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The proliferation of the Internet of Things (IoT) has led to the emergence of crowdsensing applications, where
a multitude of interconnected devices collaboratively collect and analyze data. Ensuring the authenticity and
integrity of the data collected by these devices is crucial for reliable decision-making and maintaining trust
in the system. Traditional authentication methods are often vulnerable to attacks or can be easily duplicated,
posing challenges to securing crowdsensing applications. Besides, current solutions leveraging device behavior
are mostly focused on device identification, which is a simpler task than authentication. To address these issues,
an individual IoT device authentication framework based on hardware behavior fingerprinting and Transformer
autoencoders is proposed in this work. To support the design, a threat model details the security problems faced
when performing hardware-based authentication in IoT. This solution leverages the inherent imperfections and
variations in IoT device hardware to differentiate between devices with identical specifications. By monitoring
and analyzing the behavior of key hardware components, such as the CPU, GPU, RAM, and Storage on devices,
unique fingerprints for each device are created. The performance samples are considered as time series data
and used to train outlier detection transformer models, one per device and aiming to model its normal data
distribution. Then, the framework is validated within a spectrum crowdsensing system leveraging Raspberry Pi
devices. After a pool of experiments, the model from each device is able to individually authenticate it between
the 45 devices employed for validation. An average True Positive Rate (TPR) of 0.74+0.13 and an average
maximum False Positive Rate (FPR) of 0.06+0.09 demonstrate the effectiveness of this approach in enhancing
authentication, security, and trust in crowdsensing applications.

1. Introduction The openness and distributed nature of crowdsensing systems make

them susceptible to Sybil attacks and collusion among malicious enti-

The widespread adoption of the Internet of Things (IoT) has led to
the emergence of crowdsensing applications, where many IoT devices
collaboratively gather and analyze data from the environment (Rajen-
dran et al.,, 2018). Many of these applications rely on single-board
computers due to their reduced price and relatively good performance.
These applications offer tremendous potential in diverse domains, such
as environmental monitoring, urban planning, healthcare, and trans-
portation. However, ensuring the authenticity and integrity of the data
collected by these devices is critical for reliable decision-making and
maintaining trust in the system (Capponi et al., 2019).

* Corresponding author.

ties (Yu, 2020). Sybil attacks involve adversaries creating multiple fake
identities to gain control over the system or manipulate the collected
data. Collusion among malicious entities can also lead to coordinated
attacks or data manipulation. Implementing identity verification mech-
anisms, reputation systems, and distributed consensus algorithms is re-
quired in order to prevent and detect such attacks (Zhong et al., 2019).

Traditional authentication methods for IoT devices, such as crypto-
graphic protocols or unique identifiers, are often susceptible to various
attacks and vulnerabilities (Wang et al., 2020). Moreover, devices with
identical specifications can be easily duplicated or impersonated, posing
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a significant challenge to maintaining trust and security in crowdsens-
ing applications. To address these limitations, novel approaches are
required that leverage the unique characteristics of IoT devices to es-
tablish their authenticity. These methods can be seen as an additional
layer in the authentication security of IoT scenarios.

One of the directions proposed in the literature to solve these is-
sues is leveraging hardware manufacturing imperfections in order to
uniquely identify each device in the environment (Sanchez et al., 2021).
What elevates the efficiency of this approach is the integration of
Machine Learning (ML) and Deep Learning (DL) techniques for the
processing of collected hardware behavior data. These cutting-edge
computational methodologies facilitate the analysis, classification, and
prediction of the enormous amounts of complex, high-dimensional data
generated by IoT devices (Al-Garadi et al., 2020). Particularly, they can
adeptly capture patterns and dependencies in this data, enabling effec-
tive anomaly detection and thereby facilitating the identification of de-
vices or activities that deviate from established norms. The combination
of hardware manufacturing imperfections and ML/DL techniques has
been evidenced to provide remarkable results in the context of device
identification (Sanchez-Rola et al., 2018; Sanchez et al., 2023b). How-
ever, authentication poses a more complex issue: discerning whether
a device is authentic or not, but without taking into account the data
distributions of other devices.

Therefore, there are still many challenges present related to
hardware-based individual authentication leveraging ML/DL tech-
niques: (i) most of the solutions available in the literature cover device
identification and not in authentication (Sanchez et al., 2023c), try-
ing to differentiate a device between a set of known devices instead
of uniquely verify its identity; (ii) novel DL methods such as attention
Transformers have not been applied yet in this field (Sdnchez et al.,
2022), but could improve current results as it is happening in other
fields; (iii) solutions are usually implemented in simulated or isolated
environments, and not integrated into real-world applications (Zhang
et al,, 2019); (iv) most of the solutions relying on ML/DL follow a
classification-based approach as they focus on identification, which is
not practical in dynamic scenarios or when the number of devices is
high (Al-Naji and Zagrouba, 2022).

To solve the previous challenges, the main contributions of the
present work are:

» A framework that leverages Transformer-based autoencoder mod-
els and hardware performance fingerprinting for the individual
authentication of single-board computer devices. This framework
leverages CPU, GPU, RAM and Storage components to measure
their performance and find manufacturing variations that enable
the differentiation between devices based on their performance. In
this sense, the data from the legitimate device are taken as normal
samples modeling its performance distribution, while samples from
other devices should be detected as outliers or anomalies.

The deployment of the framework in a real-world spectrum crowd-
sensing platform based on Raspberry Pi devices, namely Elec-
troSense. In total, 45 devices are utilized in the scenario: 15 Rasp-
berry Pi 4, 10 Raspberry Pi 3, 10 Raspberry Pi 1, and 10 Raspberry
Pi Zero. This deployment demonstrates the practical applicability
of the framework and its compatibility with different versions of
Raspberry Pi devices. It also provides valuable insights into the
real-world challenges and considerations in implementing such a
sophisticated authentication system, contributing to the broader
field of IoT security.

The validation of the framework authentication performance in the
deployed scenario. After data collection, an average True Positive
Rate (TPR) of 0.74+0.13 and an average maximum False Positive
Rate (FPR) of 0.06+0.09 are achieved, improving other state-of-
the-art models such as LSTM and 1D-CNN networks. This validation
not only confirms the effectiveness of the proposed framework but
also sets a new benchmark in the field. Besides, a second validation
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approach details how the solution can be adapted to new device
models with different hardware components. The detailed analy-
sis and comparison with other models provide a comprehensive
understanding of the strengths and potential areas for further op-
timization, paving the way for future research and development
in hardware-based authentication. The validation code for the per-
formed experiments is available at Sdnchez Sanchez (2023).

The remainder of this article is structured as follows. Section 2 gives
an overview of hardware-based individual authentication and back-
ground on transformer usage for anomaly detection. Section 3 explains
the threat model faced by the proposed solution. Section 4 describes
the Transformer and hardware-based device fingerprinting solution for
individual authentication of single-board devices. Section 5 gives an
overview of the crowdsensing platform employed for validation, the
data collection process, and the experimental results when performing
the authentication. Finally, Section 7 gives an overview of the conclu-
sions extracted from the present work and future research directions.

2. Related work

This section reviews the key literature relevant on individual de-
vice authentication through hardware performance fingerprinting and
transformer-based anomaly detection.

2.1. Individual device authentication and identification

The present work focuses on hardware-based single-board device
authentication using the performance behavior of the components self-
contained in the device and anomaly detection DL algorithms. Arafin
and Qu (2021) discussed several examples of hardware-based authen-
tication that use memory access latency, instruction execution latency,
and clock skew to authenticate devices, users, and broadcast signals
used for navigation. In Sanchez et al. (2023b), the authors compared
the deviation between the CPU and GPU cycle counters in Raspberry Pi
devices to perform individual identification of 25 devices. The identifi-
cation was performed using XGBoost, achieving a 91.92% True Positive
Rate (TPR). In continuing work (Sanchez et al., 2022), the same authors
improved the results to an average F1-Score of +0.96 and a minimum
TPR of 0.8 using a time series classification approach based on LSTM
and 1D-CNN combination. Similarly, (Laor et al., 2022) performed
identical device identification using GPU performance behavior and
ML/DL classification algorithms. Accuracy between 95.8% and 32.7%
was achieved in nine sets of identical devices, including computers and
mobile devices. Sanchez-Rola et al. (2018) identified +260 identical
computers by measuring the differences in code execution performance.
They employed the Real-Time Clock (RTC), which includes its own
physical oscillator, to find slight variations in the performance of each
CPU. In Salo (2007), the author compared the drift between the CPU
time counter, the RTC chip, and the sound card Digital Signal Processor
(DSP) to identify identical computers. Other works have also explored
hardware-based authentication applications using physical properties
of computing hardware such as main memory, computing units, and
clocks. Shrivastava et al. (2022) proposed a high-performance Field Pro-
grammable Gate Arrays (FPGA) based secured hardware model for IoT
devices using the Advanced Encryption Standard (AES) algorithm. They
compared the performance of two FPGAs and found that the Spartan-6
FPGA provides better throughput and less time delay for IoT devices.

Other works have explored the usage of Physical Unclonable Func-
tions (PUFs) for IoT device identification (Shamsoshoara et al., 2020).
However, PUFs are out of the scope of this work, as it is centered on
hardware behavior fingerprinting based on device performance, avoid-
ing the usage of new hardware elements or the modification of the
device specifications.

Finally, some solutions are also available in the industry, leverag-
ing hardware characteristics for [oT device identification. Numerous
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Table 1
Comparison of the closest works on ML/DL-focused hardware-based device identification and authentication.
Work Scenario Approach Algorithm/Model N Devices Results
(Salo, 2007) Computer identification Statistical Pair-based 38 Computer identification based on the comparison of
correlation identification three physical oscillators using t-test statistic
(Sanchez-Rola et al., 2018) ~ Computer identification Statistical Mode-based 265 All computers uniquely identified. No effect from
correlation statistics CPU load and temperature
(Laor et al., 2022) Computer and mobile Classification CNN 9 95.8% and 32.7% accuracy in nine sets of identical
identification devices. Accuracy drops with device rebooting
(Sanchez et al., 2023b) IoT device identification Classification XGBoost 25 91.92% average TPR. No effects from temperature
changes and device rebooting
(Sanchez et al., 2022) IoT device identification Classification LSTM + 1D-CNN 45 0.96 average F1-Score. Resilience to temperature and
ML/DL evasion attacks.
This work (2023) IoT device authentication Anomaly Transformer 45 All devices authenticated. 0.74 average TPR and 0.06
Detection average maximum FPR

hardware-based authentication solutions for IoT devices have been in-
troduced to enhance security. Intel Enhanced Privacy ID (EPID) pro-
vides a mechanism for device authentication while ensuring privacy,
making certain that devices connecting to networks are genuine Intel
products (Intel, 2021). ARM TrustZone technology partitions devices
into secure and non-secure zones, offering a foundational layer for
security solutions (ARM, 2021). Cisco Trust Anchor module (TAm) em-
beds a hardware module in products to guarantee device integrity and
authenticity right from manufacturing to deployment (Cisco, 2021).
Microsoft has ventured into this space with Azure Sphere, which in-
corporates custom silicon security technology for comprehensive IoT
security (Microsoft, 2021). NXP A71CH is a secure element designed
to provide a root of trust at the integrated circuit level for IoT de-
vices (NXP, 2021). Infineon OPTIGA Trusted Platform Module (TPM)
offers hardware-based security functions, facilitating device authenti-
cation (Infineon, 2021). Microchip CryptoAuthentication devices are
tailored to protect against various security threats by offering robust
cryptographic solutions (Microchip, 2021). Rambus CryptoManager IoT
Device Management is a turnkey solution designed to provide end-
to-end security, including device attestation and hardware-based secu-
rity (Rambus, 2021). Lastly, GlobalPlatform Device Trust Architecture
(DTA) standardizes the use of secure components in IoT devices to pro-
tect digital services and data (GlobalPlatform, 2021). While hardware-
based industrial authentication solutions for IoT devices bolster secu-
rity, they come with challenges. These include higher costs, increased
deployment complexity, computational overhead on devices, reduced
flexibility for updates, scalability concerns in vast networks, vulnerabil-
ities to physical attacks, supply chain integrity issues, interoperability
problems among different manufacturers, potential long-term hardware
degradation affecting performance, and the risk of vendor lock-in due
to proprietary solutions.

Table 1 compares the closest works in the literature with the present
one. Although several works have worked in the combination of ML/DL
techniques and hardware fingerprinting for device identification, a no-
table gap persists in the literature with respect to addressing the unique
challenges of device authentication via an anomaly detection approach.
Contemporary studies have primarily employed classification models,
which serve to identify devices from a set pool of labels. However, these
models are inadequate for the authentication problem. The task of au-
thentication involves more than simple device recognition - it requires
a system capable of detecting deviations from an expected hardware
behavior, a task for which anomaly detection models, rather than tradi-
tional classification models, are better suited. Consequently, there is a
significant need to investigate the potential of DL-based anomaly de-
tection models, such as Transformer models, in the realm of device
authentication.

2.2. Transformer-based anomaly detection in IoT security

The application of Transformer models in anomaly detection has re-
cently gained momentum, recognizing their ability to extract meaning-
ful features from sequential data effectively. Anomaly detection in time-
series data, in particular, has seen significant advancements through the
adoption of Transformer models (Choi et al., 2021). Their proficiency in
capturing temporal dynamics makes them an excellent choice for tasks
that involve detecting irregularities in time-bound sequences (Tuli et
al., 2022).

In the field of IoT security, Transformer-based autoencoders have
been employed to address high-dimensional and complex dependencies
issues by leveraging the self-attention mechanism and the encoder-
decoder architecture. Chen et al. (2021) proposed a framework called
GTA that learns a graph structure among sensors and applies graph
convolution and Transformer-based modeling to detect anomalies in
multivariate time series. Kozik et al. (2021) proposed a hybrid time win-
dow embedding method with a Transformer-based classifier to identify
compromised devices in IoT-networked environment. Tuli et al. (2022)
proposed TranAD, a deep Transformer network that uses attention-
based sequence encoders to perform anomaly detection and diagnosis
for IoT data streams. These works demonstrate the effectiveness and
efficiency of Transformer-based models for anomaly detection in IoT
security.

However, the performance of Transformer-based anomaly detection
in individual device authentication has not been explored yet, remain-
ing as a practical field where the performance of these novel models
can improve the state-of-the-art approaches.

3. Threat model

The primary concern in the single-board device authentication sce-
nario is an adversarial actor attempting to integrate an unauthorized
device into a sensitive setting, like an industry, by masquerading as or
impersonating a legitimate device. This threat can be approached from
multiple angles:

» TH1. Device impersonation (Marabissi et al., 2022). The foremost se-
curity challenge is when an adversarial entity substitutes a genuine
device with a malicious device that mirrors its software charac-
teristics. In this case, the adversary deploys identical legitimate
software credentials but incorporates malevolent processes and fea-
tures.

TH2. Sybil (Rajan et al., 2017). A singular device (or multiple)
might attempt to create numerous authentications to transmit de-
ceptive data from many mimicked devices. The vulnerability of
a system to Sybil attacks hinges on (i) the simplicity of creating
authentications; (ii) whether the system uniformly handles all en-
tities, and (iii) the extent to which the system approves of entities
lacking a trust linkage to a recognized trustworthy entity.
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Fig. 1. Individual device authentication framework. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

» TH3. Replay Attacks (Feng et al., 2017). Attackers can capture
authentication tokens or messages and replay them later to gain
unauthorized access or to disrupt the network operations.

TH4. Physical Attacks (Stellios et al., 2021). Many IoT devices are
deployed in environments that lack stringent security, leaving them
vulnerable to physical tampering. Malicious actors can directly ac-
cess these devices to extract sensitive cryptographic keys or implant
malicious hardware/software components. The direct physical ac-
cess grants attackers a high level of control, making these attacks
particularly devastating.

TH5. Advanced persistent threat (Chen et al., 2022). This threat
emerges as an outcome of the preceding one. A rogue device set
up in the environment may be capable of extracting data from the
situation and other devices or initiating more aggressive assaults
like vulnerability scanning and/or Denial of Service (DoS) attacks.
Additionally, contemporary attacks typically incorporate evasion
methods that conceal their operations from software-centric behav-
ior observation security mechanisms (Li and Li, 2020).

Traditional software-based authentication methods, while effective
in some scenarios, have shown vulnerabilities in the face of sophisti-
cated threat models where certificates or software identifiers can be
cloned. Therefore, solving the previous threat model is the main objec-
tive of the proposed solution, complementing traditional authentication
systems based on software. By capitalizing on inherent cycle skew and
performance disparities in hardware -even among identical IoT devices-
this approach can establish a unique, tamper-resistant identity for each
device. These intrinsic hardware traits offer not just a shield against
software-based incursions but also a robust defense against physical in-
trusions. Additionally, by folding hardware performance metrics into
the authentication matrix, the solution can seamlessly cater to the di-
verse performance spectra of IoT devices, facilitating efficient authenti-
cation processes, even for those with resource constraints.

In order to solve the threats identified in this work, it is assumed
that even if the device is malicious, the control over it is maintained
by its legitimate administrator and the authentication tasks can be exe-
cuted. This condition guarantees that device management is maintained
during a possible attack. If this control is lost, it would be assumed that
the device is infected or has some error.

4. Individual device authentication framework
This section elucidates the DL framework implemented for the pur-

pose of hardware performance fingerprinting. The framework performs
device fingerprinting based on performance deviations that show hard-

ware manufacturing imperfections. An autoencoder Transformer model,
a state-of-the-art approach in DL-based time series processing, is lever-
aged for the authentication of individual devices.

The framework is designed in a modular manner, where different
components are combined in a stacked layout, from the hardware be-
havior monitoring to the DL-based evaluation and authentication. Due
to the reduced processing capabilities of single-board computers, the
framework follows a client-server architecture, where the components
related to data collection and device configuration are deployed locally
in the device, and the server processes the data and performs the model
training and evaluation. Fig. 1 illustrates the different modules com-
posing the framework and the pipeline followed by the data until an
authentication decision is made. Five modules compose the framework:
(i) Monitoring, (ii) Preprocessing, (iii) Anomaly Detection, (iv) Authen-
tication, and (v) Device Security.

4.1. Monitoring module

The Monitoring Module is in charge of the interaction with the hard-
ware components and the monitoring of their performance. Besides, it
sends the collected data to the server for its processing and evaluation.
It contains two components: Component Isolation and Stability and Data
Gathering.

4.1.1. Component isolation and stability

One of the key conditions to perform fingerprinting based on hard-
ware performance is to ensure that the components selected for mon-
itoring are running under stable conditions that enable the character-
ization of the small performance variations in the components due to
manufacturing imperfections (Sénchez et al., 2023b). Therefore, this
component is in charge of configuring the CPU, GPU, RAM and SD Card,
the selected hardware components. It sets fixed running frequency for
the components, isolate the components to avoid kernel interruptions,
and disables some component optimizations that might affect the sta-
bility of the performance, such as memory address randomization.

4.1.2. Data gathering

This component is in charge of collecting the performance measure-
ments by executing different tasks in the selected hardware compo-
nents. In the case of single-board computers, the available hardware
elements are the CPU, GPU, RAM and storage (typically SD card). As
proposed in the literature (Sanchez et al., 2023b), the hardware mon-
itoring is done by using the in-device elements as a reference for the
performance measurements. For example, GPU performance is mea-
sured in CPU cycles, and CPU performance when executing a code is
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measured using the elapsed GPU cycles. The reasoning for this approach
is that the component itself is not able to measure the deviations in its
performance specification without an external cycle or time counter.

4.2. Preprocessing module

The Preprocessing Module plays the pivotal role of a bridge between
the raw data gathered by the Monitoring Module and the Anomaly Detec-
tion Module, where the data is employed to train the DL models and
evaluate the device. The main tasks of this module encompass data
cleaning and feature generation.

4.2.1. Data cleaning

This component is responsible for filtering and cleaning the raw
performance metrics. Any missing, inconsistent, or erroneous data are
identified and filtered, thus preparing the dataset for further processing.

4.2.2. Feature generation

This component focuses on feature extraction and engineering based
on the cleaned data. First, it performs normalization of each one of the
metrics gathered. Afterward, it is in charge of transforming the raw data
into a format suitable for the Transformer model. A key aspect of this
process is the concatenation of samples into groups of vectors, which
facilitates time series-based analysis.

4.3. Anomaly detection module

The Anomaly Detection Module is the heart of the authentication
framework, tasked with training and evaluating the Transformer-based
autoencoder model. The Transformer-based autoencoder is a variant
of the Transformer model, which was originally proposed for natural
language processing tasks. The key component of the Transformer archi-
tecture is the self-attention mechanism, which models the interactions
between the elements in the input sequence (Vaswani et al., 2017).
More in detail, the self-attention mechanism computes a weighted sum
of the input elements for each position in the sequence. The weight
assigned to each input element is determined by its relevance to the po-
sition being considered. Formally, the self-attention can be computed
as follows:

. < OK” )

Attention(Q, K, V') = softmax 14 1)
Vi

where O, K, and V' are matrices representing the queries, keys, and

values, respectively, and d, is the dimensionality of the keys. In multi-

head attention, this operation is done i times with different learned

linear projections of the original O, K, and V' matrices.

In the autoencoder variant of the Transformer model, the same se-
quence is provided as both the input and the target output of the
model. The Transformer-based autoencoder learns to reconstruct the
input sequence, which allows it to capture the underlying structure of
the sequence data.

The encoder and decoder are both composed of several identical
layers. Each layer contains two sub-layers: a multi-head self-attention
mechanism and a position-wise fully connected feed-forward network,
using ReLU as activation function. The output of each sub-layer is then
passed through a residual connection and layer normalization.

In the context of device authentication, the Transformer-based au-
toencoder is trained to reconstruct the normal behavior of each device.
Once the model is trained, it can be used to detect anomalies by com-
paring the reconstruction error of a new sequence with a predefined
threshold. A high reconstruction error indicates that the new sequence
is significantly different from the normal behavior, which could suggest
a possible intrusion.

The two components forming this module, in charge of the Trans-
former-based autoencoder training for each device, are:
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4.3.1. Transformer training and optimization

This component takes the processed data and trains a Transformer
model for each device. This model, adept at reconstructing input data,
establishes a profile of standard device behavior, thereby becoming pro-
ficient at detecting anomalies or deviations from the norm. This phase
also involves the optimization of model parameters for each device in-
dependently to ensure the best performance. Then, the best model for
each device is stored to be later used. The training and optimization pro-
cess is iterative and may require several exploratory iterations to find
the combination that meets all the properties needed in the generated
fingerprint.

4.3.2. Transformer evaluation

Upon completion of the training phase, the model is subject to de-
ployment for live data evaluation. The model predictive capability is
tested against the values collected from the device after deployment.
Then, the output of the Transformer will be employed in the Authenti-
cation Module to determine if a device is the legitimate one and grant
allow him to remain deployed in the network. Any deviations from the
established profile may trigger further investigation or immediate ac-
tion, depending on the Device Security Module.

4.4. Authentication module

The Authentication Module makes the final decision regarding device
authentication based on the evaluation results coming from the pre-
vious module. It integrates the anomaly detection results with other
contextual information, such as device history or network behavior, to
make a more informed decision. This module may also include addi-
tional verification steps or multi-factor authentication to enhance secu-
rity.

4.4.1. Device authentication

This component is charged with the essential task of making the
final authentication decision based on the anomaly detection results.
Anomalies, interpreted as potential indications of device tampering or
misuse, inform the authentication decision. A device may be authenti-
cated and granted network access, or it may be rejected, depending on
the analysis of these anomalies.

4.5. Device security module

The Device Security Module serves as an additional layer of security,
overseeing the enforcement of security measures. It works in conjunc-
tion with the Authentication Module to provide a comprehensive security
solution for IoT devices after authentication.

4.5.1. Security enforcement

This component ensures the enforcement of necessary security rules
or protocols based on the Authentication Module decision. If a device is
authenticated, it is granted access to the network. If a device is deemed
unauthenticated, this component ensures the device is isolated from the
network, safeguarding the integrity of the IoT system. This module also
reports any security issues, such as repeated authentication failures, to a
central authority for further investigation. Moving target defense (MTD)
techniques are a suitable approach for this module, as they focus on
changing the device configuration according to the mitigation actions
required. Some examples of these techniques is the removal of files,
dynamic network connection filtering, among others.

5. Framework validation

This section succinctly lays out the overall validation methodology,
from leveraging the ElectroSense spectrum crowdsensing platform to
data collection and preprocessing crucial for the analysis. The specifics
of data gathering and the processes of cleaning, normalization, and
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transformation are explained. Finally, the Transformer-based Anomaly
Detection model approach is validated in this real-world scenario, mea-
suring its effectiveness. Note that the validation focuses on the data
collection, monitoring, and DL parts of the framework. The develop-
ment of advanced authentication rules and security measures is out of
the scope of this work.

5.1. ElectroSense spectrum crowdsensing platform

The IoT spectrum sensors utilized in this research are a part of the
ElectroSense network (Rajendran et al., 2018), an open-source, crowd-
sensing platform that collects radio frequency spectrum data with the
aid of low-cost sensors. The platform, which capitalizes on a collabora-
tive crowdsensing approach, enables the monitoring and collection of
spectrum data. The core of this platform is the Raspberry Pi, a com-
pact and cost-effective single-board computer, that when attached to
software-defined radio kits and antennas can function as a versatile
spectrum sensor. Such assembly of spectrum sensors by individual users
contributes to the broad reach and comprehensive data collection capa-
bility of the ElectroSense platform.

Once the sensors have collected the data, it is then sent to the
ElectroSense backend platform, which is responsible for its storage, pro-
cessing, and analysis. This meticulous processing and analysis facilitate
the provision of a suite of services. These services extend beyond mere
spectrum occupancy monitoring, delving into areas such as transmission
optimization and decoding. This range of services provided by Elec-
troSense not only bolsters the understanding of spectrum utilization but
also opens up avenues for innovative optimization and enhancement
strategies in the field of IoT. Fig. 2 depicts a diagram of the ElectroSense
platform.

For validation, numerous Raspberry Pi devices from different models
are deployed in the crowdsensing platform in order to validate the pro-
posed authentication framework. More in detail, the devices deployed
are 15 Raspberry Pi 4 Model B, 10 Raspberry Pi 3 Model B+, 10 Rasp-
berry Pi Model +, and 10 Raspberry Pi Zero.

5.2. Data gathering and preprocessing

The first step in the validation process is to obtain the hardware
performance data from each device and preprocess it in order to be fed
into the Transformer models.

5.2.1. Data gathering

The assembly of individual device authentication premised on hard-
ware behavior hinges on the ability to monitor imperfections inherent
in the device chips for subsequent evaluation. As outlined in Section 2,
previous studies have primarily tackled this task by contrasting com-
ponents featuring different base frequencies or crystal oscillators since
deviations in these components performance can be discerned directly
from the device.
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Table 2
LwHBench dataset features (Sanchez et al., 2023a).

Component Function Feature Under Observation
- timestamp Unix timestamp
temperature Core temperature of the device
CPU 1 s sleep Elapsed GPU cycles during 1s of CPU sleep
2 s sleep Elapsed GPU cycles during 2s of CPU sleep
5 s sleep Elapsed GPU cycles during 5s of CPU sleep
10 s sleep Elapsed GPU cycles during 10s of CPU sleep
120 s sleep Elapsed GPU cycles during 120s of CPU sleep
string hash Elapsed GPU cycles during computation of a
fixed string hash
pseudo random  Elapsed GPU cycles while generating a
software pseudo-random number
urandom Elapsed GPU cycles while generating 100 MB
using /dev/urandom interface
fib Elapsed GPU cycles while calculating the 20th
Fibonacci number using the CPU
GPU matrix mul Time taken by CPU to execute a GPU-based
matrix multiplication
matrix sum Time taken by CPU to execute a GPU-based
matrix summation
scopy Time taken by CPU to execute a GPU-based
graph shadow processing
Memory list creation Time taken by CPU to generate a list with
1000 elements
mem reserve Time taken by CPU to fill 100 MB in memory
csv read Time taken by CPU to read a 500 kB csv file
Storage read x100 100 measurements of CPU time for 100 kB
storage read operations
write x100 100 measurements of CPU time for 100 kB

storage write operations

To construct the framework for individual device authentication, it
was necessary to compile a dataset that utilizes metrics pertinent to the
hardware components inherent in certain devices. This dataset has been
christened LwHbench, and additional details can be found in Sanchez
et al. (2023a). In this context, the dataset gathered performance metrics
from the CPU, GPU, Memory, and Storage of 45 Raspberry Pi devices
of diverse models over a span of 100 days. Various functions were
executed in these components, employing other hardware elements (op-
erating at differing frequencies) to measure performance. Table 2 pro-
vides a summary of the functions that were monitored. These functions
embody a set of common operations carried out in every component,
aiming to gauge their performance. It is worth mentioning that addi-
tional analogous operations could be utilized during the data gathering
process. In total, 215 features formed each one of the collected data
vectors.

The final dataset contains the following samples per device model:
505584 samples collected from 10 RPi 1B+ devices, 784095 samples
from 15 RPi4 devices, 547800 samples from 10 RPi3 devices, and
548647 samples from 10 RPiZero devices. To collect the data, an array
of countermeasures were implemented to mitigate the effect of noise
introduced by other processes operating in the devices: Component fre-
quency was kept constant, kernel level priority was enforced, the code
was executed in an isolated CPU core (in multi-core devices), and mem-
ory address randomization was disabled. Moreover, the dataset was
compiled under a variety of temperature conditions, facilitating the
analysis of the influence this environmental feature has on component
performance.

5.2.2. Preprocessing

In the preprocessing stage, the time series were generated by ap-
plying a time window over the collected samples, combining them into
groups of 10 to 100 vectors. This method of grouping facilitates the
implementation of time series Deep Learning (DL) approaches and is
adjusted to other literature works (Sanchez et al., 2022). These models
possess the ability to uncover intricate trends within the data, poten-
tially leading to superior results compared to the standalone processing
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Table 3

Anomaly detection time series models and hyperparameters tested.
Model Hyperparameters
General epochs =[10,20,50], batch_size = [32,128,256,512]
Parameters
1D-CNN filters =[16,32,64,128], kernel_size = [3,5,7],

n_layers =[1,2,3]
LSTM neurons = [10,100],n_layers =[1,2,3],

LSTM_1D-CNN input_layers =[2,3],cnn_filters =[16,32,64,128],
cnn_kernel_size = 3,5,7],stm_neurons = [10, 100]
n_layers =[1,2,3]

Transformer dff=1[32,64,128,256,1024], num_layers =[1,2,3]

and evaluation of individual samples. Moreover, it also permits the
utilization of attention models such as Transformers, which currently
represent the pinnacle of performance in this field. For data normal-
ization, QuantileTransformer (Ahsan et al., 2021) was utilized, given
the variable data distributions originating from the differing hardware
capabilities of each device model. The division of the data for model
training and validation purposes consisted of 70% and 10% of the total,
leaving the remaining 20% for testing. In order to minimize the poten-
tial impact of vector order correlations on the results, the splitting of
training, validation, and test sets was performed without shuffling the
samples.

5.3. Transformer-based anomaly detection validation

As detailed in Section 4, the proposed Transformer approach per-
forms hyperparameter tuning personalized for each device. Besides,
other state-of-the-art DL architectures for anomaly detection in time
series are tested to compare their performance to the Transformer. The
tested networks are LSTM, 1D-CNN, and a combination of both of these
layouts. Table 3 provides a comprehensive overview of the examined
algorithms along with their corresponding hyperparameters. For vali-
dation, a server equipped with AMD EPYC 7742 CPU, NVIDIA A100
GPU, and 180 GB of RAM is employed, and the models are implemented
using Keras library.

In the case of the LSTM and 1D-CNN models, the time series concate-
nation only achieved good results when using groups of 10 vectors or
smaller due to their limited memory capabilities. In contrast, the Trans-
former achieved good results with all the sliding window lengths from
5 to 100, with the best results obtained with 100 vectors per sliding
window.

To set the anomaly detection threshold in the reconstruction of the
samples fed to the autoencoder models, the 10% of the reconstruc-
tion error in the training samples is chosen as the boundary between
anomaly and normal sample. Then, the validation set is employed for
the hyperparameter selection by choosing the model with the higher
TPR.

5.3.1. Authentication performance

For the authentication capabilities evaluation, the strategy followed
is one-vs-all, where the trained transformer model evaluates the test set
of the source device (normal samples) but also the test sets of the rest of
the devices (anomalies or outliers). Then, the True Positive Rate (TPR)
of the legitimate device is compared with all the False Positive Rates
(FPRs) of the rest of the devices, checking that the TPR value is greater
than all the FPRs. Note that for this approach, different data normaliza-
tions should be performed in the test sets depending on which device is
employed for training as the training data distribution changes.

Table 4 shows the results of the one-vs-all authentication tests. It can
be seen how only the Transformer-based approach is able to authenti-
cate all the devices successfully. Although their average TPR is higher,
LSTM and 1D-CNN networks only can identify some of the devices, of-
fering a much lower difference between the average TPR and maximum

Computers & Security 137 (2024) 103596

Table 4
Anomaly detection time series models results.
Model Best window Devices Avg. TPR Avg. Max.
size Authenticated FPR
1D-CNN 10 32 0.88+0.06 0.67+0.29
LSTM 10 38 0.85+0.09 0.53+0.19
LSTM_1D-CNN 10 35 0.88+0.08 0.59+0.22
Transformer 100 45 0.74+0.13  0.06+0.09
TPR [ Max_FPR
Mean: 0.74 —1 TPR
Q1:0.63
PR 4 Q3:0.84 , T ,
Std Dev: 0.13 ! | IS — !
Max_FPR
Mean: 0.06
Q1: 0.00
Q3:0.09
Std Dev: 0.09
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Fig. 3. TPR and maximum FPR distributions of the Transformer autoencoder.

FPR. This occurs because the FPR is much more variable in these mod-
els, and many models have a high FPR when evaluating data from other
devices, while the FPR variability is smaller in the Transformer models.

Fig. 3 gives a closer look into the distributions of the TPRs and
maximum FPRs of the 45 devices evaluated. It can be seen that both
distributions are greatly separated, having only three cases where the
maximum FPR goes over 0.20 and remains under 0.45. The TPR always
stays over that value and reaches values close to 1 in some cases, having
most of its values between 0.6 and 0.8. Besides, Fig. 4 shows the exact
TPR and maximum FPR values for each one of the devices evaluated,
having its MAC address as an identifier. In this graph can be observed
that in the cases where the maximum FPR has a relatively high value
(0.2 to 0.4), the TPR is way higher, guaranteeing that the authentica-
tion can be made reliably.

According to these results, a threshold-based authentication ap-
proach could be employed by the Authentication Module to determine
the result of the authentication process. An example can be a thresh-
old for each device with a value 0.1 lower than the TPR achieved in the
validation, as it is enough to differentiate all the devices present in the
deployment.

The results achieved by the anomaly detection validation have
demonstrated the feasibility of the proposed framework, as it was
able to uniquely authenticate 45 single-board devices with identical
hardware and software specifications. These findings point towards a
promising direction for individual device authentication premised on
hardware behavior, demonstrating the potential of Transformer models
in this sphere.

5.3.2. Resource usage

Although performance is the key characteristic to decide which
model to use in the validation setup, resource usage during training
and evaluation is also a critical point that should be taken into account
when developing ML/DL-based solutions.

Table 5 shows the time and memory employed by the model. The
training time statistics were collected using 10 epochs as the number
of iterations over the training dataset. Besides, the evaluation time was
obtained while evaluating the entire test dataset of the device. Finally,
memory usage represents the size of the model after it has been com-
pletely trained.
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Fig. 4. Transformer autoencoder TPR and maximum FPR comparison per device.
Table 5 5.4. Additional validation in a simulated IoT deployment
Resource usage of each model (per device).
Model Training Time ~ Evaluation Time ~ Memory Although the solution has already been validated in a real-world
ElectroSense deployment, some additional challenges arise when adapt-
1D-CNN RA47.79s ~l4ds 0.86 MB ing the framework to further scenarios. One of these challenges appears
LST™ ~283.68 s ~211s 1.33 MB when new hardware models are present and hardware performance
LSTM_ID-CNN  ~306.92 5 ~2.45s 1.83 MB samples have to be collected from them. In this sense, gathering cy-
Transformer ~157.68 ~8.93 s 7.77 MB cle counters from the device components is dependent on the exact

Each model demonstrates distinct computational characteristics in
terms of training time, evaluation time, and memory usage. The 1D-
CNN model stands out as the most efficient, boasting the fastest training
time of approximately 47.79 seconds and the quickest evaluation time
of around 1.44 seconds. Additionally, it consumes the least amount of
memory, using only about 0.86 MB. This combination of speed and ef-
ficiency makes it an appealing choice for resource-limited applications.

However, the LSTM model presents a significant increase in training
time, taking approximately 283.68 seconds, and a slightly longer eval-
uation time of roughly 2.11 seconds. Coupled with a higher memory
footprint of 1.33 MB, this model may demand greater computational
resources than the 1D-CNN.

Interestingly, the hybrid LSTM+1D-CNN model exhibits the highest
training time among the models, approximately 306.92 seconds, and
has a considerable evaluation time of about 2.45 seconds. Its memory
usage is also higher, at 1.83 MB, reflecting the complexity inherent to
the combination of LSTM and 1D-CNN architectures.

Lastly, the Transformer model demonstrates a more moderate train-
ing time of approximately 157.68 seconds, albeit with the longest eval-
uation time of all models, around 8.93 seconds. More notably, it has
a significantly higher memory usage, at a substantial 7.77 MB. While
this may limit its applicability in memory-constrained environments,
the Transformer model may excel in terms of capturing complex data
patterns or delivering superior model accuracy, which are aspects not
directly portrayed in the provided table.

In conclusion, while the 1D-CNN model is undeniably efficient re-
garding speed and memory usage, the Transformer models might offer
better performance under certain circumstances. These trade-offs be-
tween time, memory usage, and potential model accuracy ought to be
taken into account when deciding on the most suitable model for a par-
ticular scenario.

hardware component, and the procedure might vary, requiring code
adaptations in the data gathering process.

ElectroSense is only compatible with Raspberry Pi hardware. Then,
to explore this problem, an agriculture IoT scenario was simulated using
nine additional devices from three new hardware models. Concretely,
the list of devices employed was: 3 Rock64 devices, 3 RockPro64 de-
vices, and 3 Orange Pi 2 Lite devices.

The first step in the deployment process was to adapt the CPU and
GPU cycle collection in the data gathering in order to be able to obtain
the metrics described in Table 2. As the GPUs in these devices come
from ARM Mali family, new counters should be leveraged. Concretely,
the counter labeled as GPU ACTIVE was chosen from the available op-
tions (Harris, 2016). The ARM HWCPipe library was utilized for the
collection of cycle counters (Developers, 2021). In terms of CPU-based
time collection, the perf time was acquired similarly to the methodology
for RPi devices, leveraging the perf counter ns() function. The software
to facilitate GPU task execution was modified from the source found in
the ARM Compute Library (Developer, 2021).

The data collection was executed for one week in these nine devices
to have a large enough dataset for this secondary validation, around
4000 samples were collected per device in this period. Then, the data
preprocessing steps were repeated as in the ElectroSense validation us-
ing Raspberry Pi devices, using a sliding window of 100 values and
QuantileTransformer normalization. After, the hyperparameter search
for the Transformer models in charge of the authentication of each de-
vice was performed.

Table 6 shows the authentication results from the nine devices em-
ployed in this validation. It can be seen that the results were even better
than in the ElectroSense experiments. The TPR for all of the devices was
above 0.90, while the maximum FPR stayed under 0.05 in all cases,
enabling the threshold-based authentication as in the ElectroSense de-
ployment. The improved results in this validation occurred due to the
decreased number of devices from the same model being compared. In
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Table 6
Validation in simulated IoT scenario.
Device Model Device (MAC) TPR Max. FPR
86:a4:4c:5f:ff:95 0.8894 0.0417
RockPro64 8a:32:38:8¢:63:e6 0.9217 0.0131
ee:db:54:9d:8a:67 0.9710 0.000
42:58:a0:38:16:11 0.9094 0.007
Rock64 76:8f:be:c0:¢5:3b 0.9318 0.000

9a:1d:93:b3:b5:8f 0.9187 0.041

c0:84:7d:82:4a:1e
c0:84:7d:82:1c:42
¢0:84:7d:82:38:6d

0.9653 0.011
0.9142 0.000
0.9760  0.002

Orange Pi 2 Lite

this sense, only three devices per model were present, so the similarities
between the devices in the scenario were reduced.

This second validation approach serves as an example of how the
proposed solution could be adapted to new scenarios where novel IoT
device models are present, and code adoptions for data collection are
necessary. It can be seen how the solution pipeline is still effective
once the hardware monitoring is properly modified to gather the cy-
cle counters from the monitored components. Besides, the proposal has
been validated with some more devices, enhancing the scalability of the
demonstrated solution.

6. Discussion

This section outlines the limitations intrinsic to the suggested ap-
proach and provides essential understanding obtained from the research
carried out. Through the series of tests performed in this work, coupled
with a comparative analysis with existing literature, valuable observa-
tions and conclusions emerge. These findings serve not only as lessons
gained but also highlight certain restrictions and limitations. The enu-
meration of lessons learned is as follows:

Potential of Transformer Models for IoT Authentication. The
achieved results illustrate the innovative application of Transformer
models in the field of hardware-based authentication. By employing
a Transformer model, the framework was able to capture complex
patterns in hardware behavior of each device, demonstrating a novel
approach that could pave the way for future research in security and
authentication. This lesson emphasizes the adaptability and potential of
Transformer models in areas beyond natural language processing.

Importance of Resource Usage Consideration. The resource anal-
ysis emphasizes the critical consideration of resource usage during
training and evaluation when developing Machine Learning or Deep
Learning-based solutions. Different models demonstrated distinct com-
putational characteristics in terms of training time, evaluation time, and
memory usage. For example, the 1D-CNN model was found to be the
most efficient, while the Transformer model had a significantly higher
memory usage. These trade-offs between time, memory usage, and po-
tential model accuracy must be carefully weighed when selecting the
most suitable model for an IoT scenario where processing resources are
limited.

Versatility and Importance of Preprocessing Techniques The pa-
per emphasizes the importance of preprocessing techniques in handling
time series data. The use of methods like grouping into vectors and data
normalization (using QuantileTransformer) was essential in uncovering
intricate trends within the data. This lesson serves as a reminder that
preprocessing is not a one-size-fits-all step but a critical and adaptable
component of the data analysis process, with significant implications
for the success of the modeling and authentication framework.

Adaptability to New Scenarios. Based on the results of the second
validation using additional IoT devices, it can be seen how only small
changes in the data collection process are necessary to adapt the solu-
tion to the hardware of new devices. The remaining Transformer-based
authentication pipeline remains functional in different scenarios and is
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hardware agnostic, enabling the application of the solution in a wide va-
riety of environments as an additional security layer and complimenting
traditional software-based authentication.

Conversely, the subsequent constraints and limitations have been
noted and warrant consideration in upcoming studies within this field:

Determining Hardware Behavior Measurements and Hyperpa-
rameter Tuning. The process of identifying the appropriate hardware
behavior measurements or feature extraction for individual device au-
thentication is complex and multifaceted. The implementation of the
proposed methodology may necessitate multiple exploratory iterations
to discover a combination that satisfies all the required properties in
the generated fingerprint. Additionally, the Transformer model intro-
duces further complexity due to the need for hyperparameter tuning.
Finding the optimal set of hyperparameters for the Transformer model
requires a meticulous search, adding to the trial-and-error nature of
the process. This iterative analysis can be significantly minimized by
examining the properties of the leveraged devices, including different
components and operating frequencies, and by employing systematic
hyperparameter optimization techniques. Since every chip inherently
contains imperfections, the real challenge lies in devising accurate and
effective methods to measure them and in fine-tuning the Transformer
model to capture these unique characteristics. This complexity adds
multiple layers of difficulty to the process and may require careful con-
sideration, experimentation, and optimization to achieve the desired
authentication accuracy.

Training and Evaluation Time. The varying training and evalua-
tion times across different models, with the Transformer model exhibit-
ing the longest evaluation time, present a limitation that may affect its
suitability in time-sensitive applications. This constraint highlights the
importance of considering both accuracy and computational efficiency
in model selection and design.

Threshold Setting for Anomaly Detection. During validation, the
anomaly detection threshold is set at 10% of the reconstruction error
in the training samples fed to the Transformer models. This choice of
threshold might have specific implications on the sensitivity and speci-
ficity of the anomaly detection as it is manually assigned.

Possible performance degradation over time. As with any hard-
ware, the components of 10T devices may undergo wear and tear, lead-
ing to gradual changes in their performance metrics. This natural aging
process can alter the cycle skew and other performance parameters that
the authentication system initially learned and recognized (Halak et al.,
2016). It has been experimentally verified that during the 100 days of
data collection, the hardware performance has remained stable. To that
end, the authentication experiments were repeated with different splits
in the train/test data of each device, achieving very similar results no
matter how the data was selected. However, longer periods might have
a larger impact on hardware degradation.

7. Conclusions and future work

This paper proposes a framework for individual device authenti-
cation based on hardware behavior and outlier detection, which fun-
damentally relies on identifying inherent imperfections in the device
chips. The framework, which leverages hardware behavior fingerprint-
ing and Transformer autoencoders, establishes a unique ‘fingerprint’ for
each device based on manufacturing imperfections in CPU, GPU, RAM,
and Storage, even in those with identical specifications. These imperfec-
tions are modeled by generating a model trained with the “normal” data
distribution of the hardware performance of each device. This provides
a robust mechanism for device authentication, distinguishing between
genuine and potentially harmful devices. The framework follows a mod-
ular design where device monitoring and security enforcement modules
are deployed in the device and the data processing modules are hosted
in a server with enhanced processing capabilities.

The practical implementation of this authentication framework in
the ElectroSense platform demonstrates its effectiveness and real-world
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applicability. After 100 days of data collection using 45 Raspberry Pi de-
vices, the Transformer-based autoencoder approach was implemented
and compared with other state-of-the-art Deep Learning architectures
such as LSTM and 1D-CNN for anomaly detection in time series. Despite
the competitive performance of LSTM and 1D-CNN, the Transformer
model emerged as the superior method, successfully authenticating all
the devices. An average True Positive Rate (TPR) of 0.74+0.13 and an
average maximum False Positive Rate (FPR) of 0.06+0.09 are achieved
when performing one-versus-all authentication, a more complex task
than the classification-based identification performed by other solutions
in the literature. From these results, it can be concluded that the pro-
posed approach not only prevents unauthorized device intrusions but
also significantly contributes to the reliability of data analysis and the
overall trustworthiness of the platform.

Moving forward, this research line has room for future work and
improvements. While the current study has focused on Raspberry Pi de-
vices, further research should involve testing the proposed model with
other IoT devices, expanding its scope, and ensuring its applicability
across a broad range of hardware. In addition, the study has examined
the model effectiveness primarily in the context of a spectrum crowd-
sensing platform, ElectroSense. Future investigations could explore its
implementation in different types of crowdsensing applications, thereby
contributing to a comprehensive understanding of the framework ver-
satility.
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