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Abstract—Understanding spectrum activity is challenging
when attempted at scale. The wireless community has recently
risen to this challenge in designing spectrum monitoring systems
that utilize many low-cost spectrum sensors to gather large
volumes of sampled data across space, time, and frequencies.
These crowdsensing systems are limited by the uplink bandwidth
available to backhaul the raw in-phase and quadrature (IQ)
samples and power spectrum density (PSD) data needed to run
various applications. This paper presents FlexSpec, a framework
based on the Walsh-Hadamard transform to compress spectrum
data collected from distributed and low-cost sensors for real-time
applications. This transformation allows sensors to significantly
save uplink bandwidth thanks to its inherent properties both
when it is applied to IQ and PSD data. Additionally, by leveraging
a feedback loop between the sensor and the edge device it
connects to, FlexSpec carefully adapts the compression ratio over
time to changes in the spectrum and different applications, jointly
considering data size, application performance, and spectrum
variations. We experimentally evaluate FlexSpec in several appli-
cations. Our results show that FlexSpec is particularly suitable for
IoT transmissions and signals close to the noise floor. Compared
with prior work, FlexSpec provides up to 7× more reduction
of uplink data size for signal detection based on PSD data, and
reduces up to 6× to 8× the number of undecodable messages
for IQ sample decoding.

Index Terms—Spectrum crowdsensing, adaptive data compres-
sion, fast Walsh-Hadamard transform, feedback loop.

I. INTRODUCTION

Measuring and understanding spectrum activity at scale —
time, space, and frequency — is challenging. Traditionally, a
few high-end spectrum sensors have been used to understand
such activity. In recent years, the community has devoted effort
to building low-cost spectrum sensors that many users can
potentially deploy at a much grander scale, e.g. [24], [30], [50].
These spectrum crowdsensing systems have an architecture
where spectrum data can be continuously obtained from a
large number of very low-cost spectrum sensors (e.g., the
∼ $25 RTL-SDR) and aggregated in cloud-hosted backends
for further analytics by different applications. A high-level
illustration of the architecture is presented in Fig. 1, with
low-cost sensors that transmit their data to edge devices and
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Fig. 1. Illustration of spectrum crowdsensing system supporting a variety of
applications; the bottleneck is the backhaul connection from the sensors.

several applications that the end-user can select. In particular,
the low-cost nature of the sensor and its easy integration
into an existing cloud-hosted backend often motivates more
participants to join this effort for the greater good of the
community.

The two common types of spectrum data of interest to
various use cases are power spectral density (PSD) data and
in-phase and quadrature (IQ) data. The former is helpful to
various applications in understanding spectrum utilization and
occupancy, while the latter helps analyze wireless protocol
behaviors and decode messages. For each data form, the sensor
can quickly generate a large volume of data, which eventually
needs to be backhauled and stored remotely. For instance,
the RTL-SDR generates 2.4M IQ samples per second, which
results in a data rate of 153.6 Mbps per sensor, often beyond
the capacity of any common backhaul network.

Prior efforts have proposed different spectrum data compres-
sion methods for streaming spectrum data. Electrosense lever-
ages lossless compression to pack data more compactly [29],
[30]. Unfortunately, this approach cannot compress much due
to the nature of spectrum data. Airpress [51] and SparSDR [22]
propose lossy compression methods for PSD and IQ data,
respectively. They achieve greater compression ratios than
lossless compression. However, SparSDR depends on setting
a specific threshold to determine whether there is any wireless
activity and whether such samples should be uploaded. In the
meantime, Airpress uses a fixed compression ratio that does
not allow the application to adapt to changes in the received
spectrum data. As we will show in § II, these cause missing
important information in the compressed spectrum data and
lack of adaptation with respect to the application needs, which
is especially relevant both for Internet of Things (IoT) wireless
transmissions and signals close to the noise floor.
Adaptive Compression of Spectrum Data: We propose a
framework, FlexSpec, which performs adaptive compression



of spectrum data uploaded from distributed spectrum sen-
sors in such crowdsensing systems. FlexSpec addresses the
limitations of prior work and is based on two components,
a lightweight real-time lossy compression method and an
application-oriented compression adaption scheme. Our real-
time lossy compression runs in the sensor with feedback
received from the edge device.

FlexSpec’s compression method is based on fast Walsh-
Hadamard transformation (FWHT). FWHT has been applied
in a variety of other fields. It received large attention in
the past because its low-computational cost and simplicity
of transform bases. For spectrum data compression, our key
idea is that we apply this transformation on single spectrum
data record (either PSD or IQ) and only retain significant
readings in the transferred domain. To our knowledge, we
are the first to apply FWHT on spectrum data compression
and show why it works well on both PSD and IQ data. The
core reason is that the transferred domain of either PSD or
IQ data captures the features of the data. The bases of FWHT
capture the bandwidth-limited feature of signals in PSD data,
and the transferred domain for the IQ data is a variant of
the frequency domain. In addition, this method has a highly
adjustable compression ratio, meaning the more appropriate
choice is available when adapting the compression ratio.

In FlexSpec, the amount of compression to be applied
depends specifically on the application of interest. Consider
an application like spectrum utilization measurements over a
wide area that operates over PSD data. The samples in this
setting can be compressed in a lossy manner quite substantially
because the results can gracefully degrade with loss in fidelity
of the data. If the uplink capacity is low and the energy
measurements have reduced fidelity, the application can still
provide reasonable estimates from them. However, if we
consider another application — decoding broadcast ADS-B
messages from aircraft transponders that allow them to be
tracked — it might not be equally amenable to reduce fidelity
of information. Therefore, aggressively lossy compression
might not be suitable in this case. Consequently, FlexSpec
aims to support dynamic selection of the compression ratio
to support a variety of spectrum applications according to the
user’s interests and is suited to work with live streaming of
spectrum data (consumed by the running application).

FlexSpec introduces an application-oriented compression
ratio adaptation scheme to enable dynamic compression ra-
tio adaptation for different applications and changes in the
captured spectrum. The essence of this scheme is that, given
the desired application performance metric(s), we introduce
a feedback loop between the edge device and the sensor
to jointly decide the compression ratio based on the target
application’s performance on current compressed spectrum
data. As a result, FlexSpec can consistently optimize the
desired application performance but send as a little amount
of data as possible in a varying spectrum band, which is
impossible for prior work.

Our key contributions are the following:

• We propose FlexSpec, a framework for adaptive uplink
data compression in spectrum crowdsensing systems. It

supports live streaming of spectrum data for various
applications, e.g., signal detection, IQ decoding.

• FlexSpec’s compression algorithm works well for various
applications on both PSD and IQ data. For spectrum
visualization of PSD data, our method introduces up
to 5 dB less reconstruction error than prior work. We
have up to a 20% better false negative rate for detecting
narrowband signals with PSD data when the compression
ratio is high. With IQ data, we can decode ADS-B
signals received from aircrafts with up to 70% higher
successful decoding rate when the compression ratio is
medium. We can perform signal technology classification
distinguishing between WiFi and LTE with up to 15%
higher accuracy than prior work.

• FlexSpec’s application-oriented compression ratio adap-
tation scheme dynamically adjusts the compression ratio
based on the application’s performance and current spec-
trum usage. As an example, for signal detection based on
PSD data, FlexSpec misses less than 1 FM channel (out
of 9 total) in the FM radio band when there is spectrum
activity. In the meantime, it has a 7× more reduction
in uplink data size when there is no spectrum activity
compared with prior work. For IQ decoding, FlexSpec
reduces 6× to 8× the number of undecodable messages
compared with prior work with a similar compression
ratio.

II. CHALLENGES

We aim to compress spectrum data, containing either PSD
or IQ readings, without affecting analytics performed in the
backend. We consider either the PSD or IQ readings in a
single data record, i.e., a row vector x ∈ RN for PSD or
x ∈ CN for IQ, and ignore meta-data like GPS information
because the meta-data is significantly smaller than PSD or IQ
readings in size. Because the spectrum data is noisy, saving
large data volume is only possible with lossy compression.
However, doing it on low-cost sensors, e.g., RTL-SDR [7] with
Raspberry Pi 4 (RBPi-4) [5], raises the following challenges
to the spectrum data compression techniques.

Limited computing resources. Low-cost sensors usually
have a relatively small amount of memory (8 GB for RBPi-4)
and only a few CPU cores (4 cores for RBPi-4). Therefore, un-
like prior work with high computational cost ( [32], [48]), the
compression technique in our case should have low time/space
complexity such that it can compress streaming spectrum data
in the resource-limited low-cost sensors in real-time.

Spectrum occupancy and wideband signals. Wireless
signals have bandwidth B that can vary largely. In contrast,
low cost-sensors have limited support in terms of sampling rate
S. This has implications on the compression ratio strategy. For
narrowband signals (S ≥ B), methods that estimate spectrum
occupancy using a power threshold in the frequency domain
have been used to select the active frequency bins to be
backhauled, as done in prior work by SparSDR [22]. While
this idea is simple, measuring the spectrum occupancy is often
ineffective. For instance, the International Telecommunication
Union (ITU) report on spectrum occupancy suggests declaring
the channel as busy if it is 3-5 dB above the noise level [38].
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Fig. 2. PSD of a sample ADS-B signal. The bandwidth of the signal
determined by the 3 dB threshold above the noise level is 80 KHz, but
important information is lost with this threshold.
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Fig. 3. Amplitude of ADS-B signal over time. Downsampling causes detail
information loss, which makes ADS-B signal hard to be decoded.

Fig. 2 shows the PSD of a ADS-B signal trace sent by an
aircraft and captured by RTL-SDR with 2.4 MHz sampling
rate. Following the above ITU report, its spectrum occupancy
would be 80 KHz. However, the signal cannot be decoded at
all with this 80 KHz band. The reason is that the modulation
used in ADS-B causes leakages outside the 80 kHz band and
near the noise floor, yet fundamental for message decoding.
Besides, even in those cases when spectrum occupancy mea-
surement in SparSDR is effective on narrowband signals, the
output sequence could be further compressed depending on
the application’s requirements, a chance ignored by past work.
On the other hand, the captured signals can be wideband
(S < B) for numerous cases, as S is relatively small in low-
cost sensors (e.g. S = 2.4 MHz in RTL-SDR). In this case,
spectrum occupancy is ineffective, as all frequency bins must
be backhauled. In summary, a different approach is needed
that does not depend on spectrum occupancy measurements.

Detail information is important for IQ data. Airpress
compresses the PSD data with the goal of spectrum sum-
marization [51]. It applies the Haar wavelet transform to get
the approximation and detail coefficients, and assumes that
detail coefficients are not crucial for spectrum summarization.
Although this assumption is valid for PSD data, it becomes
invalid for IQ data. For example, if we would like to decode IQ
samples of FM radio signal with a reasonable SNR, the mini-
mal possible compression ratio of 2 will directly lead to noisy
audio that cannot be perceived by human. Therefore, for IQ
data, we need a method that balances approximation and detail
during the compression. Note that a byproduct of completely
omitting detail coefficients in Airpress is that it can only
support exponential compression ratios in the form of 2i (i =
0, ..., n), given a PSD data with N = 2n readings. The limited
choices in compression ratios makes fine-grained compression
ratio adaptation impractical. By balancing approximation and
detail, we can potentially support linear compression ratios in

the form of N/i (i = 1, ..., N) for fine-grained compression
ratio adaptation. In addition, downsampling, a naive approach
to compress IQ data, also loses the detail information. For
instance, Fig. 3 shows the amplitude of reconstructed ADS-B
signal after downsampling/upsampling, and compares with the
original signal. After downsampling to 1.2 MHz, we can see
that the preambles needed to decode ADS-B signal, which
last from time 20 to 40, are already distorted. The four
spikes becomes two. If the signal is downsampled to 80 kHz
as the spectrum occupancy result suggested, not only are
the preambles distorted, but the signal duration that carries
messages become meaningless.

Difficulty in deciding the compression ratio. Lossless
compression does not save much data volume due to its
inability to capture the properties of the noisy spectrum data.
Our experience with Gzip (used in Electrosense [30]) shows
that it can only reduce data size by 10% for IQ data. Lossy
compression can instead allow for a balance of the information
loss and compression ratio. However, how much information
loss is tolerable highly depends on the specific application
that is streamed at the current time. For example, if the
application is to know whether a channel is occupied based on
PSD data, it tolerates relatively high information loss. If the
application is to decode messages from IQ samples, we may
only tolerate little information loss. In addition, significant
utilization change of the spectrum band, e.g., from idle to
active, and discrepancy of activities in different bands may
also result in the difference of tolerable information loss. Prior
work did not study this problem.

III. COMPRESSION ALGORITHM

In this section, we present FlexSpec’s spectrum data com-
pression algorithm. Our method applies a low-cost transfor-
mation, fast Walsh-Hadamard transform (FWHT), on single
spectrum measurement and only keeps significant readings in
the transferred domain, where both the features of PSD and
IQ data can be captured. We first review the principles of the
Walsh-Hadamard transform and then present our compression
method and explain the ideas behind its efficacy for spectrum
data compression.

A. Primer on Walsh-Hadamard transform

The Walsh-Hadamard transform [35] is a generalized form
of the Fourier transform. Unlike the Fourier transform, which
uses complex sine and cosine functions as the orthogonal basis,
the Walsh-Hadamard transform uses real Walsh functions as
the orthogonal basis, containing only -1 and 1. Formally, let
H2n denote the Hadamard matrix with row/column size equals

2n and H2 =

[
1 1
1 −1

]
. We have the following relationship

between H2n+1 and H2n :

H2n+1 =

[
H2n H2n

H2n −H2n

]
, n = 1, 2, 3, . . . . (1)

Therefore, each row/column of H2n is a Walsh function, which
contains only -1 and 1, and is orthogonal to each other. Let
the data with N = 2n readings as a row vector x. Its Walsh-
Hadamard transform is defined as

X = x ·H2n . (2)
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Fig. 4. Illustration of FlexSpec’s compression algorithm for PSD data. We apply FWHT on single PSD data records and only keeps significant readings in
the transferred domain, which are encoded as a sparse vector.

The corresponding inverse transform is computed as

x =
1

N
X ·H2n . (3)

Similar to the Fourier transform, which has a fast butterfly
algorithm with O(N logN) time complexity, i.e., fast Fourier
transform (FFT), the Walsh-Hadamard transform also has a
fast butterfly algorithm with O(N logN) time complexity, i.e.,
FWHT. The difference is that FFT involves N log2N complex
add operations and 1

2N log2N complex multiplication opera-
tions, but FWHT only involves N log2N real add operations.

B. PSD Data Compression

We compress PSD data x ∈ RN and the number of
kept readings k as follows. We ignore the readings in the
transferred domain close to 0 and encode this dense vector in
the transferred domain as a sparse vector1. More specifically,
we compute the FWHT of the PSD data and then record the
absolute values in the transferred domain. Next, we get the kth
largest absolute value of readings in the transferred domain
using Quick Select [20] algorithm, where k is selected by the
application. Last, we get all the kept readings in the transferred
domain and encode them as a sparse vector. To decompress,
we first convert the compressed data into the dense format and
then compute the inverse transform with Eq. (3).

Note that we can use a bit mask to physically encode
(compress) the indices of kept readings, which saves even
more space when the compression ratio is small. For example,
for a PSD measurement with 256 frequency bins, its indices
can be encoded into a 256-bit field. If the reading of an index
is kept, then we can set the corresponding bit in the field as
1. Otherwise, we keep the corresponding bit in the field as
0. Nevertheless, it is a minor optimization and only beneficial
when the compression ratio is smaller than 16, i.e., the size
of kept indices is larger than the 256-bit field.

C. IQ Data Compression

We now extend our compression algorithm on PSD data
to IQ data. Fig. 5 illustrates the process. We first get the
real part and the imaginary part of IQ data, and then apply
the FWHT-based compression algorithm to the in-phase (I)
reading sequence and the quadrature (Q) reading sequence
separately.

1A dense vector is an array that contains mostly non-zero values, and a
sparse vector is an array that contains mostly zeros. For the representation,
a dense vector presents all values of the vector, while a sparse vector is
described as two parallel arrays, indices and values.
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Fig. 5. Illustration of FlexSpec’s compression algorithm for IQ data. FWHT
based compression is applied to in-phase and quadrature readings separately.

Other options are possible, too, e.g., directly use complex
FWHT, convert I and Q coordinates to amplitude and phase
polar coordinates first then apply the algorithm to amplitude
reading sequence and phase reading sequence separately. The
best option in terms of compression ratio varies for different
modulation scheme of the signal (e.g. if the signal is purely
phase modulated, convert I and Q coordinates to amplitude
and phase polar coordinates is very desirable). However, our
method (1) has lower time complexity so that it can work
on low-cost sensors in real-time because it involves real
number addition and subtraction only, and (2) the transferred
domain is a variant of the frequency domain, called sequency
domain [19], so it captures the features of IQ data in this
analogous frequency domain.

D. Suitability for Spectrum Compression

Although FWHT is commonly applied in fields like image
compression [42] and video compression [23], our main con-
tribution is to show its application on spectrum data for the first
time. At a high level, FWHT can capture the features of both
PSD and IQ data. In fact, the bases of the transferred domain
for PSD data represent one or more (frequency domain)
bandwidth-limited signals (c.f. Fig. 4), and the transferred
domain of IQ data is a variant of the frequency domain.

PSD. Fig. 4 illustrates how FlexSpec’s compression al-
gorithm captures the features of a single PSD measurement
with 256 frequency bins. In Fig. 4, we reorder the columns
of H256 so that each column/Walsh function, denoted as
wi, 0 ≤ i ≤ 255, has i sign changes. We notice that w0 and
the corresponding Projection0 represent the average power of
the PSD measurement, which highly depends on the noise
floor value. Starting from w1, each Walsh function equals 1
for half of the frequency bins and equals -1 for the other
half. Therefore, if the projection on wi is bigger than 0, it
means there are probably notable signal(s) in the frequency
bins whose corresponding values are 1. Otherwise, there are
probably notable signal(s) in the frequency bins whose corre-



sponding values are -1. For example, if Projection1 is bigger
than 0, there are probably notable signal(s) from frequency bin
0 to 127. If Projection2 is smaller than 0, there are probably
notable signal(s) from frequency bin 64 to 191. In both cases,
the bases represent one or more bandwidth-limited signals
regardless of whether the projection is positive. Moreover,
we keep the projections that have the largest absolute values
rather than keep the projections whose corresponding Walsh
functions have a fewer number of sign changes. As a result, our
compression algorithm can preserve both relatively wideband
signals, e.g., ones captured by w1 and w2, and narrowband
signals, e.g., ones captured by w255.

Compared with Airpress [51], our compression algorithm
supports more possible compression ratios (any value in the
form of N/i, i = 1, . . . , N ), which is better suited for adap-
tive compression scenarios. Our FWHT-based compression on
PSD data also brings two additional advantages over Airpress.
First, in Airpress, all approximation coefficients are retained,
but all detail coefficients are ignored after the Haar wavelet
transform. As a result, our method can capture more detailed
information when the same compression ratio is used, i.e., less
information loss. Second, our algorithm is more friendly for
narrowband signals. The reason is that in Airpress, each PSD
reading is approximated by the corresponding approximation
coefficient, which is the average of consecutive 2l (l is the level
of transformation) PSD readings. Therefore, the bandwidth
of narrowband signals can be significantly enlarged, but their
power can be drastically reduced.

IQ. Besides capturing features in the sequency domain with
a low complexity (§ III-C), we consider our compression
algorithm as a good alternative for FFT-based compression due
to the following reasons. First, as FWHT’s orthogonal bases
are square waves rather than sine waves, our algorithm will
retain fewer projections for signals whose baseband waveform
is more similar to square waves than FFT-based compression,
e.g., SparSDR. Second, compared with complex number FFT,
FWHT on I and Q readings respectively saves more than half
the number of real-valued operations (including addition or
multiplication). It means it has higher time efficiency and is a
better fit for low-cost devices. Last, we offer an opportunity
to compress I and Q readings separately. I and Q readings
are usually equally crucial in traditional modulation schemes.
However, recent advances in deep learning-based commu-
nication design show that in a learning-based modulation
scheme, the constellation points can be asymmetric around
the origin point [28], so the importance of I and Q readings
can differ from each other. In addition, the relative importance
of each basis within I and Q readings can also differ, as
modulation schemes may exploit I and Q readings differently.
In these cases, compressing I and Q readings separately is
more beneficial than compressing them together.

E. Overhead and Complexity

The nominal compression ratio of the algorithm is N/k, but
we cannot achieve this due to the overhead of indices of sparse
representation. Moreover, because the average time complexity
and the space complexity of Quick Select are O(N) and O(1),

Adapter on
edge device

1: Send compressed data w/ 
k_fine+delta_k coefficients

2: find the new k_fine based on
app’s performance on compressed
data with different k coefficients.

3: Send the new k_fine to the sensor

4: update compression 
parameter k_fine

k

no. of detected
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new k_fine

k_fine+
delta_k

0
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Fig. 6. Illustration of FlexSpec’s application-oriented compression ratio
adaptation scheme.
respectively, the time complexity and the space complexity are
O(N logN) and O(N).

IV. COMPRESSION RATIO ADAPTATION

FlexSpec is designed to efficiently compress data transmit-
ted in real-time by the sensor and used by the application
specified by the user. We define the user as any person
with access to the applications implemented by the system.
In our view, the user will have control of the sensor2 and
dynamically select a specific application to run. Although
FWHT-based compression could also be applied to historical
data in the backend3, for live consumption of data, additional
optimization in compression ratio is possible. We observe that
the tolerable information loss varies for different applications,
and changes in spectrum utilization also lead to variations of
tolerable information loss, which is the basis of compression
ratio adaptation. Previous works do not explicitly consider
adaptive compression because they are designed for specific
applications. In this section, we show how the compression
ratio can be dynamically adapted in FlexSpec so that the
information loss can be adjusted to the variations of spectrum
utilization and satisfy the requirement of different applications.

Overall, FlexSpec’s application-oriented compression ratio
adaptation scheme works as follows. We introduce a feedback
loop between an adapter and the sensor to jointly decide the
compression coefficient k based on the application’s perfor-
mance on current compressed data. The adapter decides and
sends the appropriate compression coefficient kfine to be used
by the sensor given the compressed data (we will explain
how to decide it shortly). Then, to be aware of changes in
the spectrum utilization, the sensor adds some redundancy
to the uplink data, i.e., it uploads the compressed data with
kfine + ∆k coefficients. The amount of redundancy added is
rich enough to affect the application’s performance when the
utilization of the spectrum is changed. Given the compressed
data with kfine +∆k coefficients, the adapter decides the new
kfine based on the application’s performance. It outputs the
smallest k, such that the difference between the application’s
performance on the compressed data with k coefficients and
that on the compressed data with kfine + ∆k coefficients is
tolerable in terms of some performance metrics specified by
the user. For example, the number of detected signals for signal
detection application. Fig. 6 illustrates this scheme. Note that
naively applying a feedback loop does not work. The reason is

2Given the spectrum sensors’ limited hardware and software capabilities,
we do not consider the extension to multiple users controlling the same sensor
realistic.

3If the same data was already compressed based on the application’s needs,
storing this data for historical processing could use the same or higher ratio
than living data consumption.



that the application’s performance on the compressed data with
a larger compression coefficient k cannot be inferred based on
the current compressed data, which means the feedback loop
cannot decrease the compression ratio. As a result, adding a
small redundancy in our proposed feedback loop is critical.

Initialization. During the initialization phase, if the uplink
cannot handle uncompressed data, the sensor can be configured
to compute the initial compression coefficient to be used,
kcoarse, by itself. For PSD data, we compute kcoarse in order
to have at most a 5 dB error for every frequency bin between
the reconstructed data and the uncompressed data. For IQ data,
we start with a compression ratio of 2 directly.

Reduce computation cost at the adapter. When the
number of sensors that an adapter controls is large, there
is a need to further reduce the computation cost at the
adapter. A simplified version of the adapter’s logic is to only
evaluate three options for the new compression ratio, which
are kfine −∆k, kfine, and kfine + ∆k. This simplified logic
can be parallelized easily.

Reduce kfine fluctuations. The adapter’s logic computes
kfine on every compressed data sent from the sensor. However,
the result of kfine may fluctuate (usually towards a more
aggressive compression coefficient) due to some random noise
in the data. Therefore, we reduce the fluctuations (as well
as the downlink traffic) and output the new kfine on every
m compressed data records (usually around 10). The adapter
selects the largest one (most conservative one) from the m
computed new compression coefficients because the logic at
the adapter is relatively aggressive (see the limitation below).

Deciding ∆k. A large ∆k needs a higher uplink data
rate, but it can handle bursty changes in spectrum utilization.
One can determine ∆k by replaying a synthetic data trace,
which adds more significant variations to a real-world (un-
compressed) data trace, to the system before supporting live
streaming data, and choose from 1/2i of the segment size. In
practice, we find that ∆k within the range of 1/8 to 1/16 of
the segment size works well in balancing the two sides for the
applications we tested.

Multiple application performance metrics. It is straight-
forward to incorporate multiple application performance met-
rics. For example, we can easily add the center frequency, the
bandwidth of detected signal(s), etc., into the toy example of
signal detection application in Fig. 6 by outputting the highest
kfine for different metrics. The computations of kfine for
different metrics are also parallelized.

Limitation. A limitation of this scheme is that there is
no theoretical guarantee on the gap between the applica-
tion’s performance on compressed data and uncompressed
data. The adapter can output a very aggressive compression
coefficient such that the redundancy added is insufficient.
Further, uploading uncompressed data, even only for a small
portion of all the traffic, is undesirable or, depending on the
available bandwidth, even impossible. As a result, we cannot
access to the ground truth of the application’s performance
to calibrate our system. If this assumption is relaxed, we
can upload a small portion of data uncompressed to calibrate
the application performance. However, we empirically find
that the application’s performance always converges to the

application’s performance on uncompressed data without a
significant gap in our system, as long as ∆k is configured
as previously described. Furthermore, this method applies to
live consumption of data only.

Benefits. The only previous work that involves a certain
degree of compression ratio adaptation is SparSDR. Based
on the assumption that the signal of interest is always sparse
(in the frequency domain), SparSDR applies a fixed energy
threshold and filters out readings with insufficient energy.
Consequently, it implicitly controls the compression ratio
as it considers the activities in the spectrum. However, as
discussed in § II, the sparsity assumption is not always
valid, especially for spectrum measurement using low-cost
sensors, which usually have a relatively narrow bandwidth.
Furthermore, it completely misses the opportunity provided
by the nature of different applications. We take a step forward
by introducing a feedback loop that considers both sides.
Without additionally leveraging the nature of the application,
there is not much room for compression of spectrum data that
contains long-lived signals and is collected by low-cost sensors
with a relatively low sampling rate. Therefore, it makes our
adaptive compression generalizable to various applications and
a diverse group of sensors.

Place to deploy the adapter. There are three options
to deploy the adapter: (i) the sensor, (ii) the backend, (iii)
and the edge device. The sensor has the lowest network
latency but limited computing resources. The backend has
the highest network latency but most computing resources
available. Therefore, we decide to deploy the adapter on the
edge device to balance the network latency and computational
capability.

V. IMPLEMENTATION

We implement FlexSpec in a combination of C++ and
python. The lossy compression algorithm is implemented in
C++ for efficiency, and the logic of the compression ratio
adaption scheme is implemented in python to incorporate
potential applications that can leverage existing packages.
Each sensor includes a 2.4M samples per second RTL-SDR
radio [7] and a RBPi-4 board [5] with 4 CPU cores and
4GB memory. Fig. 7 shows the whole data analysis pipeline.
The light blue blocks represent the modules that are standard
spectrum crowdsensing modules, and the red blocks represent
the new modules that we add to realize FlexSpec. Note that
the sampling modules output IQ samples, so there is another
FFT module to get the PSD readings in the PSD pipeline.

The adapter and the application run on the same device.
The adapter also needs to evaluate the application performance
using a few compression ratios, which may lead to significant
computational overheads. As stated earlier, we chose the edge
device as the place to deploy our adapter. We explored various
types of edge devices deployed in the access network of the
sensors and finally decided to use Intel NUC [2] due to its
lower computation latency. The backend is instead responsible
for managing the infrastructure, storing compressed data for
later processing (c.f. § IV), and running applications with
historical data.

Moreover, to make the adapter more scalable and reduce
the latency of the feedback loop, we apply the following
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implementation tricks. After receiving a data record, we use
the binary search or the simplified logic mentioned in § IV to
reduce the time complexity of computations on each record.
We also parallelize the computations for the m received
records from each client and the computations of multiple
clients by applying multi-threading. By applying these tricks,
we have kept the latency of the feedback loop under the
case of multiple clients on the order of 10 to 100ms, which
is acceptable to capture the variation of spectrum utilization
changes.

In what follows, we first benchmark the performance of
FlexSpec’s FWHT-based spectrum compression method in
§ VI, then evaluate FlexSpec’s application-oriented compres-
sion ratio adaption scheme in § VII. Data for experiments are
collected using RTL-SDR with 2.4 MHz complex sampling
rate unless stated otherwise.

VI. EVALUATION OF COMPRESSION ALGORITHM

We first benchmark our FWHT-based spectrum data com-
pression algorithm without any adaptation. In the study, we
compare against AirPress, designed to work with PSD data,
and SparSDR, designed to work with IQ data. Note that in
this section, we modify SparSDR slightly to control the energy
threshold to get the desired compression ratio. We also extend
AirPress to be applied to IQ data for comparison.

Summary: (1) FlexSpec has up to 5 dB less reconstruction
error for PSD data than Airpress because less information loss
is introduced. (2) Since detailed information is maintained, we
achieve up to 20% less false negative rate than Airpress, when
detecting narrowband signals using PSD data. (3) We have
around 70% more message decoding rate for ADS-B signal
than SparSDR because its baseband waveform is similar to
square waves. (4) For signal classification based on IQ data,
FlexSpec achieves up to 10% more accuracy compared with
SparSDR because we apply compression on I and Q readings
separately.

A. Reconstruction error for PSD data

A common application based on PSD data is spectrum
visualization using a waterfall plot. A small reconstruction
error (e.g., less than 5 dB) is visually negligible for users. We
use the dataset in [48] to benchmark the reconstruction error
introduced by FlexSpec’s compression algorithm on PSD data

for wideband measurements (from 300 MHz to 4 GHz on a
100 MHz basis). Because the dataset is large, we implement
our compression method and the baseline Airpress using
Spark [8] and run it in a cloud.

We first fix a compression ratio and do the compression,
calculate the 99th percentile of absolute reconstruction error
for all 100 MHz bands, and record the best and the worst result
among all 100 MHz bands. We then vary the compression
ratio to get how the best and worst case results are influenced.
Fig. 8(a) and 8(b) show the best case and the worst case result,
respectively. From Fig. 8(a), we can see that if the 100 MHz
band is idle most of the time, the 99th percentile error is
less than 6 dB when the compression ratio is no more than
256, and the increment in error decreases as the compression
ratio increases. From Fig. 8(b), we notice that if the 100 MHz
band is very busy, e.g., cellular bands, the 99th percentile error
grows linearly as the compression ratio increases. In addition,
FlexSpec’s compression algorithm has up to 5dB smaller 99th
percentile absolute reconstruction error for both cases than
Airpress. It demonstrates that our compression method has
less information loss compared with Airpress.

B. Signal detection based on PSD data

We collect PSD data of 2 MHz Bluetooth (BLE) signal as
well as noise using a 56 MHz sampling rate (by a customized
sensor in [24] rather than RTL-SDR) and 1024-point FFT.
Next, we adjust the threshold of the edge-based signal detec-
tion method [43] such that the false positive rate (FPR) and
false negative rate (FNR) on the uncompressed data are zeroes,
and the channel information, including bandwidth and center
frequency, are correctly outputted. We then apply FlexSpec’s
compression method to the dataset and see how the FNR of
the detection results on the reconstructed data varies as the
compression ratio increases. FPR is also considered, but the
result will not be shown because it stays zero (for all methods).
We also check whether the channel information can still be
outputted accurately (for true positive signals only). The FNR
and channel information results are shown in Fig. 9, and we
compare our method with Airpress.

Fig. 9(a) shows the result of FNR. We can see that when
the compression ratio is relatively small (no more than 16),
FlexSpec’s compression method has negligible better perfor-
mance. However, when the compression ratio is large (bigger
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Fig. 8. 99th percentile reconstruction error as a function of nominal com-
pression ratio. FlexSpec outperforms Airpress by up to 5 dB in both the best
and the worst cases.
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Fig. 9. Signal detection results as a function of nominal compression ratio.
FlexSpec outperforms Airpress in both FNR and channel information accuracy
when the compression ratio is high.

than 16), our method significantly outperforms Airpress by up
to 20%. Moreover, for channel information accuracy, we can
achieve up to 60% more accuracy when the compression ratio
is large, which is shown in Fig. 9(b). Overall, these results
show that our method is more friendly for narrowband signals
(2 MHz signal with 56 MHz sampling rate) than Airpress
because it can preserve more details. If the same experiment is
applied to wideband signals, e.g., 20 MHz WiFi signal using
the same sampling rate, neither FNR nor channel information
accuracy degrades much for both methods.

C. IQ data decoding

We first use FM radio as the analog signal example for
IQ sample decoding because the human perception of audio
quality tolerates the distortion introduced by the lossy com-
pression to a certain degree. We record IQ samples of several
local FM radio channels of 200 kHz bandwidth for 30-second
clips. The content of the radio contains human speeches
only (male and female), and we use perceptual evaluation
of speech quality (PESQ) [33] to objectively evaluate the
audio quality downgrade due to the lossy compression. The
PESQ score ranges from −0.5 to 4.5, and a higher score
indicates the decoded audio clip based on the reconstructed
data is perceptually more similar to the one based on the
uncompressed data. Note that when we record the IQ samples
of the 200 kHz FM radio channel with a 2.4 MHz sampling
rate, other active channels near the FM radio channel we are
interested in, with less energy, are also captured. Therefore, the
sparsity assumption in SparSDR is not fully satisfied, but the
signal can still be considered a narrowband signal. Fig. 10(a)
shows the PESQ score as a function of the compression ratio
for FlexSpec’s compression algorithm, using the number of
samples per time window equals 2048. We can see that with
the increasing compression ratio, the audio quality degrades
gracefully, and the audio quality becomes unacceptable (PESQ

score < 1) when the compression ratio is 64. For comparison,
if we extend Airpress to IQ samples, the PESQ score is less
than 1 when the compression ratio is only 2, which is very
close to the score of our method when the compression ratio
is 64. The reason for Airpress’ relatively poor performance is
that details are important for FM radio decoding. Moreover,
Fig. 10(a) also shows that SparSDR has a slightly higher score
when the compression ratio is larger than 8.

We then study the ADS-B signal. A representative PSD
has already been shown in Fig. 2. ADS-B works at a carrier
centered at 1090 MHz, and we study it as the digital signal
example for IQ sample decoding. For decoding it, we use
dump1090 [1]. We consider the message decoding rate as the
performance metric, and Fig. 10(b) shows the results. From
Fig. 10(b), we find that compressed data using Airpress cannot
be successfully decoded at all because the detailed information
is lost. Additionally, when the compression ratio is larger
than 16, all methods have zero successful rates. It is worse
than FM IQ sample decoding since ADS-B message decoding
tolerates less information loss than the human perception of
audio quality. Moreover, compared with SparSDR, FlexSpec
outperforms by up to 70% because the ADS-B signal is pulse-
position modulated so that its baseband waveform is similar
to rectangular waves, which can be captured more accurately
by the bases of FWHT compared with that of FFT. The
preambles are easier to be detected when compressed using
FlexSpec. It can be observed in the experiment in Fig. 10(c),
where it is evident that FlexSpec closely represents the original
signal. However, prior methods largely distort it using a
similar compression ratio. Finally, since the ADS-B signal
is amplitude modulated only, if we apply our compression
method to the amplitude presentation of the signal (FlexSpecp
in Fig. 10(b)), we can have 70% more decoded messages
when the overall compression ratio is 4. It is achieved by
applying the compression ratio of 2 on amplitude readings,
and the phase readings are omitted. Note that this is generally
impossible since we usually do not know what kinds of signals
are captured. The benefit in this specific case comes with 19%
more time overhead due to converting between IQ coordinates
and amplitude/phase coordinates.

We also compare the performance of FlexSpec with that
of SparSDR when the sparsity assumption is fully met. We
obtained the traces of the BLE signal from SparSDR’s authors.
These traces only capture a 2 MHz BLE signal, which is
frequency modulated, using a 100 MHz sampling rate. We
found that the decoding rate performance of FlexSpec is
significantly worse than SparSDR (roughly 25% vs. 95%).
However, this case happens rarely with low-cost sensors due
to their limited sampling rate compared with high-end sensors,
e.g., USRP. We further downsample the traces to 10 MHz to
obtain a moderate sparsity and then inject white noise of
various levels. Fig. 10(d) shows the decoding performance
as a function of added noise power. The normalized added
noise of 0 dB stands for the noise power level that the
decoding performance starts to degrade for both methods. We
can see that with frequency modulated BLE signals and a
moderate sparsity, the decoding performance using FlexSpec
and SparSDR compressed data are close regardless of the



noise level. In addition, it would be interesting to explore a
hybrid method to combine SparSDR with FlexSpec methods
for extremely sparse signals in the future.

D. Signal classification based on IQ data

IQ samples can be used to classify modulation schemes
hence the types of signals being transferred, e.g., WiFi or LTE.
We use the deep learning model described in [31] and the IQ
dataset in [3] to classify whether the IQ segments (of length
128) are WiFi or LTE signals and evaluate how FlexSpec’s
compression algorithm affects the classification accuracy. We
apply the compression algorithm to the training data and feed
the reconstructed training data to the model, then vary the
compression ratio and see how the accuracy of the classifier
on the reconstructed training dataset changes. Fig. 11(a) com-
pares our performance with those using (extended version of)
Airpress and SparSDR. Note that the sparsity assumption in
SparSDR is not met because the signal’s bandwidth is equal
to the sampling rate. From Fig. 11(a), we can maintain more
than 90% accuracy when the compression ratio is no more
than 16. On the contrary, the accuracy of Airpress directly
drops to 50%, i.e., the accuracy of random guessing, when
the compression ratio is 4. Moreover, when the compression
ratio is no less than 16, our method’s accuracy outperforms
SparSDR by up to 15%.

We then investigate whether this performance increment is
due to FWHT’s better performance over FFT or the fact that
we apply the FWHT-based compression algorithm on I and Q
readings separately. We compare our method with the one that
applies (complex) FWHT-based compression on IQ readings
together. In other words, the relationship between H2n+1 and
H2n in Eq. (1) is modified as [16]:

H2n+1 =

[
H2n i ·H2n

−i ·H2n −H2n

]
, n = 1, 2, 3, . . . , (4)

and the initial condition is modified as H2 =

[
1 i
−i −1

]
.

Fig. 11(b) shows the result, and we can see that if the
compression is applied on I and Q readings together, it has
up to 10% accuracy drop than applying compression on I
and Q readings separately. Therefore, the accuracy gain of
our method is attributed to the fact that we apply the FWHT-
based compression algorithm on I and Q readings separately.
We conclude that the deep learning model to classify signal
exploits the I and Q differently, so it is beneficial to compress
them separately.

E. Correlation reduction and delay

Some applications, e.g., IQ localization based on Time
Differential of Arrival, require stringent delay requirements
and a strong correlation with the uncompressed data. In this
regard, any information loss would immediately result in lower
application performance, hence is challenging if compression
is considered. We investigate the delay and reduction of cor-
relation introduced by FlexSpec compression for ADS-B and
IoT-433 signals in Fig. 12. IoT-433 signals are signals from
IoT devices at ISM 433 MHz band with 0.1 MHz bandwidth
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Fig. 10. IQ sample decoding results. Above: when the sparsity assumption
is not met, FlexSpec approximates the original signal, while prior methods
largely distort it. Below: when the sparsity assumption is fully met and the
signal is frequency modulated, SparSDR outperforms FlexSpec.
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Fig. 11. Classification accuracy results as a function of nominal compression
ratio. FlexSpec outperforms both Airpress and SparSDR. The performance
enhancement over SparSDR mainly comes from compression on I and Q
readings separately.

for most of the signals, mainly for reporting information, e.g.,
temperature, humidity, presence, or even the Tire Pressure
Monitoring System (TPMS) that vehicles use. We use ADS-B
and IoT-433 signals as exemplary wideband and narrowband
signals. In the experiments, we use a single antenna and a
splitter that connects the signal to the two sensors. The results
show that the correlation decreases as soon as we compress the
signals as expected. Despite this, we can achieve acceptable
delays between the compressed and uncompressed data up to
a compression ratio of 4.
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Fig. 13. Channel detection over compressed PSD data. Application-oriented
compression ratio adaptation with Feedback Loop performs better than generic
approaches.

VII. EVALUATION OF COMPRESSION ADAPTATION

As explained in previous sections, the compression ratio
can be selected based on the performance of the specific
application running in the backend that consumes the com-
pressed spectrum data. In this section, we evaluate FlexSpec’s
application-oriented compression ratio adaptation scheme us-
ing two real scenarios, which are (i) channel detection based
on PSD data, and (ii) message decoding using IQ data. Note
that ∆k is 1/16 of the segment size in all experiments.

Summary: (1) For detecting the number of FM channels
based on PSD data, if we target optimizing the difference of
the number of detected channels to be smaller than 1, only
FlexSpec (with feedback loop) can achieve it. (2) Compared
with no adaptation in Airpress, we can achieve up to 7×
more uplink data size reduction when the spectrum changes to
idle. (3) We use both wideband ADS-B and narrowband IoT-
433 signals for IQ decoding application. (4) reduces messages
unable to be decoded by 6× to 8× while reducing uplink
data size even more, compared with SparSDR using a power
threshold that gives a similar nominal compression ratio.

A. Feedback loop

In this experiment, we evaluate the performance of channel
detection over an FM radio band, which contains 9 active
channels with varying energy over time, using compressed
PSD data. We compare the performance of FlexSpec with
and without Feedback Loop (FL) and also compare them with
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Fig. 14. RMSE of channels detected (left) and average nominal compression
ratio for the different solutions evaluated over PSD data.
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to reduce data that are backhauled. Compression ratio adapted every 200 ms.

Airpress. Fig. 13 (top) shows the channels detected over PSD
data for different methods. FlexSpec FL adapts the compres-
sion ratio dynamically so that the difference in the number
of detected channels smaller than 1 is tolerated. FlexSpec
Non-FL determines the new compression ratio by executing
a simple application on the sensor side (to not overload it).
It compresses the original signal until the reconstructed one
introduces at most a 5 dB error. This process is executed on
the sensor side with no FL involved. For a fair comparison
with Airpress, we select a nominal compression ratio (8)
that gives a data compression ratio similar to the average
of FlexSpec FL. Fig. 14 shows that FlexSpecFL performs
near perfect in terms of channels detected while keeping the
average compression ratio about 10. FlexSpec Non-FL reports
a higher nominal compression ratio but also introduces an
RMSE of the channels detected larger than 1. It indicates
that simple adaptation running on the sensor without involving
FlexSpec’s FL does not optimize applications’ performance
to get the tolerable performance loss. Lastly, Airpress, which
used a fixed compression ratio, reports an even higher RMSE
of channels detected, which shows adaptation is needed even
in a relatively stable band.

B. Busy-Idle state

We evaluate how the nominal compression ratio is set
depending on the state of the spectrum and the application
running in the edge device. In this experiment, we collect PSD
data on the same FM radio band in the previous setting. In
order to simulate the idle state, we disconnect the antenna from
the radio receiver. Fig. 15 shows how the nominal compression
ratio is set adaptively. We notice that during the idle channel
state, FlexSpec increases the compression ratio (by decreasing
kfine) since there is no useful signal information to detect
channels, reducing the size of uplink data. We achieve up to
10× more nominal compression ratio during the idle state than
Airpress, which uses a fixed compression ratio (8), as Fig. 13
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Fig. 17. IoT-433 messages decoded and compression ratio used for FlexSpec
and SparSDR.

shows. Considering the overhead of data format for FlexSpec
and Airpress, this translates to up to 7× more reduction in
uplink data size..

C. IQ decoding

We evaluate FlexSpec over IQ data with the goal of max-
imizing the message decoded rate. For this experiment, we
use ADS-B and IoT-433 signals as the example wideband and
narrowband signals, respectively.

Fig. 16 compares FlexSpec and SparSDR regarding their
message decoded rate for ADS-B. For the ADS-B signal, the
compression is performed in segments of 2k samples, and
the message decoding is performed in the adapter every 1M
samples using dump1090 [1]. The latter also means that for
every 1M samples, FlexSpec decides on the new compression
ratio to be used. For SparSDR legacy, we use a power
threshold of 5 dB above the noise floor as suggested, but
we find no message can be decoded. Therefore, we also tune
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TABLE I
LATENCY OF FLEXSPEC’S FEEDBACK LOOP FOR DIFFERENT STREAMING
APPLICATIONS EVALUATED ON BOTH SCENARIOS: RBPI-4 AND RBPI-4 +

INTEL NUC.
Pipeline App RBPi-4 (ms) RBPi-4 + Intel NUC (ms)

Channel detection (PSD) 144 37
dump1090 (IQ) 264 115

IoT433 (IQ) 1080 220

the power threshold such that SparSDR outputs a similar
nominal compression ratio as FlexSpec, denoted as SparSDR*.
Fig. 18 shows that for ADS-B, FlexSpec has 6× fewer
messages unable to be decoded compared with SparSDR*, at a
very similar nominal compression ratio. Considering the data
format of FlexSpec and SparSDR and the overlapping time
window in SparSDR, FlexSpec’s 6× fewer messages unable
to be decoded comes with a 1.7× more reduction in uplink
data size.

For the IoT-433 signal, we apply the same configuration as
ADS-B, but the rtl 433 decoder [6] is used. Fig. 17 shows
how FlexSpec outperforms SparSDR. Similar to ADS-B, if
we use a power threshold of 5 dB above the noise floor
(SparSDR legacy), no messages can be decoded. However,
different from ADS-B, if we apply a power threshold that gives
a similar nominal compression ratio to FlexSpec (SparSDR*),
a significant number of messages still cannot be decoded.
Fig. 18 shows that, for IoT-433 signal, FlexSpec has 8×
fewer messages undecodable compared with SparSDR*, with
a 1.2× more nominal compression ratio. If the data format of
FlexSpec and SparSDR and the overlapping time window in
SparSDR are considered, we have a 2.2× more reduction in
uplink data size.

D. Latency performance

The performance of our solution based on FWHT does
not depend on the compression coefficient used but on the
segment size of compressed/decompressed data. We evaluate
the performance of the compression algorithm in different
platforms (RBPi-4 and Intel NUC) for different segment sizes.
Fig. 19 shows how the (de)compression processing time grows
exponentially with the segment size. Due to more compu-
tational resources, the compression/decompression process is
16× faster on the Intel NUC than on the sensor (RBPi-4).
However, running compression/decompression on the sensor
is still within several milliseconds. For the reference segment
size (2048) used in all the evaluations in this section, com-
press/decompress functions take 0.20 ms in the edge device.
Additionally, although we evaluate latency performance on
spectrum data obtained from RTL-SDR, FWHT can also be
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Fig. 19. FlexSpec compress/decompress latency performance in sensor (RBPi-
4) and edge device (Intel NUC).

computed on sensors with higher sampling rates. The reason
is that, in that case, there is still an FFT module in the
PSD pipeline, as shown in Fig. 7. As long as FFT can be
computed on the sensor, so can FWHT, as FWHT has a similar
complexity as FFT (§ III).

We also evaluate the latency of FlexSpec in terms of
how long it takes to provide a new compression coefficient
according to the application executed on decompressed data.
Table I shows the results of the two different scenarios
evaluated. In the first scenario (named “RBPi-4”), compress-
ing/decompressing data and streaming applications are ex-
ecuted on the sensor. The second one (named “RBPi-4 +
Intel NUC”) performs the compression on the sensor, but
decompression and streaming applications are executed on
the edge device (Intel NUC). Even assuming a transmission
delay of 5 ms between the sensor and the edge device,
we obtain a lower latency in the “RBPi-4 + Intel NUC”
scenario, meaning that we can provide an optimal compression
coefficient more often (on average 3.5× faster). Moreover, the
final latency of FlexSpec’s feedback loop strongly depends
on the streaming application executed to obtain the optimal
compression coefficient.

VIII. DISCUSSION AND LIMITATIONS

Hard limit on uplink bandwidth. There can be a hard
limit on a sensor’s uplink bandwidth from the backhaul
network, and this limit may vary for different sensors. For
instance, sensors with a mobile connection to the backend
or deployed in developing regions may have more stringent
constraints. Incorporating this limit to our application-oriented
compression ratio adaption by simply limiting the highest
compression coefficient used by the sensor is not enough. We
need to also consider the overhead of data schema, sparse
encoding, etc. In addition, the application’s performance may
be unsatisfactory if the hard limit is too aggressive, and
the degree of dissatisfaction depends on the nature of the
application. When there is a conflict between the application’s
performance and the hard limit on the uplink bandwidth, it is
the user’s decision whether to favor the uplink bandwidth or
the application, and it should be done on a case-by-case basis.

Privacy. Collecting spectrum data has multiple privacy
implications. It is subject to government regulations on storing
spectrum data abroad and for which purposes. Metrics are
needed to measure the privacy risk of sending a certain amount
of spectrum data. FlexSpec could be applied to transmit limited

information abroad, smaller than what is transmitted in the
country of origin, by tuning the compression coefficient.

Age of information. Age of information is a concept that
has achieved great attention in the research community in
the last years [14]. It measures the freshness of the state of
the source, and its application to the problem of application-
oriented spectrum compression is so far unexplored. FlexSpec
could be extended to verify how long the sensor can rely on
the compression ratio inferred by the adapter.

Human-in-the-loop labeling. FlexSpec is not designed for
applications that need human-in-the-loop to grade applica-
tions’ performance. However, suppose only a small amount
of data needs to be evaluated by humans. In that case, it
is possible to extend FlexSpec with some crowdsourcing
application performance evaluation function to make it support
this kind of application. The trade-off is that it leads to a higher
latency in deciding the compression ratio at the sensor.

Features extractions and decoding in the sensor. There
are two potential alternatives to performing data compression.
The first one is extracting large spatio-temporal scale features
in the spectrum data. However, they cannot be extracted from
the sensor in real-time unless we relax the low time and
space complexity requirements presented in § II. Given the
current hardware costs, the backend is a much better fit for this
processing. The second one is data decoding in the spectrum
sensor, e.g. [10], instead of doing it in the backend or the
edge device, e.g. [15], assuming the computational cost is
tolerable. It is left as future work an extensive evaluation of
which decoders can run in the sensor and which cannot (for
instance, srsLTE for LTE decoder requires FPGA implemen-
tation for real-time decoding, which cannot be afforded by
the single low-cost sensor [17]). Furthermore, as the backend
still requires data for historical access, we still need to access
compressed data in the backend.

IX. RELATED WORK

Spectrum crowdsensing: Spectrum measurement has been
traditionally done using commercial spectrum analyzers [4],
[21], [37], [44], [46], [49], which is both bulky and costly
so that large-scale spectrum measurement is hardly possible.
Recently, with the cost of low-end sensor keeps decreasing
[18], [21], [24], [27], [50], crowdsensing with low-cost sensors
becomes a popular paradigm [13], [26], [30], [34], [36],
[39], which enables very large-scale measurement. In addition,
crowdsensing recently has been used to not only sense the
spectrum but also decode the spectrum data [11], [12].

Spectrum data compression: Overall, Table II gives the
high-level comparison of FlexSpec with state-of-the-art spec-
trum data compression methods in terms of features and
requirements. Electrosense [29], [30] only leverages lossless
Gzip compression to pack data into bits compactly. However,
it does not reduce data size much due to noise (about 10%
based on our experience). BigSpec [48] utilizes truncated SVD
to do data compression on a large amount of spectrum data,
but it works only for (historical) batch data analysis rather
than streaming data. Similarly, autoencoders can compress
batch data but need a significant amount of time for training
before one can obtain the model for compression [32]. For



TABLE II
HIGH-LEVEL COMPARISON WITH THE STATE-OF-THE-ART.

FlexSpec Airpress [51] SparSDR [22] Gzip [29] BigSpec [48] SAIFE [32]

data type PSD & IQ PSD only IQ only general PSD & IQ PSD & IQ

real-time support Yes Yes Yes Yes No No

explicit adaption Yes No No No via re-training via re-training

hardware requirement low-cost sensors low-cost sensors low-cost sensors low-cost sensors
high-end sensors

& servers
GPU/high-end sensors

this reason, they require powerful machines (sensors and/or
servers). Airpress [51] and SparSDR [22] are the most closely
related works to ours because they also focus on compressing
streaming PSD and IQ data, respectively We have performed
an extensive comparison against them in this work. They
only propose a compression method with a fixed/unadjustable
compression ratio for the specific data format. On the other
hand, we propose a compression method that works for both
PSD and IQ data. FlexSpec also offers an application-oriented
compression ratio adaptation scheme to send as little data as
possible between the sensor and the edge device it connects
to, and fulfills the need of different applications’ performance
requirements.

FWHT: Although we are the first to apply FWHT to spec-
trum data compression, FWHT-based compression has been
widely applied to other fields. Traditional fields of FWHT-
based compression include image compression, e.g., JPEG
XR [42], and video compression, e.g., MPEG-4 [23]. It has
recently been adopted into IoT data compression, e.g., weather
data [25]. FWHT is also extensively utilized in applications
other than compression. For instance, CDMA systems adopt
FWHT to solve multi-access and interference cancellation
problems to increase channel capacity [40], [41].

Feedback loop-based rate adaptation: The idea of rate
adaptation based on feedback loops is classic and has been
successfully applied in different areas. One example is to
use a feedback loop to control the video rate in wireless
scenarios, e.g., QFlow [9], which uses QoE metrics as the
feedback. Another example is rate adaptation at the MAC layer
for the 802.11 networks [45], which usually uses throughput
or frame successful rate as the feedback. Our application-
oriented compression ratio adaptation scheme shares the same
concept. However, FlexSpec differs from other rate adaptation
schemes because it mainly depends on two unique factors:
i) information embedded in the spectrum data; ii) application
related to spectrum data selected by the end-user.

X. CONCLUSION
A key hurdle to building multiple spectrum applications

with ubiquitous spectrum crowdsensing systems is the high
uplink bandwidth needed and the resulting demands on cen-
tralized storage. We presented FlexSpec, a general adap-
tive uplink data compression framework, which has the ob-
jective of removing this hurdle. FlexSpec solves the main
drawbacks of prior work, namely the problem of missing
critical information in the spectrum compression technique
and lack of adaptation for the application needs. We have
experimentally shown the benefits of our framework with

several spectrum applications, from signal detection to IQ
decoding. We envision that FlexSpec’s techniques will be
an integral component of large spectrum crowdsensing sys-
tems. The datasets used in this paper can be accessed at
https://repository.electrosense.org/datasets/tnet 2021/
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