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Abstract—This demo presents RITUAL, a platform composed
of a novel algorithm and a Web application quantifying the
trustworthiness level of supervised Machine and Deep Learning
(ML/DL) models according to their fairness, explainability,
robustness, and accountability. The algorithm is deployed on
a Web application to allow users to quantify and compare the
trustworthiness of their ML/DL models. Finally, a scenario with
ML/DL models classifying network cyberattacks demonstrates
the platform applicability.

Index Terms—Artificial Intelligence, Trust, Fairness, Explain-
ability

I. INTRODUCTION

Over the last decade, Artificial Intelligence (AI) improved

vital challenges of communication networks. Some examples

are the detection of cyberattacks, the real-time reconfiguration

of network services, or the optimization of traffic routes [1].

In the soon future, the AI and networking alliance will be

even more effective with AI integrated into the core of the

6G mobile network protocol stack [2]. Thus, it is crucial to

have mechanisms to quantify the trustworthiness level of AI

systems and their predictions.

Recently, the research community has agreed on the impor-

tance of fairness, explainability, robustness, and accountabil-

ity as pillars to trust AI systems [3]. Concerning fairness, bias

is one of the main issues against trusting AI systems. Machine

and Deep Learning (ML/DL) models could be unfair due to

i) biased training data, ii) unbalanced or lack of training data,

or iii) discrimination of protected groups, among others [4].

Explainability is another pillar for trusting AI systems that

consists of understanding how ML/DL models come to their

conclusions. The algorithm class, features importance, or

model complexity are some of the key aspects to explain

model predictions [5]. Robustness refers to the model ability

to deal with adversarial attacks. Therefore, to ensure trusted

ML/DL models, their predictions must be stable and robust,

even when adversaries are present [6]. Finally, the training

methodology, and its accountability in terms of data splitting,

pre-processing, or normalization are key aspects providing

valuable insights to trust AI systems.

Trusted AI is an emerging field that needs more effort

despite the contributions of work related to the previous four

pillars. In particular, the literature lacks a comprehensive and

unified collection of relevant metrics able to quantify trusted

ML/DL models. Furthermore, existing solutions are isolated

and only focus on detecting or mitigating individual issues

per pillar. Therefore, there is no solution combining metrics

of different pillars relevant for trusted AI and computing a

global trustworthiness level of ML/DL models.

This demo paper presents RITUAL (platfoRm quantIfying

Trustworthiness in sUpervised mAchine Learning), which

is composed of a Web application and an extensible and

parameterized algorithm to quantify the trustworthiness level

of supervised ML/DL models according to a set of relevant

metrics dealing with the fairness, robustness, explainabil-

ity, and accountability pillars [7]. RITUAL allows users

to compute and compare the trustworthiness level of their

ML/DL models using a user-friendly Web-based interface.

The suitability of the platform is demonstrated in a scenario

focused on detecting cyberattacks on Internet of Things (IoT)

devices.

II. RITUAL PLATFORM

The RITUAL platform is composed of an algorithm quan-

tifying the trustworthiness of ML/DL models and a Web ap-

plication. The pillars, metrics, and life-cycle of the algorithm

are shown in Figure 1. After reviewing the literature, the

following metrics per pillar haven been selected as relevant

for trusted AI.

A. Fairness Metrics [8]

• Underfitting: calculates the difference between train and

baseline performance.

• Overfitting: computes the difference between train and

test performance, giving the model generalization.

• Class Balance: measures the ratio of samples belonging

to different classes in the training dataset.

• Statistical Parity Difference: computes the spread be-

tween the percentage of samples receiving a favorable

outcome for protected and unprotected samples groups.

• Equal Opportunity Difference: measures the spread be-

tween true positive rate (TPR) and false positive rate

(FPR) between different groups.



Fairness Explainability Robustness Accountability

Train/Test 

Split

FactSheet 
Completness

Missing Data

Regularization

Normalization

Algorithm 
Class

Feature 
Relevance

Correlated 
Features

Model Size

Confidence 
Score

Equal 

Opportunity 
Difference

Disparate 

Impact

Class 
Balance

Statistical 

Parity 
Difference

DT, RF, 

GBDT
NN

NN, LG, 
SVM

Clique 

Method 

CLEVER 

Score

Loss 

Sensitivity

ER 

DeepFool

ER Fast 

Gradient

ER Carlini 

Wagner

UnderfittingOverfitting

Average Odds 

Difference

Legend

Pillars Metrics AlgorithmsTrust Score

Fairness 
Score

Explainability 
Score

Robustness 
Score

Accountability 
Score

Scores

Outputs

Scores

Outputs

Pillar Aggregation Functions

Mapping Function

Global Aggregation Function

Scores

Figure 1: Overview of the RITUAL Algorithm

• Average Odds Difference: calculates the mean absolute

difference in TPR and FPR between protected and

unprotected groups.

• Disparate Impact: measures the ratio of a protected and

unprotected groups receiving a favorable prediction.

B. Explainability Metrics [9]

• Algorithm Class: calculates the model explainability de-

gree according to the algorithm type and its complexity.

• Correlated Features: measures the percentage of highly

correlated features.

• Feature Relevance: computes the percentage of irrele-

vant features for a set of predictions.

• Model Size: calculates the number of parameters used

by models.

C. Robustness Metrics [10]

• Confidence Score: measures the probability of predicting

correctly a given sample.

• Loss Sensitivity: calculates the largest variation of a

Neural Network output under a small change in its input.

• Cross Lipschitz Extreme Value for Network Robustness

(CLEVER) Score: measures the minimal perturbation

that is needed to change a classification outcome.

• Clique Method: finds the exact minimal adversarial

perturbation or a guaranteed lower bound of it.

• Empirical Robustness (ER): measures the average min-

imal perturbation that needs to be introduced to change

the model prediction.

D. Accountability Metrics [11]

• Train/Test Split: measures the ratio between the number

of samples used for training and testing.

• Missing Data: evaluates how missing values of features

of the training dataset are handled.

• Normalization: evaluates if some models have been

trained with normalized or non-normalized data.

• Regularization: measures if the ML/DL model used

generalization techniques during training.

• FactSheet Completeness: measures if the FactSheet in-

cludes all necessary information that stakeholders need

in order to trust the model and its predictions.

Each metric receives as input the i) training and testing

datasets, ii) trained ML/DL model, and iii) metadata of

the training methodology (called factsheet [11]). Then, the

algorithm evaluates if the inputs fulfill the conditions of

each metric. If so, each metric is independently computed

according to its formula and input data [12].

The metrics outputs cannot be interpreted as trust scores

because they have different data types, scales, and meanings.

Therefore, each metric output must be interpreted and trans-

lated into a standard trust score using a mapping function. The

proposed trust score for all metrics ranges from one to five,

where one corresponds to the worst score, and five represents

the best score. The mappings from metrics outputs to trust

scores are predefined by the RITUAL algorithm according to

good practices indicated in the literature. However, to avoid

arbitrary decisions adding biases, the mapping function is pa-

rameterized and can be fine-tuned by stakeholders according

to the data domain, metric, or scenario.

The next step consists of aggregating all the metrics scores

of each pillar and calculating a score per pillar. The RITUAL

algorithm proposes a weighted approach where each metric

has particular importance in the pillar score. It is up to

discuss whether all metrics are equally important and how

weighted they should be. Because of that, default weights for

every metric are defined, but stakeholders can modify them

according to the scenario characteristics.

Then, the four pillar scores are aggregated into a global

trust score, which is the return value of the RITUAL al-

gorithm. Computing the global trust score is done analog

to calculating the pillars scores. Independent weights are

assigned to each pillar, and the global trust score is the

weighted average of each pillar. Since the importance of each

pillar depends on the scenario, the predefined configuration of

the algorithm (equal importance per pillar) can be modified

by stakeholders.

Finally, to allow users to apply the algorithm, the RIT-

UAL platform provides a Web application. This application

enables stakeholders to i) upload supervised ML/DL models,

datasets, and factsheet, ii) calculate and graphically see the

trustworthiness level of the uploaded models, iii) fine-tune the

algorithm parameters according to the scenario requirements,

and iv) compare the trustworthiness levels of ML/DL models.

III. DEMONSTRATION

A scenario focused on classifying different network data

leakage attacks affecting a Raspberry Pi has been defined to

demonstrate the suitability of the RITUAL platform.

First, one dataset modeling the Raspberry device behavior

has been created. The dataset contains nine features belonging

to the following events families: network packets scheduled,

bytes transmitted, bytes received, TCP probe events, net-

work buffers, socket creation and destruction. In addition,

four different device behaviors (labels) are contained in the



dataset: (i) Normal behavior; (ii) Behavioral data leakage,

which periodically opens an ssh connection from a command

and control (C&C) server to the device and leak device

behavioral data; (iii) Cryptographic material leakage, where

the C&C reads the content of sensitive files of the device;

and (iv) Sensitive application data leakage, where the device

leaks different amounts of sensitive data. In total, the dataset

contains 3972 samples. After that, a common ML/DL training

pipeline, with 90/10% data splitting strategy and data min-

max normalization, is performed to train a Support Vector

Machine (SVM) and a k-Nearest Neighbor (K-NN) model

able to classify the cyberattacks.

Table I: RITUAL Platform Output

Model Accuracy Trust Score Fair. Exp. Rob. Account.

SVM 0.97 3.2 3.2 2.4 4.0 3.4

K-NN 0.97 3.4 3.2 3.0 4.0 3.2

As can be seen in Table I, both SVM and k-NN achieved

97% accuracy. However, after uploading the previous mod-

els, dataset, and factsheet to the RITUAL platform, SVM

achieved a 3.2 (of 5) trust score, while k-NN obtained 3.4 due

to a higher explainability score (see Table I). Figure 2 shows

the performance metrics, properties, overall trustworthiness

score, and pillars scores of the SVM model. Besides, Figure 3

shows the difference between both solutions in terms of

explainability.
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Figure 2: Overall Trustworthiness Score for SVM
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Figure 3: Explainability Metrics (left: SVM, right: kNN)

REFERENCES

[1] A. Kaloxylos, A. Gavras, D. Camps Mur, M. Ghoraishi,

and H. Hrasnica. AI and ML—Enablers for Beyond

5G Networks. Zenodo, Honolulu, HI, USA, Technical

Report, 2020.

[2] H. Yang, A. Alphones, Z. Xiong, D. Niyato, J. Zhao,

and K. Wu. Artificial-Intelligence-Enabled Intelligent

6G Networks. IEEE Network, 34(6):272–280, 2020.

[3] J. Wing. Trustworthy AI. Communications of the ACM,

64(10):64–71, September 2021.

[4] G. Saposnik, D. Redelmeier, C. C. Ruff, and P.N. Tobler.

Cognitive Biases Associated with Medical Decisions:

A Systematic Review. BMC Medical Informatics and

Decision Making, 16(1):1–14, 2016.
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