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Abstract

The latency reduction between the discovery of vulnerabilities, the build-up, and the dissemina-
tion of cyberattacks has put significant pressure on cybersecurity professionals. For that, security
researchers have increasingly resorted to collective action in order to reduce the time needed to
characterize and tame outstanding threats. Here, we investigate how joining and contribution dy-
namics on Malware Information Sharing Platform (MISP), an open-source threat intelligence shar-
ing platform, influence the time needed to collectively complete threat descriptions. We find that
performance, defined as the capacity to characterize quickly a threat event, is influenced by (i) its
own complexity (negatively), by (ii) collective action (positively), and by (iii) learning, information
integration, and modularity (positively). Our results inform on how collective action can be orga-
nized at scale and in a modular way to overcome a large number of time-critical tasks, such as
cybersecurity threats.

Keywords: cybersecurity; information sharing; collective action; information integration; economies of scales; Malware Information

Sharing Platform (MISP)

Introduction

From Computer Emergency Readiness Teams (CERT) established
in the nineties [1], to information-sharing analysis centers (ISACs)
[2], to bug bounty programs [3,4], collective action has long been
used and recognized as key for gathering, integrating, and shar-
ing critical cybersecurity information [5,6]. The reason for resort-
ing to information sharing as a form of collective action stems from
the complexity associated with the continuous and somewhat de-
centralized (e.g. open-source software) adaptation of hardware and
software in information systems [7,8]. Although the Internet has
largely developed through an open-source spirit [9-11] with sig-
nificant positive externalities [12,13], information sharing has re-

mained difficult when it comes to cybersecurity [6]. The expan-
sion of threats in volume, severity, and span has further challenged
information infrastructures. Hence, it has forced further coopera-
tion through information sharing [14]. While their utility has been
somewhat confirmed by their wide adoption, there is a dearth of
knowledge regarding how these collective action platforms con-
cretely bring performance when addressing cybersecurity threats.
For instance, cybersecurity has become increasingly time-critical
and demands ever faster reaction time. Determining the chances
that a threat will be fully characterized on time for security offi-
cers to act upon before attacks actually start has become crucial
[15].
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Here, we investigate 39 639 threat events contributed by 485 or-
ganizations to an MISP! information-sharing platform [14] operated
by the Computer Incident Response Center Luxembourg (CIRCL).
We specifically study how collective action unravels through infor-
mation integration and how it brings significant economies of scale
in terms of time needed to fully characterize cybersecurity threats (i.e.
performance). We resort to a multivariate cross-sectional regression
with ordinary least-squares method, and we find that (i) the number
of organizations engaged in information sharing, (ii) their acquired
experience in the events completion, (iii) the proportion of informa-
tion integration, and (iv) its modularity increase performance.

The remainder of this article is organized as follows. The Back-
ground section covers the literature from the perspectives of social
dilemma, productivity, and information integration in collective ac-
tion in general and for cybersecurity. The Data section introduces
MISP and presents the data. We then introduce the Theoretical frame-
work followed by the research Hypotheses and Methods. We then
present our Results and Discuss them before Concluding.

Background

Knowledge sharing in cybersecurity has been considered a crucial
way to overcome a number of vulnerabilities [16] and threats [1]. It
is, however, contingent to limiting factors, such as social dilemma on
the one hand, and on the other hand, to enhancing return-on-scale
effects. Here, we review the literature on (i) social dilemma and pro-
ductivity of collective action, and on (ii) challenges associated with
information integration. We then review the state-of-the-art research
in (iii) information sharing for cybersecurity.

Social dilemma and productivity in collective action

According to Olson’s logic of collective action, small communities
are more able to provide collective goods [17]. The central argument
is that for larger groups, minor interests will be over-represented
and diffuse majority interests trumped, due to a free-rider problem
[18,19]. This free-riding effect is generally stronger for larger groups
[20]. For instance, while Dejean et al. [21] found a positive rela-
tion between the size of a community and the amount of collective
good provided, they paradoxically also found a decreased propensity
by individuals to cooperate as the size of the community increases.
Beyond the increase of the community, due to the selfish behavior
of the community members, the community efficiency to produce
public goods depreciates [22]. Yet, there is overwhelming evidence
that large crowds can be organized in order to establish success-
ful online collective action. Examples include peer-to-peer networks
[21,23], Wikipedia [24], Stack Overflow [25], and communities of
open-source software developers [26,27]. The Dejean et al. paradox
can at least partially be resolved by considering that (i) the distribu-
tion of effort is highly skewed, with few contributors providing most
effort, and (ii) the dynamics of contributions are highly nonlinear
[27-29]. Taken together, these phenomena are associated with posi-
tive return-on-scale of production [27], which may be hindered by co-
ordination costs [30]. Super-linear productivity has been debated at
length in the organization and management sciences. Investigations
of how the number of members and temporal dynamics of events gen-
erated can positively influence outputs in a way that is greater than
the sum of the outputs related to each element of the system (i.e.
exhibiting super-linear growth patterns). Research has successfully
delivered hints to improve the performance of organization [31-34]

1 MISP stands for “Malware Information Sharing Platform.”

by fine-tuning complementary mechanisms within the organization
[35], which also foster innovation [36].

Information integration and modularity

One key aspect of generating return-on-scale in knowledge produc-
tion is information integration. The management of information re-
sources has become central to organizations [37], so that knowledge
appears as an utmost strategic resource [38]. For instance, there is
growing evidence in science that greater teams create more impact-
ing knowledge [39]. If knowledge is so important, the fundamental
capability of an organization has to be considered as the specialized
knowledge of each organization member. Its integration shall provide
a competitive advantage [38,40]. With the emergence of virtual ex-
changes, firms are increasingly seen as distributed knowledge systems
[41]. Yet, new interaction methods present various new constraints in
terms of mutual understanding, contextual knowledge, or techniques
(e.g. memory, connectivity), which lead to asymmetries in informa-
tion integration.

In this respect, the tremendous development of online collabo-
ration platforms, as tools for governance, strategy and knowledge
management, highlights the importance of information sharing [42].
These platforms promote knowledge transfer by generating modu-
lar collaborative units [43]. One may consider that individuals, or
groups of individuals, composing a subsystem (i) bring added value
in their own specific field (differentiation), in order to (ii) produce
a complex good by pooling together this added value (integration).
Following Arrow and Debreu [44], differentiation and integration
have been a focal point in optimizing the structure of organizations
[45,46]. In fact, differentiation considers segments of a system into
subsystems. Each subsystem develops a part of a task, while the inte-
gration focuses on the interactions between these subsystems in order
to accomplish the entire task [40,47]. Recently, Engel and Malone
used the theory of consciousness as information integration [48] to
measure information integration computer systems and on collabo-
rative platforms [47].

Collective action and information integration for
cybersecurity

As early as 20 years ago, the first CERT and ISACs have been estab-
lished as a central resource for sharing information on cybersecurity
threats to critical infrastructures [49]. Nowadays, threat intelligence
platforms help organizations aggregate, correlate, and analyze threat
data from multiple sources in almost real-time to support defensive
actions [50]. Further, open-source solutions have been proposed as
a counterweight to cybercriminals successfully working together [5].
The swift evolution of cyber threats has forced organizations and
governments to develop new strategies [51] in order to reduce the
risks of security breaches [42]. Although information sharing is an
interesting way to enhance cybersecurity, it is believed to be thwarted
by social dilemma. Without trust, commitment, and shared vision be-
tween stakeholders, organizations are reluctant to share information
due to the fear of disclosure, reputation risk, or loss of competitive
power [52]. As such, information sharing can be considered as a mar-
ketplace on which transactions occur and knowledge is transferred
[53]. However, human beings have a tendency to not optimize organi-
zational goals [54] in the absence of selective incentives [55] and—in
the case of collective action—might adopt a selfish behavior that is
not conducive to the overall goal of sharing information [6]. As a
consequence, cybersecurity professionals share probably less infor-
mation than what would be socially desirable, leading to a knowl-
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Table 1. Contributions of the most productive organizations.

Rank Org ID #users #events contributed Percentage of total events
1 1092 8 7682 19.38%
2 1395 2 5637 14.22%
3 1960 3 3214 8.11%
4 2 31 2939 7.41%
N 1857 3 1411 3.56%
6 201 8 1247 3.15%
7 1713 1 1141 2.88%
8 698 2 1077 2.72%
9 204 56 1060 2.67%
10 643 12 998 2.52%
Total 26406 66.62%

A total of 10 of 1908 organizations have contributed 66.62% of the 39 639 events, bringing further evidence of the heavy-tailed nature of the distribution of

contributions by organizations in MISP CIRCL.

edge asymmetry to the advantage of the attackers [6]. In particu-
lar, stakeholders strategically select their contributions to share (i.e.
quantity and quality), leading to truncated and imperfect informa-
tion sharing. Yet when the situations get extraordinarily difficult, the
behaviors tend to become unselfish, leading to an increase of contri-
butions [56]. In this context, specially crafted forms of cybersecurity
information-sharing platforms have developed, such as bug bounty
marketplaces. These platforms act as a trusted third-party between
security researchers and software editors [3]. Further, in cybersecu-
rity, resource belief, usefulness belief, and reciprocity belief are all
positively associated with knowledge absorption, whereas reward
belief is not [53]. These empirical results show that functional cy-
bersecurity information sharing indeed requires to overcome social
dilemma and goes beyond simple reward expectations, but foremost
requires that information sharing is efficient in a context that increas-
ingly requires to address time-critical threats.

Data

To understand the nuts and bolts of cybersecurity information
sharing, we resort to MISP Project? a popular open-source plat-
form, which is used, e.g. by the North Atlantic Treaty Organiza-
tion (NATO).3 MISP stands for Malware Information Sharing Plat-
form and Threat Sharing. Although it carries the word malware in
its name, MISP is a threat intelligence platform at broad on which
people can share, store, and collaborate on all sorts of incidents (e.g.
COVID-19 MISP community),* but primarily cybersecurity threats.
These threats (i.e. events) are characterized by indicators of compro-
mise (i.e. attributes), which are contributed by a multitude of orga-
nizations. A detailed description of MISP is provided in Appendix A.

There are advantages in using MISP as an object of research. First,
it is an open-source software. This allows to understand in much
detail how the platform is designed and works. Second, a number of
threat information-sharing communities use MISP to share relatively
openly their threat intelligence. Here, we use the whole history of
an MISP instance maintained by the Computer Incident Response
Center Luxembourg (CIRCL), i.e. the Luxembourg CERT.

As of 8 February 2022, the MISP CIRCL instance is a community
of 1908 organizations (respectively 4 013 users), which have con-
tributed 39 639 events, 9 099 685 attributes, and 3 786 tags since 10
November 2008. Table 1 shows the 10 most involved organizations.

2 https://www.misp- project.org/
3 https://misp.ncirc.nato.int
4 https://covid-19.iglocska.eu

The number of events contributed by organizations is highly skewed.
Indeed, Fig. 1a shows that the complementary cumulative distribu-
tion function (CCDF) exhibits a power law P(Xg > xg) ~ 1/x}E
with p, = 0.54(4) (c.f. Appendix B for details on the fitting method).
One may additionally note that 1423, i.e. around 75 %, of organiza-
tions do not participate in sharing threat information as a collective
good with the broad MISP CIRCL community. These organizations
may however consume information or share threat information pri-
vately within informal subgroups, which cannot be observed. Simi-
larly to P(Xg > xg), the distributions of attributes P(X4 > x,4) and
tags P(X1 > x7) per event, depicted in Fig. 2, follow power laws
with exponents, respectively, us = 0.64(1) (with an upper cut-off
around Aypper = 10%) and pr = 2.26(6). It is additionally impor-
tant to consider that only 22 423 (i.e. around 57%) events have been
marked as completed (see Appendix A for an explanation ), sug-
gesting that either threat analysis is complicated or users tend to
forget to formally close resolved events. The cumulative number of
tags N7 cum = 116 407 used is bigger than the amount of unique tags
Nr, = 3786. Thus, there is a massive reuse of already existing tags.

We further observe that organizations have joined MISP CIRCL
following an almost perfect linear relation No(¢) ~ ao - t with e =
0.79(1) (R? = 0.99 and P < 10~2) with 161 organizations initially
joining MISP CIRCL instance on 14 September 2015, the presumed
date of official start. Figure 1b, not only shows the almost linear or-
ganization joining rate, but also how many events each organization
has contributed over time. One can see that the contribution effort is
highly heterogeneous. It is also worth noting that event contributions
started on 10 November 2008, long before the first organizations
joined MISP CIRCL instance. This can be explained in the following
way: organizations first ran their MISP instance locally before joining
the MISP CIRCL community and sharing at once all their non-private
threat intelligence, yet with the nominal event timestamp, which may
well be in the past. Also, it is likely that the linear organization join-
ing function may be the result of a vetted joining process, controlled

by CIRCL.

Reduction of the completion time of events Atc

Following the method described in the Appendix B, we can treat the
data and, from them, generate Fig. 3b.We find that A t¢(#) follows
an exponential decrease in phase. By applying a monthly binning and
computing the mean value At for each bin, we see a first phase that
extends from 2011 to I (i.e. the transition between the two phases at
the end of 2019), which decreases slower than the second phase from
T to today. By applying the linear regression on the data, according
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Figure 1. (a) CCDF of events per contributing organization, which is best described by a power law distribution P(Xg > xg) ~ 1/xg"¢ with ug = 0.54(4). The fit
and the goodness-of-fit, provided by the Kolmogorov-Smirnov statistics test, are obtained with the Python library plfit. (b) Curve of the joining organizations (in
blue) has followed, after 14 September 2015, the presumed date of official start, a linear growth with slope o = 0.79(1), (R? = 0.99, p-value < 10-2). The events
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Figure 2. (a) CCDF of attributes encapsulated in an event, which is best described by a power law distribution P(Xs > x4) ~ 1/xa"4 with 14 = 0.64(1). (b) CCDF of
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by the Kolmogorov-Smirnov statistics test, of panels (a) and (b) are obtained with the Python library plfit.

to the equation (B4), we confirm that Az¢ exhibits an exponential
decrease:

ST 1085, for t € [2011, T,
T~ 10827, fort e [T, 2022),

where

(i) BL = (=6.32£0.91) x 1073 is the exponential decrease of
the first part regression and

(i) B3 = (=7.12£0.59) x 10% is the exponential decrease of
the second part regression.

The fit from the linear is of high quality as its Pearson’s
determination coefficient R? = 0.86 and its p-value < 1072
Hence, the time Atc to complete an event decreases over time,
indicating an improvement of performances of the MISP CIRCL
instance.

Theoretical framework

Collective action is thought to be a fundamental tool to overcome
sprawling and possibly increasingly sophisticated time-critical cyber-
security threats [57-59]. Yet, despite numerous studies of online plat-
forms fostering collective action [60,61], very little evidence has been
uncovered linking the organization of collective action with group
performance as an output. By investigating the MISP threat manage-
ment platform run by the CIRCL, we have a unique opportunity to
better understand how collective action is organized to tackle time-
critical cybersecurity threats.

We posit that the performance of collective intelligence platforms
devoted to the resolution of time-critical tasks at scale, such as MISP,
pull from progressively building a knowledge and action environ-
ment, made of organizations, which contribute to the resolution of
events and, at the same time, bring returns of scale through (i) gain-
ing own experience and (ii) sharing and integrating knowledge, which
in turn are associated with increased performance. We further posit
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that, in order to offset decreasing return-of-scale due to increased
groups size and coordination costs [30], the organization of collec-
tive action must adapt in a modular way [62], as it has already been
witnessed in several open-source projects [63,64].

We test our theory of collective action for tackling time-critical
tasks, through a set of three hypotheses and six sub-hypotheses to
understand how time completion performance is achieved for events,
given (i) the nature of event, (ii) the collective action environment,
and (iii) the knowledge integration environment at the time of event
arrival (c.f. Hypotheses). We proceed with an exploratory approach
to test our theory by resorting to a multivariate cross-sectional regres-
sion with ordinary least-squares method (c.f. Methods and Results).

Hypotheses

To explain how event completion time has evolved, we consider their
intrinsic nature, i.e. number of attributes and tags required to charac-
terize events. We then define event complexity, the overall collective
action environment, and how knowledge is integrated. We hypoth-
esize that these three factors significantly influence collective action
performance, in terms of improved completion time in characterizing
threat events.

Event complexity hinders performance (H1)

First, events are not all equal: while many are fairly simple and re-
quire limited input in terms of attributes and of categorization with
tags, others are more complex and require more effort. For each
event, the information gathering process involves adding attributes
or tags associated with an event both by the event creator and by
other users (i.e. submission validated by the event creator). Attributes
and tags may not exist in the MISP instance, and shall therefore be
created by users (c.f. description of MISP in Appendix A), hence, re-
quiring highly variable time and effort. Updated content shall then be
shared with other users. The more complex, i.e. the more attributes
and tags encapsulated in the corresponding event, the longer it takes
to complete it. Figure 2a and 2b shows that the distributions of, re-

spectively, attributes and tags are heavy tailed: while a majority of
events have a limited number of attributes (respectively tags), some
carry a large numbers of attributes (respectively tags), presumably af-
fecting the time required to complete the characterization of an event.
We therefore state Hypothesis 1 as follows:

H1: The number of attributes and tags per event negatively influences
performance.

To summarize plausible causality relationships between complex-
ity and performance, we produce the causal diagram at Figure 4 al-
though we don’t intend to actually test causality.

Collective action improves performance (H2)

We consider how collective action at scale positively or negatively
affects performance. Namely, there are conflicting views on whether
having more stakeholders (e.g. contributors, organizations) joining
collective action is likely to enhance or hinder performance [17,27-
30]. Yet, to exist and be sustainable, collective action necessarily
needs to bring economies of scale of some form, which, in turn,
would attract more contributors. Figure 1 shows that, over time, or-
ganizations join the CIRCL MISP instance following a Poisson pro-
cess. Upon joining, these organizations immediately benefit from the
knowledge accumulated and shared by other organizations, which
contributed early on and gained expertise. Also, similar or partially
similar threats can be treated more efficiently over time, representing
economies of scale. Conversely, for new users, learning and famil-
iarizing with MISP may reduce the performance on the short term
[8], while bringing long-term positive marginal gains. Finally, having
more participants should bring marginally increasing performance.
We therefore test the following hypothesis:

H2a: The overall performance increases with the number of organi-
zations participating in collective action.

Yet, as already shown in reference [65], increased workload is
likely to affect negatively performance, and thus, increase the ex-
pected completion time. When several threats occur, respectively, are
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Figure 4. Causal diagram relating complexity (left) and performance factors (right) | indicates a negative effect of the former on the latter.
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Learning time
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Figure 5. Causal diagram between the factors of collective action on the left-hand side and the factors of performance on the right-hand side. 1+ means an

increase of performance, while | means a decrease.

open, we posit that completion time of a focal event will necessar-
ily be delayed as a result of priority queuing [66]. We could further
hypothesize that given task overload, organizations may resort to in-
creasingly selfish behavior, by focusing only on their threats and pos-
sibly by reducing their information sharing, hence, decreasing collec-
tive performance [6,22]. Therefore, our second hypothesis states:

H2b: Given a focal event, the number of simultaneously open events
decreases performance.

The hypothesized causality between collective action and perfor-
mance is shown in Fig. §.

Knowledge integration increases performance (H3)
Having more contributors does not necessarily imply economies of
scale [30]. Economies of scale may rather be generated by “the whole
is more than the sum of its parts” mechanisms [27], which may stem
from productive integration of information [47,67,68] as a single en-
tity [27] or through the efficient communication of several modular
subsystems [69,70], which, in turn, may even mitigate free riding [62].
Here, we recognize that the first form on knowledge integration oc-
curs through (i) experience as learning, (ii) regular software use, (iii)
repeated resolution processes of numerous events, and (iv) interac-
tions with other participating organizations and their users within
organizations [71]. An organization having accumulated experience
in characterizing a large number of threat events is likely to perform
better on new events, therefore:

H3a: More experienced organizations contribute to faster event res-
olution.

On MISP instances, collective action goes beyond coordinating
time-critical tasks. As people and organizations contribute, a large
corpus of knowledge is built as a library of events, attributes, and
tags. In turn, by design of MISP software, this information can be
easily reused to quickly characterize new events, proposing match-
ing possibilities according to the preliminary entries. Hence, reuse of
knowledge simplifies the emission of attributes and the knowledge
is integrated by the creator of the new events. These new events are
thus composed of a certain percentage of inherited attributes, which
are likely to impact positively performance:

H3b: Reuse of tags and attributes from existing events contributes
positively to performance in the completion of new events.

The capacity of an entity to integrate knowledge is tightly related
to its modular organization [48,62,63]. As MISP clusters of events or
attributes, called Galaxies , have been progressively introduced and
developed on MISP CIRCL, we have an opportunity to test for mod-
ularity. Indeed, events or attributes can be attached to one or several
Galaxies according to key values (e.g. their type, tags, category, distri-
bution level, and/or threat level) associated with a given level of gran-
ularity, which is proportional to its prevalence in the MISP ecosystem
(c.f. Appendix A). Therefore, a higher granularity refers to higher
specificity, which, in turn, goes against performance. Conversely, a
key value that would be too general, would not provide discrimi-
nate information, and therefore would go against performance [72].
Modularity provides a good balance between too fine-grained and
too coarse-grained. We therefore formulate the following hypothe-
sis:

H3c: Modularity in collective action positively influences perfor-
mance.

Figure 6 shows the causality relationships between knowledge in-
tegration factors and performance.

By testing these three hypotheses (and six sub-hypotheses), we ex-
pect to gain robust insights on how collective action on MISP brings
performance in terms of characterizing time-critical cybersecurity
threats. Figure 7 illustrates the expected influence of event complex-
ity, collective action, and knowledge integration on the time needed
to complete the characterization of threats events.

Methods

We proceed to validate our theory through the testing of three hy-
potheses, divided in six subhypotheses (c.f. Hypotbeses section). For
this, we specify an econometric model with completion time as the
main dependent variable representing the key performance indica-
tor in our posited theory of collective action for tackling time-critical
threats (c.f. Theoretical framework section).

We define the following set of events,

Q. = {ele < N,, e e N}, (2)

where N, corresponds to 22423 events, which have explicitly been
marked as completed. For each event, we define At the completion
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Knowledge integration

Modularity

Referral to reliable content T
Granularity ™1 —J

Experience

Regular software use T H3a T

Repetition of resolution processes T

In-depth knowledge of threats 1 Performance

Reuse of content Time to solve events faster

Availability of existing content T H3b T
Match by criteria 1 Increasing knowledge over time
Errors in the content 1

Orientation toward reliable content

H3c T

Figure 6. Causal diagram between the factors of knowledge integration on the left-hand side and the factors of performance on the right-hand side. 1+ means an

increase of performance, while | means a decrease.

Explanatory factors

Explained variable

Performance, i.e. event completion time

H1 |
Event Complexity
N H2 | (S
Collective action
) H3 T
Knowledge Integration

Figure 7. Causal diagram between the explanatory factors on the left-hand side and the explained variable of performance, namely event completion time on
the right-hand side. 1+ means an increase of performance, while | means a decrease.

time of events as ,
Atce=tf,—tees (3)

with f., is the event creation date and te o is the last event modifica-
tion.

To determine the relation between the dependent variable, i.e. the
completion time Atc, , for the events, we proceed to a multivariate
cross-sectional regression [73]. Specifically, we investigate if comple-
tion time Atc , for the events can be explained by the selected ex-
planatory variables. The corresponding Python variable is Comple-
tionT. For each event e, the multivariate cross-sectional regression

writes:
N, N,
log(Atce) = ¢+ Y - i - log(Zy.) + e, (4)
k=1 e=1
with:

(i

(i

Atg,: time completion for event e,

¢: constant,

Nj: number of explanatory variables,

Kj: autoregressor parameter corresponding to Zy, ,,

(1ii
(iv

(V) Z, o+ k-th explanatory variable for event e,

(vi) gc: error term (i.e. log(Atc ) — log(ﬂ\c_c)).

This multivariate cross-sectional regression is performed with the
ordinary least-squares (OLS) method. The choice of this model is
adapted to deal with data without time series, which is the case here.
Then, the explicated and explanatory variables are linked with a set
of points in time. This set of points in time is given by the creation
tc. of the different e and contains 22 423 elements, corresponding to
the number of completed elements N, considered. It is therefore easy
to consider all chosen independent variables. However, due to the
heavy-tailed behavior of the variables and their difference of magni-
tude (see Data), we take the logarithm of the variables [74]. The re-

sults are indicated as a percentage change of Az¢ , when Z;, , varies
by a certain percentage [74].

We specify the following explanatory variables in relation with
the formulated hypotheses (c.f. Hypotheses). To test hypothesis H1
(i.e. event complexity hinders performance), we resort to two ex-
planatory variables:

(i) Ny, : the number of attributes per event e. The corresponding
Python variable is AttrCount, which is expected to positively in-
fluence CompletionT (i.e. reduce performance).

(ii) N, : the number of tags per event e, The corresponding Python
variable is NTags, which is expected to positively influence Com-
pletionT (i.e. reduce performance).

To test hypothesis H2 (i.e. collective action improves perfor-
mance), we resort to two explanatory variables:

(i) No, . stands for the number of organizations listed on MISP
CIRCL at the creation #. . of event e. The corresponding Python
variable is CumOrgs. CumOrgs is expected to negatively influ-
ence CompletionT (i.e. increase performance) and to demonstrate
the overall benefits of collective action for tackling time-criticial
threats (H2a).

Egim, ¢ is the number of simultaneously open events on MISP
CIRCL at the creation . . of event e. The corresponding Python

—
=3

variable is SimEvents, which is expected to positively influence
CompletionT (i.e. reduce performance) and to show that collec-
tive action performance is bound to circumstantial operational
constraints associated with time as a scarce resource (H2b)
[65,66].

To test hypothesis H3 (i.e. knowledge integration increases per-
formance), we resort to three explanatory variables:

(i) Ec, takes into account the number of already completed events
by the organizations at the creation t. ., of a new event ¢ on
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their behalf. The corresponding Python variable is CumCompE,
which is expected to negatively influence CompletionT (i.e. in-
crease performance) (H3a).

(ii) Tg, ¢ is the inherited percentage of attributes per event e. The
corresponding Python variable is InhPer, which is expected
to negatively influence CompletionT (i.e. increase performance)
(H3b).

(iii) Ng,, counts the number of galaxies created on MISP CIRCL
instance at the creation z. . of the e. The corresponding Python
variable is NbGalaxies, which is expected to negatively influence
CompletionT (i.e. increase performance) (H3c).

(iv) NEg,. considers the number of events in its corresponding
aforementioned galaxy at the creation t . of a new event e in
this galaxy. The corresponding Python variable is NbEventsin-
hisG, which is expected to negatively influence CompletionT (i.e.
increase performance) (H3c).

The pairwise correlations of the dependent variable and the inde-

pendent ones provide the correlation matrix (see Table 2).

With the explanatory variables of our model being defined, we
are in position to formulate the econometric model by developing
the equation (4):

log(Atc.) = ¢ +kn, - log(Na.) + 1, - log(Ioa.) + kn; - log(Nr,)

+ kg, - 10g(Esim.e) + KNg ¢ log(NO,e) + KE. - log(EC,e)

+ KNG lOg(NGc) + KNg * IOg(NEC’g)
+ee ()

Model validation is performed as follows. When handling a
multivariate regression, one must pay particular attention to mul-
ticollinearity between the Z,’s, which may distort the model. For
that, the variance inflation factor (VIF) resulting from the regression
of the explanatory variable Z; on the other explanatory variables,
which provide R?, must be computed. The VIF,, is then given as VIF,,
= 1/(1 — R;?) and must be <10 [73]. The stability of the variance
has to be examined, namely by studying heteroskedasticity, which is
ruled out if the p-value obtained from a White test is lower than a
threshold o = 0.05 [73]. The computation steps are performed with
the Python libraries statsmodels.api.OLS for the regression, statsmod-
els.stats.outliers_influence for the VIF, and statsmodels.stats.diagnostic
for the White test.

Results

In order to establish evidence of collective action as an efficient
way for tackling time-critical cybersecurity threats, we have re-
sorted to data from the MISP instance, which is run by the CIRCL.
We used a multivariate cross-sectional regression analysis of com-
pletion time (i.e. performance) required to characterize a threat
event with both event-related and collective action explanatory
variables.

The regression results are shown in Table 3. Overall, the re-
gression model is robust and explains 41.3% of the variance (R?
= 0.413). Testing for Hypothesis 1, the model shows that indeed
event complexity measured by the number of attributes CountAttr
and tags NTags influences performance negatively, i.e. event charac-
terization completion time is increased. Hypothesis H1 is supported.
Regarding how collective action improves performance (H2), the
model shows that overall performance (i.e. completion time reduced)
is positively associated with the number of organizations participat-
ing in MISP: Hypothesis H2a is supported. Hypothesis H2b could
not be tested as a result of unexplained strong multicollinearity be-

tween CumOrgs and SimEvents. Turning to Hypothesis 3 (i.e. knowl-
edge integration increases performance), we find that more expe-
rienced organizations perform better in reducing event completion
time. Hypothesis H3a is supported. We also find that the proportion
of attributes that an event e inherits from previous events, i.e. from
the MISP CIRCL knowledge base, also positively influences perfor-
mance. Hypothesis H3b is supported. Finally, testing for hypothe-
sis H3c, i.e. modularity, we find mixed results. While the number of
MISP Galaxies, measuring the number of modular subsystems, in-
fluences positively performance, the number of events recorded in
MISP Galxies, measuring to some extent the intensity of modularity,
influences performance negatively. Hypothesis H3b is only partially
supported.

We have checked for multicollinearity of the explanatory vari-
ables. We computed the VIF for each explanatory variables, which
happens to be all smaller than 10. This implies that there is no ev-
idence of multicollinearity between the selected explanatory vari-
ables (c.f. Table 4). We also controlled for heteroskedasticity, i.e. a
possible instability of the variance by performing a White statistics
test. We obtained p-value < 1072, which implies that there is no
heteroskedasticity in our model. The post-analysis for the VIFs and
the White statistics test completely validate the used model and its
results.

Discussion

Organizations are increasingly encouraged to cooperate and share
information to overcome cybersecurity threats. Investigating how
collective action unfolds and brings performance on information-
sharing platforms is necessary as cybersecurity threats have become
increasingly time-critical. Organizations shall resort to collective ac-
tion to gather information and integrate knowledge as two pillars of
threat event characterization not only as attacks unravel, but also be-
fore attacks unravel [59]. Here, we have investigated collective action
on MISP, a popular open-source threat intelligence platform, from the
perspective of the time required to fully characterize an event as the
objective function for performance. We found that performance is
negatively associated with event complexity (Hypothesis 1) and pos-
itively associated with collective action (Hypothesis 2). Indeed, as
the number of organizations taking part in information sharing on
the studied MISP instance, the time required to complete the char-
acterization of events decreased. This result informs on positive re-
turns on scale, which necessarily exist given the increased adoption
of MISP as well as other information-sharing platforms. Neverthe-
less, the mechanisms at work generating these economies of scale
have remained unclear. We considered the perspective of knowledge
integration [48] as the collective action process at work to gener-
ate the “the whole is more than the sum of its parts” [27]. With
Hypothesis 3, we tested and verified organizational learning, knowl-
edge integration, and modularity as being positively associated with
performance.

While event completion time is associated with explanatory vari-
ables pertaining to event complexity, collective action, and knowl-
edge integration, we could not establish causality. Although this is
a significant limitation to our model, we have organized our multi-
variate cross-sectional regression in a way that minimizes the risks
of uncovering spurious dependencies between the explained vari-
able on the one hand and the explanatory variables on the other
hand. To the exception of SimEvents, i.e. the number of simultane-
ously open events on MISP CIRCL at the creation, which had to be
excluded from the model, all our explanatory variables are signifi-
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Table 2. Correlation matrix of dependent and explanatory variables.

log (Atc) log (Na,.) log(Toa..) log (N, .) log (Egim, ) log (No, ) log (Ec,.) log (Ng,.) log(NE..)
log (Atc) 1.00
log (N, ) 0.11 1.00
log(Iya..) —-0.07 —-0.27 1.00
log (N7, .) 0.07 0.08 —-0.59 1.00
log (Esim, ) 0.74 0.06 0.01 0.04 1.00
log (No, ) —-0.23 —0.03 0.05 0.01 0.02 1.00
lOg(Ec,G) —0.60 0.023 —0.02 0.01 —-0.53 0.33 1.00
log (Ng,.) —-0.16 0.01 —-0.07 —0.02 —0.42 0.19 0.23 1.00
log(NE,.) —-0.12 0.00 —-0.07 0.07 —-0.11 0.42 0.43 0.14 1.00

Table 3. Results of the OLS regression.

Dep. variable Completion time

Method OLS F-stat. 2.251 x 103
No. observations 22423 Prob (F-stat.) 0.00
R-squared 0.413 Log-likelihood —5.030 x 10*
coeff std error
Const 16.505 (%) 0.135
CountAttr 0.230 (sx:) 0.011
InhPer —0.089 (sxx) 0.014
NTags 0.951 (%) 0.090
CumOrgs —0.346 (*xx) 0.024
CumCompE —0.629 (k%) 0.006
NbGalaxies —0.083 (%) 0.019
NbEventsinhisG 0.160 (%) 0.005
Skew -0.011 Durbin—Watson 1.302
Kurtosis 2.833 Cond no. 76.4

The OLS regression is performed with the explained variable CompletionT
and the explanatory variables: CountAttr, InhPer, NTags, CumOrgs, CumCompE,
NbGalaxies, and NbEventsinhisG, namely, the number of attributes per event,
the inherited percentage of attributes per event, the number of tags per event,
the cumulative number of organizations at the creation of the event e, the num-
ber of already completed events by the organization at the creation of his new
event e, the number of galaxies at the creation of the event e, and the number
of events populating these galaxies at the creation of the event e. For each ex-
planatory variable, the autoregressor coefficient (in the column coeff), as well
as its standard deviation (in the column std err) are provided. The significance of
the explanatory variables is given by the p-value and its threshold, i.e. p-value
< .1: (%), <.05: (#*), or < .01: (skk) and the goodness-of-fit by the R-squared.
The other added information are not necessary for the evaluation of the model.

cant. This shows that our proposed theory on collective action for
tackling time-critical tasks is comprehensive and altogether robust.
Yet, the regression analysis approach remains exploratory. Indeed,
it does not provide reliable information on which precise collective
action mechanisms generate positive returns on scale. Building and
testing fine-grained causal models of critical cascades in collective
action, inspired from e.g. references [27-29], may help better un-
derstand the activity, learning, knowledge integration, and modu-
larization paths of contributing organizations, as well as how they
handle time as a particularly scarce resource [66]. Indeed, when
tackling large amounts of time-critical tasks, such as cybersecurity
threats or incidents, contingencies necessarily appear [65], which
may affect coordination between contributors, and performance as
a result, either in a transient way or by triggering long-term insta-
bility through cascades of disorganization. At the meso-scale, our
model does not account for affinities between events, organizations,

and the combined commonalities of events and organizations. In-
deed, as for number of collective action online platforms, modular
Galaxies on MISP show that some subcommunities of organizations
have specific goals when tackling cybersecurity threats. These spe-
cific interests deserve further scrutiny. For instance, are the organi-
zations contributing to a given MISP Galaxy active in the same in-
dustry? If not, why do they share interest in similar threats? Con-
sidering MISP (or other information-sharing platforms) from the
perspective of threats, one may investigate kinship between threats,
as many events share attributes. Questioning and perhaps predict-
ing how attributes are “transmitted” from one event to others is
likely to be key to anticipate threats and guide organizations in
their search of (respectively contributions to) threat information. It
may even help decide what information should be shared and with
whom.

Finally, our results show that completion time as an objective
function in collective action concerned with time-critical tasks can
be optimized. For that purpose, establishing causality between com-
plexity, collective action, modularity factors, and performance would
certainly help refine the entangled determinants of performance. Fur-
ther, our results open further perspectives for computational social
science research. One may envision to use machine learning in order
to recommend personalized precision strategies that optimize the or-
ganization of collective action and knowledge integration. This may
help make the best use of time as an increasingly critically scarce
resource, especially in face of a looming tsunami of cybersecurity
threats. Consequently, the increasing adoption of MISP, or equiva-
lent information-sharing platforms by more and more of critical in-
frastructures and of organizations, as evident in our data, further
emphasizes their relevance and, in turn, the positive externalities
associated with more organizations joining. Notably, MISP’s effec-
tiveness in catering to the needs of small and medium businesses
adds to the value proposition [75], even though the efficiency of
information-sharing platforms for organizations remains to be tested
against their size. By merging and modularizing diverse sources of
information, such as different communities or instances, we antici-
pate an enhancement in time performance due to the improved sit-
uational awareness, ultimately optimizing information-sharing effi-
ciency, and hence making information-sharing platforms increasingly
attractive.

Conclusion

Information sharing in cybersecurity has become an increasingly
common collective action practice. Yet, its benefits have so far re-
mained unclear. We have investigated MISP, a commonly used open-

GZ0Z YyoIe || uo Jasn ziejduesing we yayjolqig Aq € 1.8/€//1Z0PeAy/|/6/a1on1e/AunoesiagqAo/woo dnoolwepeoe//:sdiy wWoll papeojumod



10

Gillard et al.

Table 4. Computation of the VIF for the explanatory variables of the econometric model.

Explanatory variables Notation VIF
Number of attributes per event Ny, 5.15
Inherited percentage of attributes per event e Io,pe 1.67
Number of tags per event ¢ Nr,. 1.03
Cumulated number of organizations at the creation of ¢ Feum, e 6.73
Cumulated number of completed events at the creation of e Ec, cum,e 3.28
Cumulated number of galaxies at the creation of e NG, cum, e 1.12
Cumulated number of events in galaxies at creation of e NEg cum,e 2.02

The values of the VIF allows to detect the presence of multicollinearity between the considered variables. As all values VIF < 10, there is no evidence of multi-

collinearity between the explanatory variables. These results validate the econometric model.

source threat sharing platform, and we found how building a critical
mass of contributing organizations and of knowledge to be integrated
from past threats brings significant economies of scale. Through col-
lective action, security researchers overcome the challenge of charac-
terizing cybersecurity threats, which appear to be increasingly time-
critical. We find that performance, defined as the time needed to fully
characterize a threat event, is (i) negatively influenced its own com-
plexity, (ii) positively influenced by collective action, and (iii) posi-
tively by learning, knowledge integration, and modularity. Our re-
sults also inform more generally on how collective action can be or-
ganized online at scale and in a modular way to overcome a large
number of time-critical tasks.
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Appendix A. MISP: Description and data retrieval

A.1. Detailed description of MISP

MISP is a partially de-centralized system of communities (e.g. NATO MISP,
CIRCL MISP). interacting more or less together across MISP instances. An
MISP instance consists in the installation of the MISP software and the commu-
nity database in which community members share and collect data. Similarly
to GIT,’ organizations work on their own instance and synchronize with re-
mote instances. According to their sharing setting (i.e. your organization only,
community only, connected communities, all communities, or defined sharing
group), community members have access to a certain amount of data.

Based on investigation needs or reports found in the newspapers or on
specialized websites, the user creates an event to contextualize and encapsu-
late the related attributes (i.e. IoCs) and their properties (e.g. an IP address).
All events have some general properties of the event, such creation date, afore-
mentioned sharing level, threat level (i.e. 1: High, 2: Medium, 3: Low, and 4:
Undefined), analysis level (i.e. 0: Initial, 1: Ongoing, and 2: Complete), and a
general description. The creator of an event can choose if this event is pub-
lished on the remote instance or remains internal to the organization. Then,
when the event is created, some attributes are added to populate this event.
The event attributes refer to intrusion artifacts or methods used by attackers.
These attributes provide details and they are characterized by their type (e.g.
filename—md$5, sha256, etc.) and their belonging to a category (e.g. antivirus
detection, targeting data, etc.), putting them in the context and justify then its
attribution to its corresponding event. To add an attribute related to an event,
global information such as its category, its type, and its distribution, either the
same as for the event or its own rule, is required, as well as two important

«

text fields: value and contextual comment. The “value” field stores the data

we want to add, e.g. an URL leading to a report, while the “comment” field

5 https://git-scm.com/

allows complementary information about the attribute. Moreover, it is possi-
ble to allocate one tag or more to an event in order to simplify the read and
the classification of this event. These tags can follow the MISP taxonomy, i.e.
a fixed machine-tag vocabulary, or be created by the users according to their
needs.

On the platform, events, attributes, organizations, and tags are associated
to their own identification (ID) number and their creation are timestamped,
as well as the publication and the last update of an event. These events or at-
tributes can be attached to one or more clusters named “Galaxies” according to
their key values (e.g. their type, tags, category, distribution level, and/or threat
level).

As an open-source platform, MISP relies on voluntary action. On the one
hand, its members can create or exchange content. On the other hand, these
same actors can obtain new insights or possible response elements from the
community regarding cyber threats of interest. To organize interactions and to
create information-sharing incentives for the participants, MISP offers several
aforementioned sharing levels through a comprehensive sharing model. Users
can select to whom they want to share information among the following levels
from the most restrictive to the most open. Regardless of access and to guar-
antee the quality of the shared data, only organizations that created an event
have the permission to modify this event. However, each user has the possibil-
ity to submit his own suggestions to change an event created by others, who
can then accept or reject the proposal.

Moreover, the experience of older MISP versions has shown that the time
to fill the fields and a complicated web interface introduce some frictions. For
this purpose, a free text importer has been deployed, so that data can be copied
and pasted into the intended field. Further, MISP implements a heuristics-based
algorithm, which helps users to match events or event attributes with events
or attributes from events already in the database. However, let us add that the
matching is never performed automatically, and goes through human supervi-
sion.

A.2. Data retrieval

To investigate our hypotheses, we have to curate the main dataset by consid-
ering only the closed events, i.e. the events with an analysis level equal to two,
meaning “complete.”

To retrieve the data, we have followed the user guide® provided by the
MISP CIRCL instance. We used the PyMISP module to download data in .json
format file. The main dataset contains one file per event. These event files con-
tain the attributes (see MISP core format’), as well as the name and the ID of
the concerned organizations. However, due to the policy of the MISP CIRCL
instance, we cannot disclose the names of these organizations and present no
interest and have no influence on the obtained results.

Appendix B. Exploratory analysis of the dataset
B.1. Probabilistic distributions

In order to understand the mechanisms handling on the MISP platform, we
want to investigate the distribution of our data, we have to present the selected
variables and explore the distribution associated with these. In some cases, we
are able to investigate the probabilities distribution. Hence, if we consider a
random variable X with a probability density function (PDF) fx(x), the cumu-
lative distribution function (CDF), Fx(x) is given by:

Beix) =PX <x)= [ fulwidr (B1)

Then, thanks to the formula (B1), the complementary cumulative distribu-
tion function (CCDF) Fx (x) can be written as follow:

Fy(x) =1 — Fy(x) = P(X > x). (B2)

This CCDF provides a rank ordering of the selected variables.

6 https://www.circl.lu/doc/misp/book.pdf
7 https://www.misp-standard.org/rfc/misp-standard-core.html
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B.2. Fit of the data

Before we start fitting our data, a visual analysis can be performed. Then, in any
case, by varying the scale of axis—double linear, linear-logarithmic, or double
logarithmic—depicting our data, we are able, if our data follow approximately
a straight line in one of cases presented below, to fit the data. The logarithmic
scales are considered in base 10.

B.2.1. Double linear scales

By considering two vectors of data X and y and plotting the data contained
iny (y-axis) in function of the data in ¥ (x-axis) in linear scale for the axes
x and y. If the displayed data show an approximate straight line, that means
that each element y; of the vector ¥ is given by the relation:

yi=a-xi+b, (B3)

where a is the slope of the straight line and b, its intercept. Thanks to the re-
lation (B3), we are able to compute the estimated y;, a, and b by applying a
least-square linear regression. To validate the parameter obtained from the lin-
ear regression, we need to establish the goodness-of-fit with these parameters.
For this type of simple linear regression, we use the Pearson’s coefficient of de-
termination R? and, to reinforce the results of R?, we perform a Wald test with
a chosen level & = 0.05 to define if these two samples are significantly identical
or not. Then, a value |R?| ~ 1 implies a strong correlation between ¥ and 7,
while a p-value < o for the Wald test allows us to affirm that the parameters
of the fit are good and the estimated _)} are significant according to ¥ . With
these indicators, we can thus say that our data have a linear behavior, which
follow a straight line with slope a. a is the most important parameter for our
analysis, then b can be neglected to produce the linear regression on our data
and to compute R? and the p-value < .0S for the Wald test, we use the Python
library scipy.stats.linregress.

B.2.2. Linear-logarithmic scales

Following the same process as above, excepted that we put the y-axis in loga-
rithmic scale. If data 3 in function of % depict a straight line, we can write
the relation as:

log(yi) = a-x; + b, derived from (B4)

yi = 1069 .10, (BS)

where a is the slope or the increasing factor and b the intercept or an additive
constant depending on the relations (B4) and (B5). In this case, the data de-
scribe an exponential shape. As this process is not used in this article, we don’t
develop completely this, it remains nevertheless important to pursue with the
last case.

B.2.3. Double logarithmic scales
Considering the same method than the two aforementioned cases, we plot the

data contained in "y versus ¥ on logarithmic x- and y-axis. In the case where

Table B1. Goodness-of-fits summary.

the data behave itselves like a straight line, we are then able to deduce the
relation:

log(y) = a-log(x) + b, derived from (B6)

y = x%-10°, (B7)

where a is the slope or the exponent and b is the intercept or a multiplicative
constant according to the equations (B6) and (B7). From the relation (B6), we
can determine the estimated values for elements y;, a, and b.

From here, we have to distinguish the two following cases:

{a >0 or (BS)

a<0.

In the case of a > 0, we treat a power function given by the equa-
tion (B7). The fit can be, as for the double linear case, obtained by per-
forming the least-square linear regression. Then, the goodness-of-fit is given
by the Pearson’s coefficient of determination R? and the p-value < .05
for the Wald test. The results are computed the Python library scipy.stats.
linregress.

In the case of a < 0, we are in presence of a power law. Due to the presence
of the logarithm on both sides of (B6), we cannot apply a least-square linear
regression, because this method and the similar ones return systematic errors
for common conditions. For this reason, it is impossible to trust the results
[76]. Instead of this method, we estimate the parameters a with the method of
maximum likelihood after a quadratic approximation to the log-likelihood to
deal with our discrete values. In our analysis, the parameter b is not relevant
and we don’t need to estimate this. To determine if it really handles of a power
law, we proceed to a Kolmogorov—-Smirnov test, attempting to minimize the
distance between the estimated parameters and our data. If the p-value from
the Kolgomorov-Smirnov is smaller than the chosen threshold « = 0.05, we
can affirm that our data follow a power law [76]. Sometimes, the fits don’t
fit very well with a power law distribution that is why we have to investigate
other heavy-tailed distributions like the log-normal (L) or the Weibull (W) (i.e.
stretched-exponential) distributions, for which we can define the goodness-of-
fit with the previous Kolmogorov—=Smirnov test and its p-value. However, with
approximately same results, the power law is privileged because it is deter-
mined by one parameter instead of two parameters for the two aforementioned
distributions.

The computations in this part have been widely inspired from the works
of Clauset et al. and done with Python libraries such that plfit for the pow-
erlaw and implemented according to the works of Clauset et al. for the other
distributions [76].

B.2.4. Goodness-of-fits summary
The results for the fits presented in this article (i.e. Figs 1, 2, and 3), as well as
their goodness of are detailed in the below Table B1.

Fig. Model Estimated parameter(s) Goodness-of-fit p-value
1A PL? Mare = 0.64(1) 6.43 x 1072 <1072
1B PL? iags = 2.26(6) 1.52 x 107! <1072
2A PL? Mevenes = 0.54(4) 1.51 x 107! <1072
2B LR? Borgs = 0.79(1) 0.99 <1072
3A LR Ba =—0.93(1) 0.97 <1072
3B LR® Bl =(-6.32+£0.91) x 1072 0.86 <1073

B2 = (~7.12£0.59) x 102

The fits are generated by the Power Law? and ordinary least-squares (OLS) Linear Regression” models. The goodness-of-fit are obtained with the Pearson’s

coefficient R*? and the p-value of a Wald test for the Linear Regression? model and with the Kolmogorov—Smirnov statistic test, also providing the p-value, for the

Power Law? model. The results are computed with the Python libraries scipy.stats.linregress? and plfit ».
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