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Abstract

The objective of Extreme Multi-Label Completion (XMLCo) is to
predict missing document labels drawn from a very large collection.
Together with Extreme Multi-Label Classification (XMLC), XMLCo
is arguably one of the most challenging document classification
tasks, as the number of potential labels is generally very large com-
pared to the number of labeled documents. The collection of labels
is often structured in a taxonomy that encodes relationships be-
tween labels, and many methods have been proposed to leverage
this hierarchy to improve XMLCo algorithms. In this paper, we pro-
pose a new approach to this problem: TAMLEC (Taxonomy-Aware
Multi-task Learning for Extreme multi-label Completion)1. TAM-
LEC divides the problem into several Taxonomy-Aware Tasks, i.e.
into specific subsets of the labels drawn from paths in the taxonomy,
and trains on these tasks using a dynamic Parallel Feature sharing
approach where parts of the model are shared between tasks while
others are task-specific. Then, at inference time, TAMLEC uses
the labels available in a document to predict missing labels, using
the Weak-Semilattice structure that is naturally induced by the
tasks. Our empirical evaluation on real-world datasets shows that
TAMLEC substantially outperforms the state of the art in XMLCo.
Furthermore, additional experiments show that TAMLEC is partic-
ularly suited for few-shot settings, where new tasks or labels are
introduced with only few examples after initial training.

CCS Concepts

• Applied computing → Document metadata; • Computing

methodologies → Machine learning algorithms; Neural net-
works; Supervised learning by classification.

1https://github.com/Jythen/Tamlec

This work is licensed under a Creative Commons Attribution 4.0 International License.
CIKM ’25, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2040-6/2025/11
https://doi.org/10.1145/3746252.3761233

Keywords

ExtremeMulti Label Completion, Transformers, Document Tagging,
Taxonomies, Parallel Feature Sharing
ACM Reference Format:

Julien Audiffren, Christophe Broillet, Ljiljana Dolamic, and Philippe Cudré-
Mauroux. 2025. Extreme Multi-Label Completion for Semantic Document
Tagging with Taxonomy-Aware Parallel Learning. In Proceedings of the 34th
ACM International Conference on Information and Knowledge Management
(CIKM ’25), November 10–14, 2025, Seoul, Republic of Korea. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3746252.3761233

1 Introduction

In the past decades, the number of textual documents (documents
for short hereafter) available online has increased dramatically
[13]. This rise of large document collections has been further am-
plified in the last few years by Large Language Models and their
ever-increasing need for new data corpora [40]. As a result, the
automated labeling of documents has become a crucial issue [41],
as labels allow to categorize documents, but also help with informa-
tion search and enable users to easily navigate vast collections of
documents [38]. The problem of assigning to each document a sub-
set of labels drawn from a large collection of labels is referred to as
Extreme Multi-Label Classification (XMLC) [41]. In the case where
some documents are already equipped with an incomplete set of
labels, the prediction of the missing labels is called Extreme Multi-
Label Completion (XMLCo) [26]. Compared to XMLC, XMLCo
methods are able to leverage known labels (whenever available)
to infer additional information about the documents and improve
their predictions. The problem of incomplete labels is common in
many applications [31], and can originate from time constraints,
subjectivity of the annotators, or the introduction of new labels
over time. As such, label completion is key in improving the quality
of existing datasets [30]. These problems are arguably some of the
most challenging document classification tasks [22], for two main
reasons. First, the set of labels to choose from is typically very large,
often reaching tens of thousands, and each document may possess
an arbitrary number of labels (the labels scale problem). Second,
the data is often considered sparse, as many labels only have few
training instances, and the problem is further compounded when
considering collections of labels (the scarcity problem). Put together,
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these issues make the use of traditional classification algorithms
difficult and has given rise to new approaches.

Some of the most successful methods proposed in the past few
years stem from the use of a label taxonomy [2, 26, 43]. Indeed, many
real-world Extreme Multi-Label (XML) problems come equipped
with a hierarchical label taxonomy, which is developed to facilitate
the management of large collections of labels. These hierarchies
encode relationships between labels that arise from their real-world
usage, for instance through subsumption hierarchies specifying that
a label (e.g. Computer Science) defines a more general class than a
second label (e.g. Machine Learning). As a result, these structures
yield valuable information for XML tasks, and in particular for
XMLCo, as it has been observed that the documents that are only
partially labeled are typically equipped with general, high-level
labels, while more specific labels are often missing [38]. Notable
XML-related taxonomies include the MeSH thesaurus2 and the
Microsoft Academic Graph (MAG) [38]. Previous work has shown
that these taxonomies can be used to improve XML methods in
multiple ways [16, 26, 43]. However, these works have focused on
using the taxonomy to address the label scale problem only, and
we argue that additional performance can be gained by further
leveraging taxonomies to also alleviate the scarcity problem.

Multi-Task Learning (MTL) is a Machine Learning paradigm
that involves training a model on multiple tasks simultaneously,
with the goal of improving the performance of each task [3]. Data
scarcity stands at the heart of the MTL challenge, as each task
contains limited data, and training independent models on each
task may result in poor performance and overfitting. One of the
most popular MTL approaches is Parallel Feature Sharing, where
multiple tasks are trained simultaneously by sharing a common
feature extractor while maintaining task-specific components [45].
MTL and Parallel Feature Sharing have seen many applications in
Natural Language Processing (NLP) and document analysis, and
have received increased interest since the popularization of deep
learning methods [10]. The idea behind Parallel Feature Sharing
can be found in many deep-learning XML algorithms such as At-
tentionXML [41]. Indeed, in most architectures the documents are
processed through a shared neural network architecture, and only
differentiated in the final result, which is generally a vector contain-
ing the predicted relevance of each label for the input document. In
that regard, only the weights of the last layers may be considered
partially label-specific. However, and to the best of our knowledge,
the use of more advanced MTL methods and in particular more in-
tertwined shared/task-specific architectures and training methods
have not received the same level of attention.

In this paper, we show that adapting the Parallel Feature Sharing
paradigm to the taxonomy structure of the labels leads to further
improvements. More precisely, we introduce TAMLEC (Taxonomy-
Aware Multitask Learning for Extreme multi-label Completion),
which uses ideas from XMLCo and MTL to better combine infor-
mation sharing and the label taxonomy. To achieve this, TAMLEC
first creates Taxonomy-Aware Tasks (TATs) on subsets of the la-
bels that are adapted to the taxonomy structure and to semantic
constraints (see Section 3.1). TAMLEC uses a modified transformer
architecture that is adjusted to the characteristics of the TATs by

2https://www.nlm.nih.gov/mesh/meshhome.html

balancing shared neurons and task-specific neurons to improve
prediction performance. To predict missing labels, TAMLEC uses
the known labels of each document to choose their relevant TATs,
and predict paths of labels on each of the selected task, which are
then combined to perform the final prediction. Our contributions
can be summarized as follows:

• We extend previous work on tree-based taxonomy (such
as [26]) to accommodate a more general structure, Weak
Semilattices, that naturally arises in many XML problems.

• We introduce the Taxonomy-Aware Tasks (TATs) decomposi-
tion, where the taxonomy is decomposed into subtasks that
satisfy coherence and separability criteria.

• We propose a new XMLCO algorithm, TAMLEC, that lever-
ages an adaptive transformer architecture with a new TATs-
aware loss to balance information sharing among tasks.

• We perform an extensive empirical evaluation of our method,
and show that it outperforms the state of the art on XMLCo
problems. Furthermore, our results show that TAMLEC is
particularly suited for handling XML few-shot tasks, where
the new labels that form the TATs are introduced after train-
ing on a few examples only.

The rest of the paper is organized as follows. Section 2 summarizes
the related work in XML and MTL. We present our different contri-
butions (TAMLEC, TATs, etc.) in Section 3. Finally, the experimental
evaluation of TAMLEC is presented in Section 4.

2 Background and Related Work

Extreme Multi-Label (XML). Several strategies have been pro-
posed to address the challenges of XML [23]. These works include
XML-CNN [21], AttentionXML [41], as well as X-Transformer [8]
(see Section 4.1 for additional details on these methods). In paral-
lel, there has been significant interest in the use of the structure
organizing the labels, such as taxonomies, to enhance XML meth-
ods [15, 16]. Notably, MATCH [43] used a transformer architecture
while leveraging the label structure through the use of regulariza-
tion, by enforcing each label to be similar to its parents, while [2]
introduced a recurrent neural network, whose predictions are com-
bined across levels of the taxonomy to improve results. Arguably
the model closest to us is Hector [26], where the authors proposed
an XMLCo algorithm that leverages the taxonomy tree by using a
transformer architecture to directly predict a path on the label struc-
ture, using known labels to form the path prefix. However, while
we also use a modified transformer architecture to predict paths on
a label structure, compared to their work, we extend the framework
to a much more general structure, Weak-Semilattice, that better
captures the subtleties of taxonomies, which we combine with a
completely different approach based on Parallel Feature Sharing
and Taxonomy Aware Tasks (TATs). Our experiments show that
our method, TAMLEC, outperforms existing XMLCo algorithms.

Multi-Task Learning (MTL). The MTL paradigm has encoun-
tered significant success since the seminal work of [3]. Many meth-
ods have been developed around leveraging multiple dependent
and smaller tasks to improve the performance of the resulting larger
model [44, 45], and examples of successful MTL applications in-
clude cancer detection [11, 12], web search ranking [9], and many
NLP tasks [1, 7, 10]. Feature sharing MTL is arguably one of the
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Figure 1: Toy scientific taxonomy. An arrow from ℓ1 to ℓ2
represents ℓ1 ≤ ℓ2. This taxonomy can be represented with a

Weak-Semilattice, but not with a tree – as “LLMs” has multi-

ple parents.

most popular MTL approaches in deep learning architectures, and
while TAMLEC approach takes inspiration from it, to the best of
our knowledge, TAMLEC is the first to intertwine MTL into the
taxonomy structure for XMLCo. Furthermore, one of our main
contributions is a new taxonomy-adapted loss (Section 3), and our
results (see Section 4) show that it indeed represents a very promis-
ing avenue for solving taxonomy-based XMLC problems.

XML Few-Shot Classification. In this work, we also consider
the XML few-shot classification problem, where models are first
primed with a large dataset, before being trained to recognize new
labels with only a limited number of training examples [33]. This
setting reflects the common situation where new labels – such as
emerging research areas (e.g. “LLMs”) – are introduced over time
into taxonomies. As retraining XMLC algorithms from scratch on
the new taxonomy is particularly costly, several alternatives have
been proposed. Some of the most influential methods in few-shot
learning are arguably MAML [14], a model-agnostic approach that
uses a two-step gradient optimization process, and PROTONET
[32], which learns an embedding space on which classes can be
more easily differentiated. However, these methods and their im-
provements (such as Siamese Network, [25]) generally perform
suboptimaly on the XML few-shot task due to its large number of
independent labels. A few approaches have been proposed to tackle
this problem. For instance, PfastreXML [17] addresses the rarity of
the new labels by designing a loss that emphasizes tail labels. From a
different perspective, DECAF [24] leverages the new label features
to improve the learning of the tail distribution. However, while
these models achieve reasonable performance on few-shot tasks,
they generally yield suboptimal results in large XML problems
endowed with taxonomies. On the other hand, our contribution,
TAMLEC, is particularly well-suited for this setting, as its modular
design allows for rapid adaptation by simply adding the correspond-
ing task-specific layers, resulting in fast and efficient training, as
illustrated by our experiments (see Section 4.4).

3 Method

This section introduces the main contributions of this paper, i.e.
Taxonomy-Aware Tasks (TATs) and TAMLEC.

3.1 Weak-Semilattice and Taxonomy-Aware

Tasks

Throughout this paper, we assume that the XML problem comes
with a taxonomy 𝑇 that can be modeled as a Weak-Semilattice. We
start by briefly recalling a few definitions.

Definition 1 (Partially Ordered Set). Let 𝑇 be a set endowed
with a binary relation ≤. Then 𝑇 is a partially ordered set (Poset), if
≤ is transitive, reflexive and antisymmetric.

In the context of a taxonomy 𝑇 , the binary relation generally
represents a hierarchical relationship: the fact that a label ℓ1 ∈ 𝑇
is more general than a label ℓ2 ∈ 𝑇 will be denoted as ℓ1 ≤ ℓ2 . For
example, if 𝑇 represents a scientific label taxonomy (see Figure 1
for a toy example), ℓ1 = NLP and ℓ2 = LLMs, then ℓ1 ≤ ℓ2 .

Definition 2 (Weak-Semilattice). Apartially ordered set (𝑇, ≤ )
is called a Weak-Semilattice if

∀𝑇 ′ ⊂ 𝑇, ∃ℓ ∈ 𝑇 such that ∀ℓ′ ∈ 𝑇 ′, ℓ ≤ ℓ′

The set of elements that are smaller than 𝑇 ′, called the lower set of
𝑇 ′, is noted low𝑇 (𝑇 ′).

As a consequence, any two elements of 𝑇 have at least one
common lower bound in 𝑇 . For a hierarchical taxonomy 𝑇, this
lower bound can be seen as a label that is more general than any
label in𝑇 ′. In the toy taxonomy of scientific labels depicted in Figure
1, the greatest lower bound of Vocabulary and Machine Learning
would be Computer Science.

Relation with other structures. It is easy to see that trees are
a special case of Weak-Semilattice, by defining ℓ1 ≤ ℓ2 if and only if
ℓ1 is an ancestor of ℓ2 . Indeed, the root of the tree is always a lower
bound and thus satisfies Definition 2. The inverse is not true, as illus-
trated by Figure 1, since some elements of the Weak-Semilattice (in
this case the label “LLMs”) can have multiple parents. We argue that
this setting is quite natural in document labeling, as fine-grained
labels can inherit frommany general labels. For instance, multidisci-
plinary scientific topics can stem from multiple research fields, and
the same phenomenon can be observed in many taxonomies [5, 31].
Importantly, Hierarchical Taxonomy-based methods such as Hec-
tor [26] rely on the tree structure to achieve their label prediction.
This is not the case of our algorithm, TAMLEC, that is designed
to accommodate any Weak-Semilattice structure. Similarly, note
that Semilattices are a special case of Weak-Semilattice, as they
require the existence of an unique infimum [4]. Finally, the relation
between Weak-Semilattices and Posets is summarized as follows :

Lemma 1. Let (𝑇, ≤) be a Poset. Then (𝑇, ≤) has a Condorcet
winner if and only if (𝑇, ≤) is a Weak-Semilattice

Proof. Let (𝑇, ≤) be a Poset. If (𝑇, ≤) has a Condorcet winner
𝑐, then ∀𝑇 ′ ⊂ 𝑇, ∀ℓ ∈ 𝑇 ′, 𝑐 ≤ ℓ . Hence (𝑇, ≤) is a Weak-Semilattice.
Conversely, if (𝑇, ≤) is a Weak-Semilattice, let 𝑇 ′ = 𝑇, then by
Definition 2 low𝑇 (𝑇 ) ≠ ∅. Let 𝑐 ∈ low𝑇 (𝑇 ), then 𝑐 is a Condorcet
winner. □
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Children and Width of a Weak-Semilattice. We also extend
the notions of children and width to Weak-Semilattices, as they are
important to TAMLEC training.

Definition 3 (Children in a Weak-Semilattice). Let (𝑇, ≤)
be a Weak-Semilattice and ℓ1 ∈ 𝑇 . Let ℓ2 ∈ 𝑇 such that ℓ1 ≤ ℓ2 and
ℓ1 ≠ ℓ2. ℓ2 is called a child of ℓ1 (denoted ℓ1 ≺ ℓ2) if and only if

∀ℓ ∈ 𝑇, if ℓ1 ≤ ℓ ≤ ℓ2 then ℓ1 = ℓ or ℓ2 = ℓ .

Definition 4 (Width of a Weak-Semilattice). Let (𝑇, ≤) be
a Weak-Semilattice. The width of the Weak-Semilattice𝑤𝑇 is

𝑤𝑇 = max
ℓ∈𝑇

#
{
ℓ′ ∈ 𝑇, ℓ ≺ ℓ′

}
In other words, the width of𝑇 is the maximal number of children

of any element of 𝑇 . This notion directly relates to the difficulty of
predicting a path on 𝑇, as it represents the maximum number of
labels to choose from when extending the path, and is key to the
TAT-adapted loss used to train TAMLEC (see Section 3.2).

Taxonomy-Aware Tasks. At the heart of our approach is the de-
composition into Taxonomy-Aware Tasks (TATs). Such a decompo-
sition allows to better leverage the Parallel Feature Sharing frame-
work of the Multi-Task paradigm by adjusting the task-specific
components of TAMLEC. Furthermore, as each resulting task con-
tains significantly fewer labels, and thus a better document / label
ratio, this approach alleviates the data scarcity problem. To achieve
these advantages, we need to ensure that the splitting of the tax-
onomy must be coherent with the Weak-Semilattice structure, and
not remove valuable information regarding the relation between
labels, such as paths between multiple sub-tasks.

Definition 5 (Taxonomy-Aware Tasks). Let (𝑇, ≤) be a Weak-
Semilattice. Then the collection of sets (𝑇1, . . . ,𝑇𝑁 ) are Taxonomy-
Aware Tasks if and only if:

(1) ∀1 ≤ 𝑖 ≤ 𝑁, 𝑇𝑖 ⊂ 𝑇 and (𝑇𝑖 , ≤) is a Weak-Semilattice,
(2) ∀1 ≤ 𝑖, 𝑗 ≤ 𝑁, if 𝑇𝑖 ⊂ 𝑇𝑗 then 𝑇𝑖 = 𝑇𝑗 ,
(3) ∀1 ≤ 𝑖 ≤ 𝑁, ∀ℓ ∈ 𝑇𝑖 , ∀ℓ′ ∈ 𝑇, if ℓ ≤ ℓ′ then ℓ′ ∈ 𝑇𝑖 ,
(4) ∀ℓ ∈ 𝑇 \ low𝑇 (𝑇 ), ∃1 ≤ 𝑖 ≤ 𝑁 such that ℓ ∈ 𝑇𝑖 .

(1) and (3) enforce the preservation of paths: if one label ℓ is
present in 𝑇𝑖 then all the paths that originate from ℓ are also in 𝑇𝑖 .
This is key to TAMLEC as it predicts labels by forecasting paths
in the Weak-Semilattice structure. The second condition prevents
repeated tasks, while the fourth ensures that all the labels, with the
exception of the Condorcet winner, are part of at least one task.

Figure 2 shows an example of a Weak-Semilattice and a TATs
decomposition. Note that the combination of the conditions in
Definition 5 makes TATs decompositions unique. In the case where
𝑇 is a tree, Definition 5 implies that the TATs decomposition will be
made of all the subtrees of𝑇 whose roots are node of depth one (i.e.
second level of the taxonomy). While in the tree setting the TATs
are disjoints (i.e. they share no common labels), this is generally
not true for Weak-Semilattices (see Figure 2).

3.2 TAMLEC

The main contributions behind TAMLEC are twofold. First, TAM-
LEC uses a modified transformer to predict paths in the taxonomy,
which are then combined to obtain the final predictions. Unlike

Figure 2: Example of a Weak Semilattice taxonomy with a

Taxonomy-Aware Tasks decomposition (polygons).

previous approaches such as HECTOR [26], which assume that the
label taxonomy is a tree, TAMLEC generalizes to weak-semilattice
structures (see Section 3.1), which is a more flexible and more real-
istic framework that extends trees by, e.g., allowing multiple parent
nodes per label. Second, TAMLEC leverages the TATs decompo-
sition, introduced above, to partition the overall taxonomy into
smaller, coherent substructures satisfying specific properties (see
Definition 5). This enables TAMLEC to use a multi-task setup, and
to leverage this decomposition by applying parallel feature shar-
ing across tasks, while maintaining task-specific components (see
Model Architecture below). Combined with a novel, task-adaptive
training loss (see equation 1), this approach allows TAMLEC to
substantially outperform state-of-the-art XMLC methods across
several benchmark datasets (see Section 4).

Path Prediction. While the labels of a document are generally
encoded as a set, they can also be represented as a collection of
paths in the taxonomy, from the most general to the more specific
[26]. In the context of a Weak-Semilattice, a path is defined as a
sequence of labels and their children, i.e. ℓ1 ≺ ℓ2 ≺ . . . ≺ ℓ𝐾 , where
ℓ1 is the Condorcet winner, or “root”, of the taxonomy (see Lemma
1). Such a path can be seen as a sequence of increasingly specific
labels that characterize the documents.

Predicting paths has multiple advantages over predicting a set
of labels. First, these paths yield a natural sequential structure,
contrarily to sets, thus allowing to fully leverage the transformer
architecture, which has been shown to achieve state-of-the-art
performance on XML problems [26, 42]. Second, this approach
naturally embeds the taxonomy structure into the prediction, as
at each step, only the children of a label will be considered to be
added to the path. This both encodes the relation between labels (a
key ingredient of successful XML methods, see e.g. [43]), and also
alleviates the label scale problem by strongly reducing the number
of candidate at each step. A key difference with previous works is
that TAMLEC predicts paths on TATs, which are sub-taxonomies of
𝑇 . Depending on the path prefix, one or more TATs may be relevant
to the predictions at hand. Thus TAMLEC predicts paths in parallel
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Figure 3: TAMLEC’s architecture. The model is made of 6

Encoders and 6 Decoders, with weights shared across tasks,

as well as 𝐾 Task-Specific Generators (in light red), whose

weights are task-specific (here 𝐾 = 3). The task-specific gen-
erators are key to TAMLEC TATs decomposition approach.

across all the relevant TATs. Moreover, even when only one TAT is
compatible with a given label, multiple paths may lead to this label.
The combination of predictions across multiple paths and TATs is
discussed below.

Model Architecture. Figure 3 details TAMLEC’s architecture,
which is based on Transformers [37]. Similar to HECTOR [26],
TAMLEC uses both Decoder and Encoder blocks, whose weights
are shared across all tasks. However, and in contrast to previous
XML Transformer-based architectures, TAMLEC also introduces a
new type of block, the Task-Specific Generator. When predicting
the next label of a path, TAMLEC receives as input the text of the
document, the current path, as well as the current TAT of interest.
The document is first encoded using a 300 dimensional embedding,
which is then fed into a stack of six Encoder blocks. Each Encoder
block contains a multi-head attention layer, with 12 Heads, followed
by a fully connected feed-forward layer with residual connection.
At the end of the six Encoders blocks, the resulting 300 dimensional
encoding is then projected into a 600 dimensional encoding using a
fully connected adapter layer. In parallel, the label path is encoded
using a 600 dimensional embedding, and then processed through
a stack of six Decoder blocks. Each Decoder block is made of a
multi-head self attention layer, with 12 Heads, followed by a cross

attention layer, which captures the dependency between the docu-
ment encoding and the path encoding, followed in turn by a fully
connected feed-forward layer with a residual connection. Finally,
at the end of the six Decoder blocks, the resulting 600 dimensional
encoding is then sent to the Task-Specific Generator block corre-
sponding to the TAT of interest. This block contains a task-specific
decoder block, where labels in the label path that do not belong to
the TAT are masked. This allows to focus on TAT-relevant label
encoding. This layer is followed by a fully connected feed forward
layer that maps to the space of all possible labels that belong to the
TAT. Before training, the weights of TAMLEC’s layers are initial-
ized randomly, with the exception of the text embeddings where
we use pretrained GloVe embeddings [28].

Preprocessing data. In the following, we assume that the set of
labels for each document D is complete, i.e. D contains the labels
necessary to form a path to each label of D. This is in line with
the usual label completion assumption: if a document has a specific
label ℓ , it should also possess broader labels that contain the sub-
label ℓ [26, 31]. If this assumption is not satisfied, the missing labels
are added during the preprocessing of the dataset, in line with the
Hierarchical Label Set Expansion proposed by [16]. In case a label
ℓ ∈ D has no valid path in D but multiple possible paths exist in
the full taxonomy𝑇 , we add the minimum number of labels possible
to obtain at least one valid path, with ties being broken at random.
Then, each document’s collection of labels D is transformed into a
collection of paths P. Each path 𝑝 ∈ P is subsequently associated
to one or more relevant tasks. A TAT 𝑇𝑖 is said to be relevant to a
path 𝑝 if there exists a label ℓ ∈ 𝑝 such that ℓ ∈ 𝑇𝑖 , i.e. if it contains
at least one label of this path.

Training Loss. To train TAMLEC we introduce a new TAT-
dependent loss function L. This loss is based on cross-entropy
with label smoothing set to a value 𝜀 = 0.01 [34], and a confidence
decreasing proportionally to the width of the relevant task 𝑤𝑇𝑖 .
Formally, for a given document 𝑑 , a path prefix 𝑝 , next label ℓ,
relevant task𝑇𝑖 and predicted probability distribution over the next
label ℓ̂ , the loss is defined as:

L(ℓ̂, ℓ,𝑇𝑖 ) =
(
1 − 𝜀

𝑤𝑇𝑖

1 +𝑤𝑇𝑖

)
log

(
𝑃 (ℓ̂ = ℓ)

)
+

∑︁
ℓ ′∈𝑇𝑖 ,ℓ ′≠ℓ

𝜀
𝑤𝑇𝑖

1 +𝑤𝑇𝑖
log

(
1 − 𝑃 (ℓ̂ = ℓ′)

) (1)

It is important to note that L only considers labels in the task 𝑇𝑖
and ignores other labels. Compared to the original label smoothing,
the loss function is designed to be task-aware, by considering the
difficulty and structure of each TAT. Indeed, it applies dynamic
smoothing, where high confidence predictions are more favored
for tasks with low width, compared to tasks with large width, as
the loss is weighted for of each TAT using its width𝑤𝑇𝑖 , which is
computed from the taxonomy (see Definition 4). Intuitively, this
weighting decreases the label smoothing when the task has a small
width – i.e. a limited number of labels to choose from at each level
of the weak-semilattice, entailing more confidence in the model
prediction. Conversely, when the width of the TAT is large, – i.e.
a large number of possible labels – the model is encouraged to be
more conservative.
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MAG-CS PubMed EURLex

N Docs 140994 331720 172120
N Labels 2641 5911 4492
Avg Labels per Doc 4.4 18.5 10.4
Taxonomy Width 145 21 145

N TATS 24 8 145
Avg TAT Width 10.5 15.5 3
Med. Doc per TAT 2443.33 34563 520

Table 1: Important Datasets and TATs decomposition statis-

tics. The three datasets exhibit very different TATs decom-

position profiles, in term of number of TATs, width, and

number of documents per TAT.

Training TAMLEC. The training of TAMLEC is performed
in two steps. First, all weights are updated until the loss L stops
improving on the validation set. Then, all shared layers (the 6
Decoders and 6 Encoders) are frozen, while the task-specificweights
are fine-tuned on each task independently. Similarly, when new
labels are introduced (XML few-shot setting), only the weights that
are specific to this task are trained, resulting in fast and efficient
convergence (as most of the weights are frozen), see Section 4.4.

Label Prediction. At inference time, TAMLEC receives a docu-
ment and an incomplete set of labels D . Similarly to the training
phase, this set of labels is transformed into a collection of paths P
with their corresponding relevant TATs. For each path and TAT,
TAMLEC generates multiple path extensions using beam search, a
commonly-used algorithm for decoding structured predictors, sim-
ilarly to [26]. Beam search maintains a list of the most promising
candidate paths, together with their combined predicted probabili-
ties, and iteratively updates it by feeding the paths into TAMLEC,
until no further path can be obtained as the most specific labels
have been reached. At the end, each label ℓ of the TAT is attributed a
score equals to the sum of all the probabilities of the Beam search’s
predicted paths that had ℓ as a leaf. Scores are then summed across
all paths and relevant TATs to obtain the final score of each label,
which is then used to compute the final label ranking.

4 Experimental Evaluation

4.1 Experimental Setting

Datasets. We perform our experiments on three commonly used
XML datasets that are endowed with rich taxonomies: MAG-CS,
PubMed, and EURLex. All the datasets are completed to abide by the
hierarchical taxonomy using the process described in Section 3.2.
The first dataset, MAG-CS, the Microsoft Academic Graph (MAG)
Computer Science (CS) is a subset of the MAG dataset [38] focused
on CS, which contains papers published between 1990 and 2020
at top CS conferences [43]. Example of the most general concepts
include “Machine Learning”, “Natural Language Processing” and
“World Wide Web”. The second dataset, PubMed, was published
by [43] and contains scientific papers from top medical journals
published between 2010 and 2020, endowed with labels from the
Medical Subject Headings (MeSH) taxonomy. The most general

concepts of the taxonomy include “Anatomy”, “Psychiatry and Psy-
chology” as well as “Diseases”. Importantly, the MeSH taxonomy
is particularly representative of a non-tree taxonomy, as many la-
bels inherit from multiple parents. For instance, “Digestive System
Neoplasms” can be reached through two distinct paths that include
either “Digestive System Diseases” or “Neoplasms”. Finally, the last
dataset, EURLex [6], includes EU legislative documents equipped
with labels from the European Vocabulary (EuroVoc) taxonomy.
Table 1 summarizes the key datasets’ characteristics, as well the
description of their TATs decomposition. Interestingly, these three
datasets’ TATs decompositions are very different: for instance, EU-
RLex TATs have an averagewidth of 3, compared tomore than 10 for
the two other datasets. Furthermore, PubMed TATs decomposition
contains only 8 TATs, compared to 145 for EURLex. This diversity
allows testing TAMLEC on substantially different use-cases.

Baseline Models. We compare the performance of TAMLEC
with multiple recent XML baselines:

• MATCH [43] is a transformer-based approach that incorpo-
rates both document metadata and label hierarchy into the
learning process. It enhances the objective function with a
taxonomy-driven regularization, and enriches the document
embeddings by using auxiliary metadata such as authors
and publication venue. We retain the original architecture,
consisting of a three-layer transformer encoder with two
attention heads per layer and eight classification tokens.

• XML-CNN [21] is a deep learning-based algorithms for Ex-
treme Multi-Label Classification. It uses a convolutional neu-
ral network (CNN) architecture [20] with dynamic max pool-
ing—a strategy that preserves multiple salient features. We
adopt the original configuration, consisting of a three-layer
1D CNN with convolutional filters of window sizes 2, 4, and
8, each retaining 128 features. The bottleneck layer is set to
a dimensionality of 512, with a dropout rate of 0.5.

• AttentionXML [41] is a method that constructs a shallow
and wide probabilistic label tree. It combines bi-directional
LSTMs with attention mechanisms and fully connected lay-
ers to model label dependencies effectively. Our implemen-
tation is based on the official code released by the authors.

• FastXML [29] is a non-neural, tree-based method that par-
titions the document space using node-level optimization
guided by the normalized discounted cumulative gain (nDCG)
objective. In our experiments, we used the PfastreXML vari-
ant [18], configuring it with 50 trees, a maximum of 200 data
points per leaf, up to 200 labels per leaf, and a hinge loss
objective regularized with an L2 penalty.

• HECTOR [26], a recent state-of-the-art XMLCo algorithm
which uses a modified transformer architecture to predict
label paths in the taxonomy. It is important to note that the
taxonomies considered in this experiment cannot be fully
encoded by a tree – a requirement for HECTOR predictions.
Thus, we modify the taxonomies provided to HECTOR by
removing the minimum amount of relations possible to re-
duce each weak-semilattice to a tree, in line with the original
experiments of HECTOR.

For the XML few-shot experiment (see Section 4.4), we compare
TAMLEC to four few-shot methods.
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Method

Precision NDCG F1

@1 @2 @3 @4 @2 @3 @4 @5 @1 @2 @3 @4

M
A
G
-C
S

MATCH 0.79 0.77 0.75 0.74 0.79 0.78 0.79 0.78 0.65 0.65 0.66 0.68
XML-CNN 0.52 0.56 0.56 0.57 0.58 0.61 0.63 0.64 0.41 0.46 0.49 0.52

Attention-XML 0.81 0.79 0.78 0.78 0.81 0.81 0.81 0.81 0.67 0.67 0.69 0.71

Fast-XML 0.49 0.54 0.55 0.57 0.56 0.60 0.64 0.66 0.37 0.44 0.48 0.52
HECTOR 0.83 0.76 0.74 0.72 0.79 0.77 0.77 0.76 0.69 0.65 0.65 0.66
TAMLEC 0.87 0.80 0.78 0.77 0.83 0.81 0.81 0.81 0.73 0.69 0.69 0.70

PU
BM

ed

MATCH 0.79 0.75 0.76 0.78 0.76 0.77 0.79 0.81 0.28 0.42 0.49 0.52
XML-CNN 0.75 0.70 0.70 0.73 0.71 0.72 0.75 0.78 0.26 0.38 0.44 0.48

Attention-XML 0.79 0.76 0.76 0.78 0.76 0.77 0.80 0.82 0.28 0.43 0.49 0.52
Fast-XML 0.73 0.69 0.70 0.75 0.70 0.72 0.77 0.81 0.24 0.37 0.43 0.48
HECTOR 0.84 0.80 0.79 0.80 0.81 0.81 0.82 0.83 0.31 0.47 0.52 0.54
TAMLEC 0.87 0.84 0.84 0.86 0.84 0.85 0.87 0.89 0.32 0.49 0.55 0.58

EU
RL

ex

MATCH 0.85 0.89 0.85 0.84 0.89 0.86 0.85 0.79 0.75 0.84 0.81 0.81
XML-CNN 0.84 0.88 0.85 0.84 0.89 0.86 0.85 0.80 0.74 0.84 0.81 0.81

Attention-XML 0.87 0.89 0.86 0.84 0.90 0.87 0.86 0.81 0.76 0.85 0.82 0.82
Fast-XML 0.83 0.89 0.89 0.89 0.90 0.91 0.89 0.82 0.72 0.84 0.85 0.82
HECTOR 0.89 0.88 0.85 0.80 0.89 0.86 0.82 0.75 0.78 0.84 0.81 0.78
TAMLEC 0.94 0.95 0.93 0.90 0.96 0.94 0.91 0.85 0.83 0.91 0.89 0.87

Table 2: Performance comparison of TAMLEC and other competing methods for XMLCo on the MAG-CS, PubMed and EURLex

datasets. The best values for each combination of metric and dataset are written in bold.

• MAML-T, based on the few-shot Meta Learning method
MAML [14], which consists of two main steps: (i) a learning
part, where a student model is trained on a series of tasks, in
our case represented by the TATs, and (ii) a meta-learning
part, where a teacher model optimizes the student model
depending on its performance on the different tasks.

• Protonet-T [32] is a few-shot metric-based method that per-
forms classification from a clustering of the data points. By
seeing a few examples of each class, the model computes a
centroid, i.e. a prototype in the embedding space for each
class, and classifies new data points based on the Euclidean
distance to the prototypes. In this experiment, the document
embeddings result from a three layer encoder-only neural
network with two multi-heads self attention layers (see be-
low), and the centroids are the average of the document
embeddings of the same class.

• Deep Brownian Distance Covariance (BDC) [39] is a recent
few-shotmethodwith a similar approach to Protonet. Instead
of getting the document embeddings from a transformer
model as in Protonet-T, the embeddings are computed from
the joint probability density function based on the raw doc-
ument embeddings [35, 36]. This computation can be per-
formed in an isolated pooling layer in a neural network as
shown by the authors.

• Siamese Networks and Label Tuning (SIAM) [25], a recent
few-shot algorithm, tunes precomputed label embeddings
instead of document embeddings. This approach is quicker
and more efficient as the weights of the pretrained model
are not updated during the tuning stage. We pretrained a
model with the MATCH algorithm, and then used SIAM in
the fine-tuning part for the few-shot experiment.

Since these few-shot algorithms require a base model adapted to
the problem, we use a modified transformer architecture derived
from MATCH, i.e. a three layer encoder-only neural network with
two multi-head self attention layers. All baselines were trained on
our modified versions of the datasets, using the hyperparameter
values recommended by their respective authors. Finally, TAMLEC
was trained using the Adam [19] optimizer with an initial learning
rate of 5× 10−5, a weight decay of 10−2 and a smoothing parameter
of 0.01. In addition to the different baselines, we also perform an
ablation study of the XMLCo performance of TAMLEC (see Section
4.3). All experiments were run on a machine equipped with a Tesla
V100 GPU, using python 3.11 and pytorch [27]. An implementation
of TAMLEC can be found on github3.

Evaluation andMetrics. Throughout our experiments, we eval-
uate the different methods using their ranked label prediction R,
which lists the labels by decreasing order of predicted probability.
In other words, ∀𝑛 > 0 R(𝑛) is the 𝑛-th most likely label accord-
ing to the predictions. We compare the various results using three
commonly used metrics [26]: Precision at 𝑘 (𝑃@𝑘), Normalized
Discounted Cumulative Gain at 𝑘 (𝑁𝐷𝐶𝐺@𝑘) and F1 at 𝑘 . Formally
these metrics are defined as follows. Let 𝑦𝑛 = 1 if R(𝑛) is correct
and 0 otherwise. In other words, 𝑦𝑛 is a boolean variable that in-
dicates whether the 𝑛-th element of R belongs to the document.
With these notations, 𝑃@𝑘 is defined as:

𝑃@𝑘 =
1
𝑘

𝑘∑︁
𝑛=1

𝑦𝑛,

3https://github.com/Jythen/Tamlec
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Method

Precision ↑ NDCG ↑ F1 ↑
@1 @2 @3 @4 @2 @3 @4 @5 @1 @2 @3 @4

M
A
G
-C
S

√
TAMLEC 0.83 0.77 0.73 0.71 0.79 0.77 0.76 0.75 0.69 0.66 0.65 0.65
TAMLEC 0.87 0.80 0.78 0.77 0.83 0.81 0.81 0.81 0.73 0.69 0.69 0.70

TAMLEC-D 0.84 0.77 0.74 0.71 0.79 0.77 0.76 0.75 0.70 0.66 0.65 0.65
TAMLEC-W 0.84 0.77 0.73 0.72 0.79 0.77 0.76 0.75 0.70 0.66 0.65 0.66

PU
BM

ed

√
TAMLEC 0.84 0.80 0.80 0.81 0.81 0.81 0.82 0.83 0.31 0.47 0.53 0.55
TAMLEC 0.87 0.84 0.84 0.86 0.84 0.85 0.87 0.89 0.32 0.49 0.55 0.58

TAMLEC-D 0.84 0.80 0.79 0.80 0.81 0.81 0.82 0.83 0.31 0.47 0.52 0.55
TAMLEC-W 0.84 0.80 0.79 0.80 0.81 0.81 0.82 0.83 0.31 0.47 0.52 0.55

EU
RL

ex

√
TAMLEC 0.91 0.91 0.86 0.81 0.91 0.88 0.82 0.77 0.80 0.86 0.83 0.78
TAMLEC 0.94 0.95 0.93 0.90 0.96 0.94 0.91 0.85 0.83 0.91 0.89 0.87

TAMLEC-D 0.92 0.91 0.87 0.82 0.92 0.88 0.83 0.77 0.81 0.87 0.83 0.79
TAMLEC-W 0.91 0.91 0.86 0.81 0.91 0.87 0.84 0.78 0.80 0.86 0.83 0.79

Table 3: Ablation study of TAMLEC on the XMLCo experiment on the MAG-CS, PubMed and EURLex datasets. The best values

for each combination of metric and dataset are written in bold.

. i.e. the average number of correctly predicted labels among the
first 𝑘 elements of R. 𝑁𝐷𝐶𝐺@𝑘 provides a smoother measurement
of the quality of the ranking R, by assigning lower weights to failed
predictions in the tail of the ranking. Formally,

𝑁𝐷𝐶𝐺@𝑘 =

∑𝑘
𝑛=1

𝑦𝑛
log(𝑛+1)∑min(𝑘,𝑘𝑦 )

𝑛=1
1

log(𝑛+1)

,

where 𝑘𝑦 is the number of labels of the document. Finally, F1@k is
defined as the harmonic mean of the precision@k and the recall@k.
All metrics (@𝑘) are reported as average on the test set across all
the documents that are equipped with at least 𝑘 labels.

4.2 Label Completion

Experimental design. In the first set of experiments, we sim-
ulate an XMLCo problem by removing all the labels from each
document except the ones associated with the most general con-
cepts in the taxonomy. The motivation behind this choice is twofold:
first, the most general labels are the easiest to obtain4 and are the
most commonly present in a dataset [26, 31]. Second, due to our
hierarchical assumption, more general labels can easily be deduced
from more specific ones. To use the different baselines for XMLCo,
we run a normal inference step and then skip model predictions of
labels that already belong to the document.

Results. Table 2 reports the results of the XMLCo experiments.
First, we note that TAMLEC performs significantly better than the
other XMLmethods (MATCH, XML-CNN, FastXML, AttentionXML
and HECTOR) across almost all metrics and datasets, and at worst
performs as good as other baselines (such as for 𝑘 = 3 on MAG-CS).
The advantage of TAMLEC is particularly visible on EURLex, where
it outperforms the other baselines by a wide margin. This can be
explained by the fact that the EURLex TATs decomposition contains
more than 100 TATs, significantly more than the other datasets,
maximizing the benefits of TAMLEC TATs approach. In contrast,
4for instance, the venue at which a scientific paper is published often suffices to deduce
its field of research.

the advantage of TAMLEC is the smallest for PUBMed, which only
contains 8 TATS. These results highlight the impact of the TATs
decomposition on TAMLEC. Finally, it is interesting to note that
FastXML significantly underperforms other methods, in particular
on MAG-CS. As the only non neural network-based method of
our benchmark, these results point to the clear advantage of deep
learning methods for XMLC.

4.3 Ablation analysis

Experimental design. To evaluate the importance and effec-
tiveness of each of the main components of TAMLEC, we perform
an in-depth ablation study. In particular, we use three truncated
versions of our algorithm:

•
√
TAMLEC, a version of TAMLEC that only includes the

TATs decomposition, but without adaptive loss (i.e. we set
𝑤𝑇𝑖 = 1 for all tasks) nor task-specific decoder layer (i.e. the
last shared decoder is directly followed by a task-specific
linear+softmax layer),

• TAMLEC-D, which includes the TATs decomposition and
the task-specific decoder, without the width adaptive loss,

• TAMLEC-W, which includes the TATs decomposition and
the width adaptive loss, but no task-specific decoder.

Results. The results are presented in Table 3. We observe that
all the truncated versions are significantly worse than TAMLEC
across all metrics and datasets. Interestingly, the performance of√
TAMLEC, TAMLEC-D and TAMLEC-W are very similar, which

indicates that individual components may not bring significant
advantage. By contrast, TAMLEC outperforms its tampered down
version significantly, hinting at the importance of all the key com-
ponents and their synergies (TATs decomposition, adaptive loss,
and task-specific layers).

4.4 Few-Shot XML

Experimental design. In this experiment, we aim at evaluating
the XML few-shot potential of TAMLEC compared to different
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Algorithm

Global Precision ↑ Global NDCG ↑ Global F1 ↑ NT Precision ↑ NT NDCG ↑ NT F1 ↑
@1 @3 @2 @4 @1 @3 @1 @3 @2 @4 @1 @3

M
A
G
-C
S

MATCH 0.727 0.665 0.735 0.706 0.601 0.590 0.824 0.714 0.704 0.804 0.791 0.682
MAML-T 0.305 0.283 0.347 0.367 0.215 0.244 0.715 0.636 0.695 0.637 0.672 0.606
SIAM 0.788 0.760 0.770 0.788 0.646 0.677 0.747 0.714 0.609 0.820 0.702 0.671

PROTONET-T 0.079 0.074 0.071 0.087 0.069 0.065 0.092 0.364 0.199 0.400 0.083 0.350
BDC 0.055 0.050 0.051 0.057 0.048 0.043 0.057 0.278 0.213 0.287 0.048 0.261√

TAMLEC 0.832 0.730 0.768 0.779 0.689 0.666 0.941 0.704 0.665 0.820 0.891 0.684
TAMLEC 0.865 0.773 0.825 0.812 0.717 0.686 0.959 0.712 0.703 0.822 0.910 0.675

PU
BM

ed

MATCH 0.712 0.688 0.675 0.766 0.239 0.427 0.967 0.766 0.845 0.790 0.585 0.705
MAML-T 0.544 0.504 0.526 0.608 0.154 0.272 0.990 0.602 0.769 0.607 0.606 0.553
SIAM 0.786 0.764 0.769 0.812 0.280 0.498 0.965 0.681 0.794 0.662 0.595 0.636

PROTONET-T 0.025 0.029 0.026 0.032 0.009 0.020 0.172 0.249 0.220 0.256 0.086 0.231
BDC 0.026 0.030 0.027 0.030 0.010 0.021 0.183 0.206 0.208 0.213 0.106 0.185√

TAMLEC 0.820 0.803 0.804 0.782 0.302 0.508 0.962 0.827 0.921 0.829 0.583 0.730
TAMLEC 0.863 0.833 0.840 0.867 0.320 0.549 0.990 0.876 0.925 0.907 0.606 0.803

EU
RL

e x

MATCH 0.770 0.785 0.844 0.789 0.673 0.785 0.920 0.858 0.902 0.791 0.598 0.878
MAML-T 0.650 0.741 0.755 0.713 0.554 0.709 0.914 0.858 0.885 0.857 0.588 0.837
SIAM 0.852 0.840 0.891 0.836 0.744 0.814 0.731 0.767 0.754 0.754 0.465 0.760

PROTONET-T 0.514 0.594 0.614 0.632 0.446 0.568 0.437 0.643 0.449 0.710 0.264 0.627
BDC 0.539 0.577 0.620 0.646 0.472 0.564 0.515 0.656 0.592 0.747 0.318 0.660√

TAMLEC 0.904 0.881 0.912 0.847 0.802 0.822 0.945 0.902 0.938 0.774 0.614 0.862
TAMLEC 0.944 0.913 0.958 0.895 0.832 0.873 0.968 0.963 0.967 0.869 0.624 0.943

Table 4: Results of the XML few-shot experiment. NT (resp. Global) indicates a metric computed on the new task (resp. all the

tasks, including the new task). The best values for each combination of metric and dataset are written in bold.

few-shot methods as well as MATCH without modification. We
proceed as follows: during training, a TAT 𝑇𝑖 is withheld from
the training set, by removing all the labels of 𝑇𝑖 as well as all the
documents that are solely equipped with labels of 𝑇𝑖 . After being
trained on this large training set until convergence, each algorithm
is presented with the new task for fine-tuning: this is performed
either by training the models for a few epochs on the new task
(MATCH), or by using the algorithm-specific few-shot training
process (MAML-T, Protonet-T, SIAM, BDC). For TAMLEC, only the
task-specific parameters associated to this new task are trained,
resulting in extremely fast fine-tuning.

Results. Table 4 reports the metrics on both the new task (NT)
and all the tasks (Global). First, TAMLEC performance is much
higher than other methods on the Global metrics. In fact, its per-
formance are barely lower than in the regular experiment (Table
2), where all the data is present during preliminary training. This
indicates that TAMLEC is able to adapt seamlessly to the emer-
gence of a completely new task after the initial training, as most
of the adaptation is done using the task-specific decoder block.
Comparatively, the other XMLC method (MATCH) exhibits signifi-
cantly worse global performance as it tries to adapt to the new task.
Similarly, MAML-T and PROTONET-T achieve poor performance
on the different XMLCo Global metrics. These results can be ex-
plained by the fact that XML is a notoriously difficult problem, for
which MAML and PROTONET (the base meta-algorithms) were
not designed. This is particularly true for PROTONET and BDC,
whose cluster embedding approach is particularly challenged by

the number of possible labels. This is not the case for SIAM (the
combination of Siamese network and MATCH), which achieves
reasonable performance on Global metrics. As the different meth-
ods were fined-tuned specifically on the new task, most algorithms
were able to achieve very strong NT metrics (with the exception
of PROTONET). While TAMLEC does not always achieve the best
results, its metrics are always at least very close to the best perform-
ing method on the new task. Furthermore, and as discussed above,
the better performance of other methods, such as MATCH on the
new task, comes at a drastic cost to their global results. Thus, we
argue that TAMLEC achieves the best trade-off between adapting
to the new task and retaining performance on the entire problem.

5 Conclusion and Future Work

In this paper, we introduced a new algorithm, TAMLEC, that tack-
les XMLCo problems by dividing the associated taxonomy into
Taxonomy-Aware Tasks (TATs), where each task is adapted to the
path structure of the taxonomy. By leveraging ideas from parallel
feature sharing, TAMLEC uses the TATs decomposition to achieve
substantially better performance on label completion and XML few-
shot problems across multiple datasets. This advantage scales with
the complexity of the taxonomy: the more subtasks a taxonomy
contains, the larger the advantage of TAMLEC. Future work in-
cludes the study of new types of TATs decomposition, where some
TATs can be more specific (i.e. starting with more specific concepts)
than others, and their integration into the method’s architecture.
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