𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = [3, 5, 7], 𝑙𝑠𝑡𝑚_𝑛𝑒𝑢𝑟𝑜𝑛𝑠 = [10, 100]
𝑛_𝑙𝑎𝑦𝑒𝑟𝑠 = [1, 2, 3], 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 = [𝑆𝐺𝐷, 𝑎𝑑𝑎𝑚, 𝑎𝑑𝑎𝑚𝑎𝑥]

Table 4 describes the algorithms and hyperparameters tested against
the proposed architecture. Besides, for the algorithms requiring data
normalization, QuantileTransformer [51] was applied, as the data from
the different device models had different distributions based on their
hardware capabilities. 80% of the data was used for training and cross-
validation, while 20% was used for testing. The train/test splitting was
done without vector shuffling to avoid that possible order correlation
in the vectors might influence the results.

Table 5 depicts the classification results for each algorithm (with
its best hyperparameter setup) in both of the generated datasets. The
performance metrics are Accuracy, average Precision, average Recall,
and average F1-Score: (TP: True Positives, TN: True Negatives, FP: False
Positives, FN: False Negatives)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃

(5)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(6)

𝑅𝑒𝑐𝑎𝑙𝑙 𝑜𝑟 𝑇𝑃𝑅 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(7)

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

(8)

It can be seen that the LSTM-1DCNN model is the classification
model with the best classification performance, achieving around 0.96
in all the reported metrics in the case of the usage of raw data features.
It also shows how the time series approaches using DL-based models
are the ones with the best performance, achieving +0.93 in all the
reported metrics and improving XGBoost, which was the model with
the best performance in similar literature solutions. Besides, Fig. 2
shows the confusion matrix for each device. It can be appreciated that
all devices show +0.80 TPR (True Positive Rate), therefore having
positive identification of all of them.

The comprehensive experimentation conducted in this study un-
derscores the superior performance of the LSTM-1DCNN model in
device identification tasks, particularly when utilizing raw data fea-
tures. This model not only outperformed traditional machine learning
classifiers but also demonstrated a significant improvement over the
best-performing models cited in related literature. From this experi-
ment, it is interesting to observe that the use of raw data features
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Fig. 2. Individual device identification confusion matrix.
Table 5
Baseline classification model performance.
Model Raw data features Sliding-window features

Accuracy Avg. precision Avg. recall Avg. F1 Accuracy Avg. precision Avg. recall Avg. F1

Single vector approaches

Naive Bayes 0.4569 0.4735 0.4569 0.4473 0.6829 0.6935 0.6829 0.6719
k-NN 0.4526 0.4679 0.4526 0.4472 0.5274 0.5410 0.5274 0.5285
SVM 0.7838 0.7955 0.7829 0.7849 0.7375 0.7434 0.7318 0.7297
AdaBoost 0.0705 0.0060 0.0705 0.0110 0.0706 0.0060 0.0706 0.0110
XGBoost 0.9059 0.9173 0.9056 0.9087 0.7498 0.7655 0.7498 0.7461
Decision Tree 0.7816 0.7896 0.7825 0.7837 0.6932 0.7045 0.6932 0.6910
Random Forest 0.8549 0.8664 0.8542 0.8570 0.7487 0.7615 0.7487 0.7430
MLP 0.8895 0.8960 0.8880 0.8899 0.6840 0.6988 0.6758 0.6749

Time series approaches (10 values)

1D-CNN 0.9428 0.9453 0.9428 0.9428 0.6941 0.7170 0.6941 0.6862
LSTM 0.9346 0.9430 0.9346 0.9346 0.7225 0.7345 0.7225 0.7147
LSTM_1D-CNN 0.9602 0.9626 0.9602 0.9602 0.7149 0.7287 0.7149 0.7080
Multi_1DCNN_LSTM 0.9535 0.9553 0.9535 0.9535 0.6784 0.6947 0.6784 0.6700
36
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Fig. 3. Threat impact on the different steps of the identification process.

instead of sliding-window ones achieved better results in most of the
classification models, something that contrasts with previous works in
the literature [7]. This can be a consequence of using a larger dataset
than the ones used previously, which also includes information about
memory and storage ([7] only included features regarding CPU and
GPU).

4. Threat model

This section details the threat model faced by an ML/DL-based
device identification solution based on internal hardware performance
monitoring. In this sense, an attacker may try to affect the two different
sides of the identification: (i) the hardware generating the data or (ii)
the ML/DL models in charge of the data evaluation. Fig. 3 reflects the
hardware-based identification process and where the different threats
can disturb the solution.

• TH1. Fingerprint eavesdropping and hijacking. An adversary could
read the data composing a fingerprint, either at the level of in-
device data collection, communication, or during processing (in
a server or the device itself), and then use it in another device
to impersonate the identity of the first. This threat implies a
reduced knowledge of the fingerprint generation process and the
functions and components used during the process. This threat
primarily exploits the vulnerabilities in data transmission and
storage. An attacker might employ techniques like packet sniffing
to capture data during transmission. They could also exploit weak
encryption methods or even unencrypted data storage to access
the fingerprint data. Once the data is accessed, it can be replayed
or used in another device to impersonate the original device. The
attacker might also exploit weak authentication protocols or lack
of multi-factor authentication to gain unauthorized access.

• TH2. Fingerprint forgery. Since the components and frequencies
of the devices are public, an attacker with knowledge about
the functions that are executed to generate the fingerprint could
try to generate a new one that resembles that of a legitimate
device. This threat would be triggered possibly on a trial/error
or brute force basis. This threat requires thorough knowledge
of the implementation of the fingerprint generation process and
the values composing the fingerprint. This threat involves a deep
understanding of the device hardware and software components.
An attacker might use tools to monitor the device performance
metrics, such as CPU usage, memory allocation, and power con-
sumption, to reverse engineer the fingerprint generation process.
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They might also exploit public documentation or even insider
information to gain knowledge about the specific algorithms and
processes used. Once they have this knowledge, they can craft or
modify fingerprints to impersonate legitimate devices.

• TH3. Context modification. As the fingerprint is based on data
collected from the performance of the execution of certain tasks
in the software, an attacker may try to modify the conditions
under which the fingerprint is generated. This can neglect to
successfully recognize a legitimate device or generate fingerprints
that pretend to mimic another device. The context can be mod-
ified from several perspectives, for example raising the device
temperature (using external tools or exhaustively using the hard-
ware) or introducing software that may add kernel interruptions
in the fingerprint collection program, which should be isolated
from these interactions as much as possible. This threat exploits
the environmental and operational conditions under which the
fingerprint is generated. For instance, an attacker might use ex-
ternal heaters or coolers to manipulate the device temperature.
They could also run resource-intensive tasks to change the device
performance metrics. On the software side, they might introduce
malware or other software that interrupts or alters the fingerprint
collection process. For instance, a malware that causes frequent
CPU spikes could distort the fingerprint. Additionally, rebooting
the device frequently or altering its clock speed can also impact
the fingerprint generation.

• TH4. ML/DL evaluation evasion. In ML/DL-based solutions, an at-
tacker with enough knowledge or access to the evaluation model
can be able to craft malicious data samples to fool the ML/DL
solution. These samples can target and impersonate a specific
device following a trial and error approach or using a targeted
attack. This threat capitalizes on the vulnerabilities in ML/DL
models. An attacker, with knowledge of the model architecture
and parameters, can craft adversarial samples that the model
misclassifies. Techniques like gradient ascent on the input data or
perturbing the input data in a way that the model output changes
can be employed. The attacker might also exploit transferability,
where adversarial samples crafted for one model can fool another
model. They could use tools and libraries specifically designed
for crafting adversarial attacks, or even exploit weak spots in
the model architecture, like layers with fewer neurons or weak
activation functions. In this sense, several adversarial attacks have
been proposed in the literature as shown in Section 2.

Therefore, a proper individual device identification solution has to
consider and evaluate the previous threats in order to ensure correct
functioning and attack resilience. In essence, while ML/DL-based de-
vice identification solutions offer advanced capabilities, they are not
immune to threats. Ensuring robustness against these threats requires
a multi-faceted approach, encompassing secure data transmission and
storage, robust fingerprint generation processes, resilient ML/DL mod-
els, and continuous monitoring and updating of the system to counter
emerging threats.

5. Adversarial attacks

This section shows the results of the different adversarial attacks
tested on the previous ML/DL-based device identification model. These
adversarial attacks reflect the implementation of the threats described
in the previous section. The objective is to measure how vulnerable the
model is to these attacks if an adversary wants to impersonate a given
device or disrupt the identification process. The threats reflecting the
tested attacks are: TH2, TH3, and TH4. TH1. Fingerprint eavesdropping
and hijacking is assumed to be solved by using encryption in all com-
munications and the higher privilege principle in all the processes of
the device and server.
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Fig. 4. Temperature distribution in the collected dataset.

5.1. Identification disruption attack (TH3)

The objective of an identification disruption attack is to deny the
identification of a legitimate device by performing a context-based
attack. Therefore, it is implementing TH3. Context modification. Here,
the adversary seeks to modify the device hardware performance metrics
by changing the device environmental and contextual conditions. Then,
the device can no longer be identified properly, and the service is
affected. In this attack, the objective is not the generation of adversarial
samples that mimic a different device, but the generation of noisy
samples that make the identification process of the legitimate device
not possible. This experiment evaluates how resilient the identification
solution is to context and environmental changes.

Based on the results in previous research [7,16], the dataset was
collected considering context stability conditions as mentioned in Sec-
tion 3. These conditions ensured that the collected data was not affected
by other processes in the device. Therefore context-based attacks lever-
aging factors such as device rebooting or kernel interruption from other
processes are not successful because these were already considered
during data collection. Moreover, [7] proved that if the stability and
isolation measurements are not included during data collection, the
hardware-based identification becomes unstable and does not work
properly when the context changes.

Regarding temperature, an attacker could try to rise the device
temperature by externally interacting with the device with a heat
source or by extensively executing resource-demanding tasks in the de-
vice. To represent this issue during data collection, the environmental
conditions were modified by adding heatsinks to the components and
turning on/off fans attached to the devices during data collection. In
this sense, Fig. 4 shows the temperature distribution in the samples
contained in the dataset. It can be seen that the temperature during
data collection varied from 30 ◦C to +60 ◦C.

The temperature conditions were randomly varied during data col-
lection. Therefore, the train and test datasets employed in Section 3 do
not have a temperature-based bias. However, an attacker might induce
new temperature conditions not seen during fingerprint generation to
disrupt the identification service. To test this attack, the base dataset
of each device was ordered based on the temperature and then divided
into train and test samples following an 80/20 ordered split. Then, a
new model was generated to compare its performance with the one
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selected in the previous section. This experiment was repeated both in
Table 6
Temperature-based context attack.

Model Accuracy Avg.
precision

Avg.
recall

Avg.
F1-Score

Min.
TPR

Baseline order 0.9602 0.9626 0.9602 0.9602 0.8045

Temperature
ascending order

0.9621 0.9652 0.9621 0.9619 0.6387

Temperature
descending order

0.9394 0.9480 0.9392 0.9402 0.6682

ascending and descending order. Note that temperature was only used
for data ordering and not as a feature.

Table 6 compares the baseline model with the ones trained by
ordering the samples according to the temperature they were collected
at. It can be seen how evaluating samples generated at new tempera-
tures does not significantly affect the model performance, with only a
0.03 decrease in the average of the metrics in the case of descending
order and even a slight improvement for ascending order. However,
the minimum TPR of the evaluated devices (the metric employed
for threshold-based identification) is reduced to 0.6682 and 0.6387,
respectively. This drop to around 0.65 is observed in two devices in
both configurations. Although all the devices can still be identified by
setting a threshold in the 0.50 TPR value, these results show that some
devices can be more affected by temperature variations.

This experiment demonstrated that temperature conditions do not
excessively impact the device identification performance, as the av-
erage performance does not degrade when evaluating data generated
under temperatures different from the ones during training. The results
of the temperature-based context attack experiment revealed that while
the identification model performance was not significantly affected
by new temperature conditions, there was a notable decrease in the
minimum TPR for some devices. This indicates that while the majority
of devices remained identifiable, certain devices were more susceptible
to temperature variations. This issue, for some devices, can lead to
wrong identification if the TPR-based threshold is defined at a high
value. Therefore, it can be concluded that the identification approach is
resilient to temperature conditions but an eye should be kept to ensure
that all the devices meet the performance requirements.

5.2. Device spoofing attacks (TH2, TH4)

In the device spoofing attacks, the adversary performs an evasion
attack over the already trained ML/DL model, modifying the evaluated
data to change the model outputs, so a malicious device is identified as
a legitimate one. In this setup, complete knowledge of the model by the
attacker was assumed, therefore having a white-box evasion attack. This
attack fulfills both TH2. Fingerprint forgery and TH4. ML/DL evaluation
evasion, as malicious fingerprint samples are generated in order to
fool the model during evaluation. This attack could also occur as a
consequence of a side-channel attack over the data collection process
where the adversary is able to modify the samples according to his
objective.

As the objective was to fool the device identification model, only
targeted attacks make sense to evaluate how easy it is to impersonate
other devices. In this sense, one device from each RPi model present in
the dataset is selected as the ‘‘target class’’ (constant for attack hyper-
parameter optimization). Then, the samples from the rest of the devices
from each model are used to impersonate that device. Concretely, the
selected targets are:

• RPiZero with MAC 80:1f:02:f1:e3:e0
• RPi1 with MAC b8:27:eb:87:a7:ce
• RPi3 with MAC b8:27:eb:dc:61:2f
• RPi4 with MAC dc:a6:32:e4:48:9e
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Fig. 5. Performance metrics of the robust models on the legitimate test set.
Table 7
Adversarial attack results.

Attack Attack success rate Time

FGSM, 𝜖 = 0.05 0.3056 8.79 s
BIM, 𝜖 = 0.5 0.8823 752.64 s
MIM, 𝜖 = 0.05 0.8537 793.97 s
PGD, 𝜖 = 0.6 0.8823 748.06 s
NewtonFool, 𝑒𝑡𝑎 = 0.1 0.0994 1168.94 s
C&W, 𝐿2 0.1766 63 734.18 s
C&W, 𝐿𝑖𝑛𝑓 0.0834 142 087.72 s
JSMA, 𝜃 = 0.1 Fails –
Boundary attack 0.2507 379 232.28 s

For the implementation of the attacks, the Adversarial Robustness
oolbox (ART) [52] is employed, as it provides straightforward imple-
entations for the attacks detailed in Section 2. Attack Success Rate

ASR) was considered as the metric for the experiments. In targeted
ttacks, this metric can be defined as the accuracy of the adversarial
amples on the malicious labels. Besides, as the use case was related
o device identification using performance-based metrics, the distance
etween benign and adversarial samples was irrelevant. Note that
his metric would be important in other use cases, such as image
ecognition, where the adversarial and benign samples should not be
istinguishable by a human.

The attacks selected to be tested are the ones explained in Section 2.
owever, the DeepFool attack is discarded as it is only untargeted. For

his reason, a variant called NewtonFool [53] is used in this work.
or each attack, an iteration in its main hyperparameters has been
erformed to find the most successful configuration (the one with a
igher ASR). Table 7 shows the ASR results for each attack together
ith the execution time of the adversarial sample generation.

Different target devices were also tested with similar results to the
eported in Table 7. Note that the exact results may vary if other
evices were selected as the target, but the objective was to measure
he model vulnerability to adversarial attacks. In this sense, FGSM, BIM,
nd MIM attacks show an ASR over 0.85. All these attacks achieve a
0.50 success in all the devices employed as adversaries. Therefore,

hese attacks would fully compromise an identification solution setting
threshold in the 0.50 TPR. In contrast, the NewtonFool attack cannot
enerate adversarial samples complex enough to target the selected
lass and only generates the misclassification of the data used as a base
or crafting adversarial samples. This experiment demonstrated how the
odel was vulnerable to targeted adversarial evasion attacks, with over
.85 ASR in some cases. These attacks could perform device spoofing
f he/she has enough knowledge about the model or enough trial and
rror evaluations.

This experiment underscored the model susceptibility to targeted
dversarial evasion attacks. With certain attacks achieving an ASR
f over 0.85, it is evident that an adversary, equipped with suffi-
ient knowledge about the model or through iterative evaluations, can
uccessfully execute device spoofing. This revelation underscores the
mportance of fortifying identification models against such adversarial
hreats to ensure the security and integrity of device identification
39

rocesses.
Table 8
Attack ASR on the robust models.

Attack Baseline
model

Distilled
model

Adversarial
training

Adversarial
training +
Distilled

FGSM, 𝜖 = 0.05 0.3056 0.2725 0.2704 0.1561
BIM, 𝜖 = 0.5 0.8823 0.3024 0.1482 0.1631
MIM, 𝜖 = 0.05 0.8537 0.7950 0.1918 0.1784
PGD, 𝜖 = 0.6 0.8823 0.2741 0.1155 0.1235
NewtonFool 0.0994 0.0600 0.0846 0.0839
C&W, 𝐿2 0.1766 0.1190 0.0953 0.0952
C&W, 𝐿𝑖𝑛𝑓 0.0834 0.0835 0.0848 0.0841
JSMA, 𝜃 = 0.1 Fails Fails Fails Fails
Boundary attack 0.2507 0.0989 0.0886 0.0861

6. Defense techniques

This section analyzes how defense techniques can improve the
model robustness against ML/DL evasion attacks. ART [52] was also
used to implement the defense techniques for the model-focused at-
tacks, as it includes several model-focused defense techniques. Note
that this defense section focuses on device spoofing attacks because
the defenses for context-based attacks were already applied during data
collection as explained in the previous sections.

The first defense approach applied was to perform adversarial train-
ing, using crafted samples as part of the dataset used for model gen-
eration. In this sense, untargeted adversarial samples were generated
using FGSM, PGD and BIM attacks and concatenated to the original
training dataset. Then, a new model was trained from scratch using
the new training dataset. Besides, defensive model distillation [37]
was also applied over the baseline model to compare the robustness
of each resulting model. Finally, the model trained using adversarial
samples was also distilled. This combination had unstable behavior
during model generation, requiring several attempts to avoid gradient
explosion issues. Fig. 5 shows the results of each defense model when
evaluating the legitimate test dataset (when no attack is present).

It can be seen how the main performance metrics were not degraded
in an impactful manner. Only ≈0.02 performance decrease was noticed
in accuracy and average precision, recall, and F1-Score. Besides, the
minimum TPR was maintained at 0.8 for the adversarial training model
and its distilled version. Once it was verified that the robustness tech-
niques did not decrease the identification performance, the next step
was to verify if the new models were robust against the evasion attacks.
Table 8 shows the ASR for the different attacks when applied to each
model (the baseline one and the ones including robustness techniques).

The combined approach of adversarial training and distillation con-
sistently outperformed other techniques, registering the lowest ASR in
seven out of the eight successful attacks. Most notably, the ASR for
the most potent attacks on the baseline model, namely BIM, MIM, and
PGD, witnessed a significant drop from around 0.85/0.88 to a range of
0.12/0.18. This reduction places the ASR below the 0.5 TPR threshold
earmarked for device identification, highlighting the efficacy of the
combined defense approach.
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Table 9
Robustness evaluation results.

Metric Baseline model Distilled model Adversarial
training

Adversarial
training +
Distilled

CLEVER untargeted,
radius = 8, norm = 2

Avg.:0.0056
Dev.:0.0052

Avg.:0.0058
Dev.:0.0059

Avg.:0.0045
Dev.:0.0033

Avg.:0.0052
Dev.:0.0043

CLEVER targeted,
radius = 8, norm = 2

Avg.:0.0218
Dev.:0.0363

Avg.:0.0239
Dev.:0.0305

Avg.:0.0210
Dev.:0.0243

Avg.:0.0240
Dev.:0.0394

Loss sensitivity 5.1391 4.7920 6.8399 6.7756

Empirical robustness,
FGSM 𝜖 = 0.05

0.0616 0.0613 0.0648 0.0639

Avg.: Average, Dev.: Standard Deviation.
The combination of adversarial training and distillation has proven
o be a potent defense mechanism against ML/DL evasion attacks.
his research underscores the importance of continuously refining and
nhancing defense techniques to stay ahead of evolving adversarial
hreats, ensuring the security and reliability of ML/DL models in real-
orld applications.

.1. Robustness metrics

There also exist some additional metrics that evaluate how robust
model is by analyzing its parameters and outputs. Therefore, it is

elevant to analyze the state-of-the-art metrics in this sense to quantify
ow the application of robustness techniques improved the model.

ART [52] includes the following metrics regarding model robust-
ess: Cross Lipschitz Extreme Value for nEtwork Robustness (CLEVER)
core [38], Loss sensitivity [40], and Empirical robustness [28]. Table 9
hows the values for these metrics using the test dataset as samples for
valuation. Note that CLEVER score is a metric calculated per sample.
herefore, the average and standard deviation are given in the table.

Although there is not a very great change on these metrics, and
ven the results for CLEVER untargeted are worse in the adversarial
rained models than in the base model, it can be seen how in the case
f CLEVER targeted, the score rises 10% from 0.0218 to ≈0.024 in

both distilled models. Loss sensitivity score is increased from 5.1391 to
6.8399 and 6.7756 in the adversarial trained and adversarial trained
+distilled models, respectively. Finally, Empirical robustness is slightly
increased from 0.0616 to 0.0648 and 0.0639, a ≈5%.

While the improvements in robustness metrics might appear subtle,
hey are indicative of the potential benefits that robustness techniques
an bring to the table. Especially in the realm of adversarial attacks,
ven marginal enhancements in robustness can be crucial in thwarting
otential threats. This analysis underscores the importance of contin-
ously refining and employing robustness techniques, ensuring that
L/DL models remain resilient in the face of evolving adversarial

hallenges.

. Discussion

This section articulates the constraints inherent to the proposed
olution and delivers key insights gleaned from the performed study.
ased on the set of experiments conducted in this work and after the
omparison with the literature, some important insights and conclu-
ions can be extracted as lessons learned but also as limitations. The
ist of lessons learned is as follows:

• The use of raw data features provided better results for most of
the classification models, as compared to sliding-window features,
which contrasted with the previous works. This may occur be-
cause the LSTM-1DCNN model can use underlying correlations
and information in the raw data to learn more accurate patterns.
Another possible reason could be the use of a larger dataset that
also includes information about memory and storage.
40
• Temperature conditions did not excessively impact the device
identification performance. The average performance did not de-
grade when evaluating data generated under temperatures differ-
ent from the ones during training. However, for some devices, it
could lead to wrong identification if the TPR-based threshold is
defined at a high value.

• The initial device identification model was found vulnerable to
targeted adversarial evasion attacks, with over 0.85 ASR in some
cases. These attacks could potentially compromise the identifica-
tion solution by setting a threshold in the 0.50 TPR.

• The application of defense techniques, specifically adversarial
training and model distillation, improved the robustness of the
device identification model against ML/DL evasion attacks. The
model combining adversarial training and distillation offered the
best robustness against such attacks.

In contrast, the following limitations are observed and should be
addressed in future research in the area:

• While the device identification model performed well under the
context-based attack, some devices could still be more affected
by temperature variations, leading to potential misidentification
if a more impactful attack is performed. One way to address this
limitation is to collect data from a wider range of temperatures
during the training process.

• The model that combined adversarial training and distillation
had unstable behavior during model generation, requiring several
attempts to avoid gradient explosion issues. Such instability ne-
cessitated multiple attempts to generate a functioning model, sig-
nificantly escalating the resources and time required in the model
generation process. Furthermore, this instability could poten-
tially result in the generation of less accurate or less generalized
models.

• The degradation in performance on benign samples is a trade-
off that must be considered when using robustness techniques.
While adversarial training and model distillation improved the
robustness of the model, the performance metrics were slightly
degraded, with about a 0.02 performance decrease in accuracy,
and average precision, recall, and F1-Score.

• The robustness techniques may not be effective against all types
of evasion attacks. Untested attacks, such as GAN-based methods,
could have a high ASR if full access to the identification model is
available. Therefore, active iteration of the defense techniques is
necessary as attack methods evolve.

8. Conclusions and future work

The explosion in IoT device deployment has motivated the de-
velopment of new device identification solutions based on hardware
behavior and ML/DL processing. However, these solutions face adver-
sarial attacks that try to evade their functionality. This work explored

the performance of hardware behavior-based device identification. For
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that, the LwHBench dataset containing samples from 45 Raspberry Pi
devices running identical software images was used to train ML/DL
classifiers in charge of performing individual identification of each
device. A DL model combining LSTM and 1D-CNN layers offered the
best performance with an average F1-Score of 0.96, identifying all the
devices by setting a threshold in +0.80 TPR. This model improved
the performance of previous approaches in the literature. Afterward,
a temperature-based attack and nine ML/DL evasion attacks were exe-
cuted to measure the model performance degradation. In this case, the
baseline model was robust against temperature context changes. How-
ever, some ML/DL evasion attacks successfully fooled the identification
system, reaching up to 0.88 attack success rates and demonstrating its
vulnerability to these attacks. Finally, model distillation and adversarial
training defense techniques were applied during the model training,
improving the model resilience to the ML/DL evasion attacks. These
techniques improved the model robustness, being the combination of
adversarial training and model distillation the best defense approach.
Only a ≈0.02 decrease was noticed in accuracy, precision, recall, and
F1-Score metrics, without a decrease in the minimum TPR, which is the
metric used for setting the threshold for device identification.

In future work, more adversarial attack and defense techniques,
such as the ones based on generative models, will be applied to fully
improve the solution robustness. Besides, it is planned to add trust
metrics in the individual device identification framework, in-depth
evaluating the fairness and robustness of the predictions. Another re-
search perspective to be tested is the fully distributed model generation,
leveraging federated learning to avoid data sharing and centralization.
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