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Abstract—This demo presents RITUAL, a platform composed
of a novel algorithm and a Web application quantifying the
trustworthiness level of supervised Machine and Deep Learning
(ML/DL) models according to their fairness, explainability,
robustness, and accountability. The algorithm is deployed on
a Web application to allow users to quantify and compare the
trustworthiness of their ML/DL models. Finally, a scenario with
ML/DL models classifying network cyberattacks demonstrates
the platform applicability.

Index Terms—Artificial Intelligence, Trust, Fairness, Explain-
ability

I. INTRODUCTION

Over the last decade, Artificial Intelligence (Al) improved
vital challenges of communication networks. Some examples
are the detection of cyberattacks, the real-time reconfiguration
of network services, or the optimization of traffic routes [1].
In the soon future, the Al and networking alliance will be
even more effective with Al integrated into the core of the
6G mobile network protocol stack [2]. Thus, it is crucial to
have mechanisms to quantify the trustworthiness level of Al
systems and their predictions.

Recently, the research community has agreed on the impor-
tance of fairness, explainability, robustness, and accountabil-
ity as pillars to trust Al systems [3]. Concerning fairness, bias
is one of the main issues against trusting Al systems. Machine
and Deep Learning (ML/DL) models could be unfair due to
i) biased training data, ii) unbalanced or lack of training data,
or iii) discrimination of protected groups, among others [4].
Explainability is another pillar for trusting Al systems that
consists of understanding how ML/DL models come to their
conclusions. The algorithm class, features importance, or
model complexity are some of the key aspects to explain
model predictions [5]. Robustness refers to the model ability
to deal with adversarial attacks. Therefore, to ensure trusted
ML/DL models, their predictions must be stable and robust,
even when adversaries are present [6]. Finally, the training
methodology, and its accountability in terms of data splitting,
pre-processing, or normalization are key aspects providing
valuable insights to trust Al systems.

Trusted Al is an emerging field that needs more effort
despite the contributions of work related to the previous four

pillars. In particular, the literature lacks a comprehensive and
unified collection of relevant metrics able to quantify trusted
ML/DL models. Furthermore, existing solutions are isolated
and only focus on detecting or mitigating individual issues
per pillar. Therefore, there is no solution combining metrics
of different pillars relevant for trusted Al and computing a
global trustworthiness level of ML/DL models.

This demo paper presents RITUAL (platfoRm quantlfying
Trustworthiness in sUpervised mAchine Learning), which
is composed of a Web application and an extensible and
parameterized algorithm to quantify the trustworthiness level
of supervised ML/DL models according to a set of relevant
metrics dealing with the fairness, robustness, explainabil-
ity, and accountability pillars [7]. RITUAL allows users
to compute and compare the trustworthiness level of their
ML/DL models using a user-friendly Web-based interface.
The suitability of the platform is demonstrated in a scenario
focused on detecting cyberattacks on Internet of Things (IoT)
devices.

II. RITUAL PLATFORM

The RITUAL platform is composed of an algorithm quan-
tifying the trustworthiness of ML/DL models and a Web ap-
plication. The pillars, metrics, and life-cycle of the algorithm
are shown in Figure 1. After reviewing the literature, the
following metrics per pillar haven been selected as relevant
for trusted Al

A. Fairness Metrics [8]

o Underfitting: calculates the difference between train and
baseline performance.

o Overfitting: computes the difference between train and
test performance, giving the model generalization.

e Class Balance: measures the ratio of samples belonging
to different classes in the training dataset.

e Statistical Parity Difference: computes the spread be-
tween the percentage of samples receiving a favorable
outcome for protected and unprotected samples groups.

o Equal Opportunity Difference: measures the spread be-
tween true positive rate (TPR) and false positive rate
(FPR) between different groups.
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Figure 1: Overview of the RITUAL Algorithm

Fairness
Score

e Average Odds Difference: calculates the mean absolute
difference in TPR and FPR between protected and
unprotected groups.

o Disparate Impact: measures the ratio of a protected and
unprotected groups receiving a favorable prediction.

B. Explainability Metrics [9]

o Algorithm Class: calculates the model explainability de-
gree according to the algorithm type and its complexity.

o Correlated Features: measures the percentage of highly
correlated features.

o Feature Relevance: computes the percentage of irrele-
vant features for a set of predictions.

e Model Size: calculates the number of parameters used
by models.

C. Robustness Metrics [10]

o Confidence Score: measures the probability of predicting
correctly a given sample.

o Loss Sensitivity: calculates the largest variation of a
Neural Network output under a small change in its input.

o Cross Lipschitz Extreme Value for Network Robustness
(CLEVER) Score: measures the minimal perturbation
that is needed to change a classification outcome.

e Cliqgue Method: finds the exact minimal adversarial
perturbation or a guaranteed lower bound of it.

o Empirical Robustness (ER): measures the average min-
imal perturbation that needs to be introduced to change
the model prediction.

D. Accountability Metrics [11]

o Train/Test Split: measures the ratio between the number
of samples used for training and testing.

o Missing Data: evaluates how missing values of features
of the training dataset are handled.

o Normalization: evaluates if some models have been
trained with normalized or non-normalized data.

o Regularization: measures if the ML/DL model used
generalization techniques during training.

o FactSheet Completeness: measures if the FactSheet in-
cludes all necessary information that stakeholders need
in order to trust the model and its predictions.

Each metric receives as input the i) training and testing
datasets, ii) trained ML/DL model, and iii) metadata of
the training methodology (called factsheet [11]). Then, the
algorithm evaluates if the inputs fulfill the conditions of
each metric. If so, each metric is independently computed
according to its formula and input data [12].

The metrics outputs cannot be interpreted as trust scores
because they have different data types, scales, and meanings.
Therefore, each metric output must be interpreted and trans-
lated into a standard trust score using a mapping function. The
proposed trust score for all metrics ranges from one to five,
where one corresponds to the worst score, and five represents
the best score. The mappings from metrics outputs to trust
scores are predefined by the RITUAL algorithm according to
good practices indicated in the literature. However, to avoid
arbitrary decisions adding biases, the mapping function is pa-
rameterized and can be fine-tuned by stakeholders according
to the data domain, metric, or scenario.

The next step consists of aggregating all the metrics scores
of each pillar and calculating a score per pillar. The RITUAL
algorithm proposes a weighted approach where each metric
has particular importance in the pillar score. It is up to
discuss whether all metrics are equally important and how
weighted they should be. Because of that, default weights for
every metric are defined, but stakeholders can modify them
according to the scenario characteristics.

Then, the four pillar scores are aggregated into a global
trust score, which is the return value of the RITUAL al-
gorithm. Computing the global trust score is done analog
to calculating the pillars scores. Independent weights are
assigned to each pillar, and the global trust score is the
weighted average of each pillar. Since the importance of each
pillar depends on the scenario, the predefined configuration of
the algorithm (equal importance per pillar) can be modified
by stakeholders.

Finally, to allow users to apply the algorithm, the RIT-
UAL platform provides a Web application. This application
enables stakeholders to i) upload supervised ML/DL models,
datasets, and factsheet, ii) calculate and graphically see the
trustworthiness level of the uploaded models, iii) fine-tune the
algorithm parameters according to the scenario requirements,
and iv) compare the trustworthiness levels of ML/DL models.

III. DEMONSTRATION

A scenario focused on classifying different network data
leakage attacks affecting a Raspberry Pi has been defined to
demonstrate the suitability of the RITUAL platform.

First, one dataset modeling the Raspberry device behavior
has been created. The dataset contains nine features belonging
to the following events families: network packets scheduled,
bytes transmitted, bytes received, TCP probe events, net-
work buffers, socket creation and destruction. In addition,
four different device behaviors (labels) are contained in the



dataset: (i) Normal behavior; (ii) Behavioral data leakage,
which periodically opens an ssh connection from a command
and control (C&C) server to the device and leak device
behavioral data; (iii) Cryptographic material leakage, where
the C&C reads the content of sensitive files of the device;
and (iv) Sensitive application data leakage, where the device
leaks different amounts of sensitive data. In total, the dataset
contains 3972 samples. After that, a common ML/DL training
pipeline, with 90/10% data splitting strategy and data min-
max normalization, is performed to train a Support Vector
Machine (SVM) and a k-Nearest Neighbor (K-NN) model
able to classify the cyberattacks.

Table I: RITUAL Platform Output

Model Accuracy Trust Score | Fair. Exp. Rob. Account.
SVM 0.97 3.2 32 2.4 4.0 3.4
K-NN 0.97 34 32 3.0 4.0 32

As can be seen in Table I, both SVM and k-NN achieved
97% accuracy. However, after uploading the previous mod-
els, dataset, and factsheet to the RITUAL platform, SVM
achieved a 3.2 (of 5) trust score, while k-NN obtained 3.4 due
to a higher explainability score (see Table I). Figure 2 shows
the performance metrics, properties, overall trustworthiness
score, and pillars scores of the SVM model. Besides, Figure 3
shows the difference between both solutions in terms of
explainability.
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Figure 2: Overall Trustworthiness Score for SVM
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Figure 3: Explainability Metrics (left: SVM, right: kNN)
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