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The proliferation of the Internet of Things (IoT) has led to the emergence of crowdsensing applications, where 
a multitude of interconnected devices collaboratively collect and analyze data. Ensuring the authenticity and 
integrity of the data collected by these devices is crucial for reliable decision-making and maintaining trust 
in the system. Traditional authentication methods are often vulnerable to attacks or can be easily duplicated, 
posing challenges to securing crowdsensing applications. Besides, current solutions leveraging device behavior 
are mostly focused on device identification, which is a simpler task than authentication. To address these issues, 
an individual IoT device authentication framework based on hardware behavior fingerprinting and Transformer 
autoencoders is proposed in this work. To support the design, a threat model details the security problems faced 
when performing hardware-based authentication in IoT. This solution leverages the inherent imperfections and 
variations in IoT device hardware to differentiate between devices with identical specifications. By monitoring 
and analyzing the behavior of key hardware components, such as the CPU, GPU, RAM, and Storage on devices, 
unique fingerprints for each device are created. The performance samples are considered as time series data 
and used to train outlier detection transformer models, one per device and aiming to model its normal data 
distribution. Then, the framework is validated within a spectrum crowdsensing system leveraging Raspberry Pi 
devices. After a pool of experiments, the model from each device is able to individually authenticate it between 
the 45 devices employed for validation. An average True Positive Rate (TPR) of 0.74±0.13 and an average 
maximum False Positive Rate (FPR) of 0.06±0.09 demonstrate the effectiveness of this approach in enhancing 
authentication, security, and trust in crowdsensing applications.
1. Introduction

The widespread adoption of the Internet of Things (IoT) has led to 
the emergence of crowdsensing applications, where many IoT devices 
collaboratively gather and analyze data from the environment (Rajen-

dran et al., 2018). Many of these applications rely on single-board 
computers due to their reduced price and relatively good performance. 
These applications offer tremendous potential in diverse domains, such 
as environmental monitoring, urban planning, healthcare, and trans-

portation. However, ensuring the authenticity and integrity of the data 
collected by these devices is critical for reliable decision-making and 
maintaining trust in the system (Capponi et al., 2019).
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The openness and distributed nature of crowdsensing systems make 
them susceptible to Sybil attacks and collusion among malicious enti-

ties (Yu, 2020). Sybil attacks involve adversaries creating multiple fake 
identities to gain control over the system or manipulate the collected 
data. Collusion among malicious entities can also lead to coordinated 
attacks or data manipulation. Implementing identity verification mech-

anisms, reputation systems, and distributed consensus algorithms is re-

quired in order to prevent and detect such attacks (Zhong et al., 2019).

Traditional authentication methods for IoT devices, such as crypto-

graphic protocols or unique identifiers, are often susceptible to various 
attacks and vulnerabilities (Wang et al., 2020). Moreover, devices with 
identical specifications can be easily duplicated or impersonated, posing 
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a significant challenge to maintaining trust and security in crowdsens-

ing applications. To address these limitations, novel approaches are 
required that leverage the unique characteristics of IoT devices to es-

tablish their authenticity. These methods can be seen as an additional 
layer in the authentication security of IoT scenarios.

One of the directions proposed in the literature to solve these is-
sues is leveraging hardware manufacturing imperfections in order to 
uniquely identify each device in the environment (Sánchez et al., 2021). 
What elevates the efficiency of this approach is the integration of 
Machine Learning (ML) and Deep Learning (DL) techniques for the 
processing of collected hardware behavior data. These cutting-edge 
computational methodologies facilitate the analysis, classification, and 
prediction of the enormous amounts of complex, high-dimensional data 
generated by IoT devices (Al-Garadi et al., 2020). Particularly, they can 
adeptly capture patterns and dependencies in this data, enabling effec-

tive anomaly detection and thereby facilitating the identification of de-

vices or activities that deviate from established norms. The combination 
of hardware manufacturing imperfections and ML/DL techniques has 
been evidenced to provide remarkable results in the context of device 
identification (Sanchez-Rola et al., 2018; Sánchez et al., 2023b). How-

ever, authentication poses a more complex issue: discerning whether 
a device is authentic or not, but without taking into account the data 
distributions of other devices.

Therefore, there are still many challenges present related to 
hardware-based individual authentication leveraging ML/DL tech-

niques: (i) most of the solutions available in the literature cover device 
identification and not in authentication (Sánchez et al., 2023c), try-

ing to differentiate a device between a set of known devices instead 
of uniquely verify its identity; (ii) novel DL methods such as attention 
Transformers have not been applied yet in this field (Sánchez et al., 
2022), but could improve current results as it is happening in other 
fields; (iii) solutions are usually implemented in simulated or isolated 
environments, and not integrated into real-world applications (Zhang 
et al., 2019); (iv) most of the solutions relying on ML/DL follow a 
classification-based approach as they focus on identification, which is 
not practical in dynamic scenarios or when the number of devices is 
high (Al-Naji and Zagrouba, 2022).

To solve the previous challenges, the main contributions of the 
present work are:

• A framework that leverages Transformer-based autoencoder mod-

els and hardware performance fingerprinting for the individual 
authentication of single-board computer devices. This framework 
leverages CPU, GPU, RAM and Storage components to measure 
their performance and find manufacturing variations that enable 
the differentiation between devices based on their performance. In 
this sense, the data from the legitimate device are taken as normal 
samples modeling its performance distribution, while samples from 
other devices should be detected as outliers or anomalies.

• The deployment of the framework in a real-world spectrum crowd-

sensing platform based on Raspberry Pi devices, namely Elec-

troSense. In total, 45 devices are utilized in the scenario: 15 Rasp-

berry Pi 4, 10 Raspberry Pi 3, 10 Raspberry Pi 1, and 10 Raspberry 
Pi Zero. This deployment demonstrates the practical applicability 
of the framework and its compatibility with different versions of 
Raspberry Pi devices. It also provides valuable insights into the 
real-world challenges and considerations in implementing such a 
sophisticated authentication system, contributing to the broader 
field of IoT security.

• The validation of the framework authentication performance in the 
deployed scenario. After data collection, an average True Positive 
Rate (TPR) of 0.74±0.13 and an average maximum False Positive 
Rate (FPR) of 0.06±0.09 are achieved, improving other state-of-

the-art models such as LSTM and 1D-CNN networks. This validation 
not only confirms the effectiveness of the proposed framework but 
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also sets a new benchmark in the field. Besides, a second validation 
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approach details how the solution can be adapted to new device 
models with different hardware components. The detailed analy-

sis and comparison with other models provide a comprehensive 
understanding of the strengths and potential areas for further op-

timization, paving the way for future research and development 
in hardware-based authentication. The validation code for the per-

formed experiments is available at Sánchez Sánchez (2023).

The remainder of this article is structured as follows. Section 2 gives 
an overview of hardware-based individual authentication and back-

ground on transformer usage for anomaly detection. Section 3 explains 
the threat model faced by the proposed solution. Section 4 describes 
the Transformer and hardware-based device fingerprinting solution for 
individual authentication of single-board devices. Section 5 gives an 
overview of the crowdsensing platform employed for validation, the 
data collection process, and the experimental results when performing 
the authentication. Finally, Section 7 gives an overview of the conclu-

sions extracted from the present work and future research directions.

2. Related work

This section reviews the key literature relevant on individual de-

vice authentication through hardware performance fingerprinting and 
transformer-based anomaly detection.

2.1. Individual device authentication and identification

The present work focuses on hardware-based single-board device 
authentication using the performance behavior of the components self-

contained in the device and anomaly detection DL algorithms. Arafin 
and Qu (2021) discussed several examples of hardware-based authen-

tication that use memory access latency, instruction execution latency, 
and clock skew to authenticate devices, users, and broadcast signals 
used for navigation. In Sánchez et al. (2023b), the authors compared 
the deviation between the CPU and GPU cycle counters in Raspberry Pi 
devices to perform individual identification of 25 devices. The identifi-

cation was performed using XGBoost, achieving a 91.92% True Positive 
Rate (TPR). In continuing work (Sánchez et al., 2022), the same authors 
improved the results to an average F1-Score of +0.96 and a minimum 
TPR of 0.8 using a time series classification approach based on LSTM 
and 1D-CNN combination. Similarly, (Laor et al., 2022) performed 
identical device identification using GPU performance behavior and 
ML/DL classification algorithms. Accuracy between 95.8% and 32.7% 
was achieved in nine sets of identical devices, including computers and 
mobile devices. Sanchez-Rola et al. (2018) identified +260 identical 
computers by measuring the differences in code execution performance. 
They employed the Real-Time Clock (RTC), which includes its own 
physical oscillator, to find slight variations in the performance of each 
CPU. In Salo (2007), the author compared the drift between the CPU 
time counter, the RTC chip, and the sound card Digital Signal Processor 
(DSP) to identify identical computers. Other works have also explored 
hardware-based authentication applications using physical properties 
of computing hardware such as main memory, computing units, and 
clocks. Shrivastava et al. (2022) proposed a high-performance Field Pro-

grammable Gate Arrays (FPGA) based secured hardware model for IoT 
devices using the Advanced Encryption Standard (AES) algorithm. They 
compared the performance of two FPGAs and found that the Spartan-6 
FPGA provides better throughput and less time delay for IoT devices.

Other works have explored the usage of Physical Unclonable Func-

tions (PUFs) for IoT device identification (Shamsoshoara et al., 2020). 
However, PUFs are out of the scope of this work, as it is centered on 
hardware behavior fingerprinting based on device performance, avoid-

ing the usage of new hardware elements or the modification of the 
device specifications.

Finally, some solutions are also available in the industry, leverag-
ing hardware characteristics for IoT device identification. Numerous 
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Table 1

Comparison of the closest works on ML/DL-focused hardware-based device identification and authentication.

Work Scenario Approach Algorithm/Model N Devices Results

(Salo, 2007) Computer identification Statistical 
correlation

Pair-based 
identification

38 Computer identification based on the comparison of 
three physical oscillators using t-test statistic

(Sanchez-Rola et al., 2018) Computer identification Statistical 
correlation

Mode-based 
statistics

265 All computers uniquely identified. No effect from 
CPU load and temperature

(Laor et al., 2022) Computer and mobile 
identification

Classification CNN 9 95.8% and 32.7% accuracy in nine sets of identical 
devices. Accuracy drops with device rebooting

(Sánchez et al., 2023b) IoT device identification Classification XGBoost 25 91.92% average TPR. No effects from temperature 
changes and device rebooting

(Sánchez et al., 2022) IoT device identification Classification LSTM + 1D-CNN 45 0.96 average F1-Score. Resilience to temperature and 
ML/DL evasion attacks.

This work (2023) IoT device authentication Anomaly 
Detection

Transformer 45 All devices authenticated. 0.74 average TPR and 0.06 
average maximum FPR
hardware-based authentication solutions for IoT devices have been in-

troduced to enhance security. Intel Enhanced Privacy ID (EPID) pro-

vides a mechanism for device authentication while ensuring privacy, 
making certain that devices connecting to networks are genuine Intel 
products (Intel, 2021). ARM TrustZone technology partitions devices 
into secure and non-secure zones, offering a foundational layer for 
security solutions (ARM, 2021). Cisco Trust Anchor module (TAm) em-

beds a hardware module in products to guarantee device integrity and 
authenticity right from manufacturing to deployment (Cisco, 2021). 
Microsoft has ventured into this space with Azure Sphere, which in-

corporates custom silicon security technology for comprehensive IoT 
security (Microsoft, 2021). NXP A71CH is a secure element designed 
to provide a root of trust at the integrated circuit level for IoT de-

vices (NXP, 2021). Infineon OPTIGA Trusted Platform Module (TPM) 
offers hardware-based security functions, facilitating device authenti-

cation (Infineon, 2021). Microchip CryptoAuthentication devices are 
tailored to protect against various security threats by offering robust 
cryptographic solutions (Microchip, 2021). Rambus CryptoManager IoT 
Device Management is a turnkey solution designed to provide end-

to-end security, including device attestation and hardware-based secu-

rity (Rambus, 2021). Lastly, GlobalPlatform Device Trust Architecture 
(DTA) standardizes the use of secure components in IoT devices to pro-

tect digital services and data (GlobalPlatform, 2021). While hardware-

based industrial authentication solutions for IoT devices bolster secu-

rity, they come with challenges. These include higher costs, increased 
deployment complexity, computational overhead on devices, reduced 
flexibility for updates, scalability concerns in vast networks, vulnerabil-

ities to physical attacks, supply chain integrity issues, interoperability 
problems among different manufacturers, potential long-term hardware 
degradation affecting performance, and the risk of vendor lock-in due 
to proprietary solutions.

Table 1 compares the closest works in the literature with the present 
one. Although several works have worked in the combination of ML/DL 
techniques and hardware fingerprinting for device identification, a no-

table gap persists in the literature with respect to addressing the unique 
challenges of device authentication via an anomaly detection approach. 
Contemporary studies have primarily employed classification models, 
which serve to identify devices from a set pool of labels. However, these 
models are inadequate for the authentication problem. The task of au-

thentication involves more than simple device recognition - it requires 
a system capable of detecting deviations from an expected hardware 
behavior, a task for which anomaly detection models, rather than tradi-

tional classification models, are better suited. Consequently, there is a 
significant need to investigate the potential of DL-based anomaly de-

tection models, such as Transformer models, in the realm of device 
3

authentication.
2.2. Transformer-based anomaly detection in IoT security

The application of Transformer models in anomaly detection has re-

cently gained momentum, recognizing their ability to extract meaning-

ful features from sequential data effectively. Anomaly detection in time-

series data, in particular, has seen significant advancements through the 
adoption of Transformer models (Choi et al., 2021). Their proficiency in 
capturing temporal dynamics makes them an excellent choice for tasks 
that involve detecting irregularities in time-bound sequences (Tuli et 
al., 2022).

In the field of IoT security, Transformer-based autoencoders have 
been employed to address high-dimensional and complex dependencies 
issues by leveraging the self-attention mechanism and the encoder-

decoder architecture. Chen et al. (2021) proposed a framework called 
GTA that learns a graph structure among sensors and applies graph 
convolution and Transformer-based modeling to detect anomalies in 
multivariate time series. Kozik et al. (2021) proposed a hybrid time win-

dow embedding method with a Transformer-based classifier to identify 
compromised devices in IoT-networked environment. Tuli et al. (2022)

proposed TranAD, a deep Transformer network that uses attention-

based sequence encoders to perform anomaly detection and diagnosis 
for IoT data streams. These works demonstrate the effectiveness and 
efficiency of Transformer-based models for anomaly detection in IoT 
security.

However, the performance of Transformer-based anomaly detection 
in individual device authentication has not been explored yet, remain-

ing as a practical field where the performance of these novel models 
can improve the state-of-the-art approaches.

3. Threat model

The primary concern in the single-board device authentication sce-

nario is an adversarial actor attempting to integrate an unauthorized 
device into a sensitive setting, like an industry, by masquerading as or 
impersonating a legitimate device. This threat can be approached from 
multiple angles:

• TH1. Device impersonation (Marabissi et al., 2022). The foremost se-

curity challenge is when an adversarial entity substitutes a genuine 
device with a malicious device that mirrors its software charac-

teristics. In this case, the adversary deploys identical legitimate 
software credentials but incorporates malevolent processes and fea-

tures.

• TH2. Sybil (Rajan et al., 2017). A singular device (or multiple) 
might attempt to create numerous authentications to transmit de-

ceptive data from many mimicked devices. The vulnerability of 
a system to Sybil attacks hinges on (i) the simplicity of creating 
authentications; (ii) whether the system uniformly handles all en-

tities, and (iii) the extent to which the system approves of entities 

lacking a trust linkage to a recognized trustworthy entity.
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Fig. 1. Individual device authentication framework. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
• TH3. Replay Attacks (Feng et al., 2017). Attackers can capture 
authentication tokens or messages and replay them later to gain 
unauthorized access or to disrupt the network operations.

• TH4. Physical Attacks (Stellios et al., 2021). Many IoT devices are 
deployed in environments that lack stringent security, leaving them 
vulnerable to physical tampering. Malicious actors can directly ac-

cess these devices to extract sensitive cryptographic keys or implant 
malicious hardware/software components. The direct physical ac-

cess grants attackers a high level of control, making these attacks 
particularly devastating.

• TH5. Advanced persistent threat (Chen et al., 2022). This threat 
emerges as an outcome of the preceding one. A rogue device set 
up in the environment may be capable of extracting data from the 
situation and other devices or initiating more aggressive assaults 
like vulnerability scanning and/or Denial of Service (DoS) attacks. 
Additionally, contemporary attacks typically incorporate evasion 
methods that conceal their operations from software-centric behav-

ior observation security mechanisms (Li and Li, 2020).

Traditional software-based authentication methods, while effective 
in some scenarios, have shown vulnerabilities in the face of sophisti-

cated threat models where certificates or software identifiers can be 
cloned. Therefore, solving the previous threat model is the main objec-

tive of the proposed solution, complementing traditional authentication 
systems based on software. By capitalizing on inherent cycle skew and 
performance disparities in hardware -even among identical IoT devices-

this approach can establish a unique, tamper-resistant identity for each 
device. These intrinsic hardware traits offer not just a shield against 
software-based incursions but also a robust defense against physical in-

trusions. Additionally, by folding hardware performance metrics into 
the authentication matrix, the solution can seamlessly cater to the di-

verse performance spectra of IoT devices, facilitating efficient authenti-

cation processes, even for those with resource constraints.

In order to solve the threats identified in this work, it is assumed 
that even if the device is malicious, the control over it is maintained 
by its legitimate administrator and the authentication tasks can be exe-

cuted. This condition guarantees that device management is maintained 
during a possible attack. If this control is lost, it would be assumed that 
the device is infected or has some error.

4. Individual device authentication framework

This section elucidates the DL framework implemented for the pur-

pose of hardware performance fingerprinting. The framework performs 
4

device fingerprinting based on performance deviations that show hard-
ware manufacturing imperfections. An autoencoder Transformer model, 
a state-of-the-art approach in DL-based time series processing, is lever-

aged for the authentication of individual devices.

The framework is designed in a modular manner, where different 
components are combined in a stacked layout, from the hardware be-

havior monitoring to the DL-based evaluation and authentication. Due 
to the reduced processing capabilities of single-board computers, the 
framework follows a client-server architecture, where the components 
related to data collection and device configuration are deployed locally 
in the device, and the server processes the data and performs the model 
training and evaluation. Fig. 1 illustrates the different modules com-

posing the framework and the pipeline followed by the data until an 
authentication decision is made. Five modules compose the framework: 
(i) Monitoring, (ii) Preprocessing, (iii) Anomaly Detection, (iv) Authen-

tication, and (v) Device Security.

4.1. Monitoring module

The Monitoring Module is in charge of the interaction with the hard-

ware components and the monitoring of their performance. Besides, it 
sends the collected data to the server for its processing and evaluation. 
It contains two components: Component Isolation and Stability and Data 
Gathering.

4.1.1. Component isolation and stability

One of the key conditions to perform fingerprinting based on hard-

ware performance is to ensure that the components selected for mon-

itoring are running under stable conditions that enable the character-

ization of the small performance variations in the components due to 
manufacturing imperfections (Sánchez et al., 2023b). Therefore, this 
component is in charge of configuring the CPU, GPU, RAM and SD Card, 
the selected hardware components. It sets fixed running frequency for 
the components, isolate the components to avoid kernel interruptions, 
and disables some component optimizations that might affect the sta-

bility of the performance, such as memory address randomization.

4.1.2. Data gathering

This component is in charge of collecting the performance measure-

ments by executing different tasks in the selected hardware compo-

nents. In the case of single-board computers, the available hardware 
elements are the CPU, GPU, RAM and storage (typically SD card). As 
proposed in the literature (Sánchez et al., 2023b), the hardware mon-

itoring is done by using the in-device elements as a reference for the 
performance measurements. For example, GPU performance is mea-
sured in CPU cycles, and CPU performance when executing a code is 
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measured using the elapsed GPU cycles. The reasoning for this approach 
is that the component itself is not able to measure the deviations in its 
performance specification without an external cycle or time counter.

4.2. Preprocessing module

The Preprocessing Module plays the pivotal role of a bridge between 
the raw data gathered by the Monitoring Module and the Anomaly Detec-

tion Module, where the data is employed to train the DL models and 
evaluate the device. The main tasks of this module encompass data 
cleaning and feature generation.

4.2.1. Data cleaning

This component is responsible for filtering and cleaning the raw 
performance metrics. Any missing, inconsistent, or erroneous data are 
identified and filtered, thus preparing the dataset for further processing.

4.2.2. Feature generation

This component focuses on feature extraction and engineering based 
on the cleaned data. First, it performs normalization of each one of the 
metrics gathered. Afterward, it is in charge of transforming the raw data 
into a format suitable for the Transformer model. A key aspect of this 
process is the concatenation of samples into groups of vectors, which 
facilitates time series-based analysis.

4.3. Anomaly detection module

The Anomaly Detection Module is the heart of the authentication 
framework, tasked with training and evaluating the Transformer-based 
autoencoder model. The Transformer-based autoencoder is a variant 
of the Transformer model, which was originally proposed for natural 
language processing tasks. The key component of the Transformer archi-

tecture is the self-attention mechanism, which models the interactions 
between the elements in the input sequence (Vaswani et al., 2017). 
More in detail, the self-attention mechanism computes a weighted sum 
of the input elements for each position in the sequence. The weight 
assigned to each input element is determined by its relevance to the po-

sition being considered. Formally, the self-attention can be computed 
as follows:

Attention(𝑄,𝐾,𝑉 ) = softmax

(
𝑄𝐾𝑇√

𝑑𝑘

)
𝑉 (1)

where 𝑄, 𝐾 , and 𝑉 are matrices representing the queries, keys, and 
values, respectively, and 𝑑𝑘 is the dimensionality of the keys. In multi-

head attention, this operation is done ℎ times with different learned 
linear projections of the original 𝑄, 𝐾 , and 𝑉 matrices.

In the autoencoder variant of the Transformer model, the same se-

quence is provided as both the input and the target output of the 
model. The Transformer-based autoencoder learns to reconstruct the 
input sequence, which allows it to capture the underlying structure of 
the sequence data.

The encoder and decoder are both composed of several identical 
layers. Each layer contains two sub-layers: a multi-head self-attention 
mechanism and a position-wise fully connected feed-forward network, 
using ReLU as activation function. The output of each sub-layer is then 
passed through a residual connection and layer normalization.

In the context of device authentication, the Transformer-based au-

toencoder is trained to reconstruct the normal behavior of each device. 
Once the model is trained, it can be used to detect anomalies by com-

paring the reconstruction error of a new sequence with a predefined 
threshold. A high reconstruction error indicates that the new sequence 
is significantly different from the normal behavior, which could suggest 
a possible intrusion.

The two components forming this module, in charge of the Trans-
5

former-based autoencoder training for each device, are:
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4.3.1. Transformer training and optimization

This component takes the processed data and trains a Transformer 
model for each device. This model, adept at reconstructing input data, 
establishes a profile of standard device behavior, thereby becoming pro-

ficient at detecting anomalies or deviations from the norm. This phase 
also involves the optimization of model parameters for each device in-

dependently to ensure the best performance. Then, the best model for 
each device is stored to be later used. The training and optimization pro-

cess is iterative and may require several exploratory iterations to find 
the combination that meets all the properties needed in the generated 
fingerprint.

4.3.2. Transformer evaluation

Upon completion of the training phase, the model is subject to de-

ployment for live data evaluation. The model predictive capability is 
tested against the values collected from the device after deployment. 
Then, the output of the Transformer will be employed in the Authenti-

cation Module to determine if a device is the legitimate one and grant 
allow him to remain deployed in the network. Any deviations from the 
established profile may trigger further investigation or immediate ac-

tion, depending on the Device Security Module.

4.4. Authentication module

The Authentication Module makes the final decision regarding device 
authentication based on the evaluation results coming from the pre-

vious module. It integrates the anomaly detection results with other 
contextual information, such as device history or network behavior, to 
make a more informed decision. This module may also include addi-

tional verification steps or multi-factor authentication to enhance secu-

rity.

4.4.1. Device authentication

This component is charged with the essential task of making the 
final authentication decision based on the anomaly detection results. 
Anomalies, interpreted as potential indications of device tampering or 
misuse, inform the authentication decision. A device may be authenti-

cated and granted network access, or it may be rejected, depending on 
the analysis of these anomalies.

4.5. Device security module

The Device Security Module serves as an additional layer of security, 
overseeing the enforcement of security measures. It works in conjunc-

tion with the Authentication Module to provide a comprehensive security 
solution for IoT devices after authentication.

4.5.1. Security enforcement

This component ensures the enforcement of necessary security rules 
or protocols based on the Authentication Module decision. If a device is 
authenticated, it is granted access to the network. If a device is deemed 
unauthenticated, this component ensures the device is isolated from the 
network, safeguarding the integrity of the IoT system. This module also 
reports any security issues, such as repeated authentication failures, to a 
central authority for further investigation. Moving target defense (MTD) 
techniques are a suitable approach for this module, as they focus on 
changing the device configuration according to the mitigation actions 
required. Some examples of these techniques is the removal of files, 
dynamic network connection filtering, among others.

5. Framework validation

This section succinctly lays out the overall validation methodology, 
from leveraging the ElectroSense spectrum crowdsensing platform to 
data collection and preprocessing crucial for the analysis. The specifics 

of data gathering and the processes of cleaning, normalization, and 
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Fig. 2. ElectroSense crowdsensing platform diagram.

transformation are explained. Finally, the Transformer-based Anomaly 
Detection model approach is validated in this real-world scenario, mea-

suring its effectiveness. Note that the validation focuses on the data 
collection, monitoring, and DL parts of the framework. The develop-

ment of advanced authentication rules and security measures is out of 
the scope of this work.

5.1. ElectroSense spectrum crowdsensing platform

The IoT spectrum sensors utilized in this research are a part of the 
ElectroSense network (Rajendran et al., 2018), an open-source, crowd-

sensing platform that collects radio frequency spectrum data with the 
aid of low-cost sensors. The platform, which capitalizes on a collabora-

tive crowdsensing approach, enables the monitoring and collection of 
spectrum data. The core of this platform is the Raspberry Pi, a com-

pact and cost-effective single-board computer, that when attached to 
software-defined radio kits and antennas can function as a versatile 
spectrum sensor. Such assembly of spectrum sensors by individual users 
contributes to the broad reach and comprehensive data collection capa-

bility of the ElectroSense platform.

Once the sensors have collected the data, it is then sent to the 
ElectroSense backend platform, which is responsible for its storage, pro-

cessing, and analysis. This meticulous processing and analysis facilitate 
the provision of a suite of services. These services extend beyond mere 
spectrum occupancy monitoring, delving into areas such as transmission 
optimization and decoding. This range of services provided by Elec-

troSense not only bolsters the understanding of spectrum utilization but 
also opens up avenues for innovative optimization and enhancement 
strategies in the field of IoT. Fig. 2 depicts a diagram of the ElectroSense 
platform.

For validation, numerous Raspberry Pi devices from different models 
are deployed in the crowdsensing platform in order to validate the pro-

posed authentication framework. More in detail, the devices deployed 
are 15 Raspberry Pi 4 Model B, 10 Raspberry Pi 3 Model B+, 10 Rasp-

berry Pi Model +, and 10 Raspberry Pi Zero.

5.2. Data gathering and preprocessing

The first step in the validation process is to obtain the hardware 
performance data from each device and preprocess it in order to be fed 
into the Transformer models.

5.2.1. Data gathering

The assembly of individual device authentication premised on hard-

ware behavior hinges on the ability to monitor imperfections inherent 
in the device chips for subsequent evaluation. As outlined in Section 2, 
previous studies have primarily tackled this task by contrasting com-

ponents featuring different base frequencies or crystal oscillators since 
deviations in these components performance can be discerned directly 
6

from the device.
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Table 2

LwHBench dataset features (Sánchez et al., 2023a).

Component Function Feature Under Observation

- timestamp Unix timestamp

temperature Core temperature of the device

CPU 1 s sleep Elapsed GPU cycles during 1s of CPU sleep

2 s sleep Elapsed GPU cycles during 2s of CPU sleep

5 s sleep Elapsed GPU cycles during 5s of CPU sleep

10 s sleep Elapsed GPU cycles during 10s of CPU sleep

120 s sleep Elapsed GPU cycles during 120s of CPU sleep

string hash Elapsed GPU cycles during computation of a 
fixed string hash

pseudo random Elapsed GPU cycles while generating a 
software pseudo-random number

urandom Elapsed GPU cycles while generating 100 MB 
using /dev/urandom interface

fib Elapsed GPU cycles while calculating the 20th 
Fibonacci number using the CPU

GPU matrix mul Time taken by CPU to execute a GPU-based 
matrix multiplication

matrix sum Time taken by CPU to execute a GPU-based 
matrix summation

scopy Time taken by CPU to execute a GPU-based 
graph shadow processing

Memory list creation Time taken by CPU to generate a list with 
1000 elements

mem reserve Time taken by CPU to fill 100 MB in memory

csv read Time taken by CPU to read a 500 kB csv file

Storage read x100 100 measurements of CPU time for 100 kB 
storage read operations

write x100 100 measurements of CPU time for 100 kB 
storage write operations

To construct the framework for individual device authentication, it 
was necessary to compile a dataset that utilizes metrics pertinent to the 
hardware components inherent in certain devices. This dataset has been 
christened LwHbench, and additional details can be found in Sánchez 
et al. (2023a). In this context, the dataset gathered performance metrics 
from the CPU, GPU, Memory, and Storage of 45 Raspberry Pi devices 
of diverse models over a span of 100 days. Various functions were 
executed in these components, employing other hardware elements (op-

erating at differing frequencies) to measure performance. Table 2 pro-

vides a summary of the functions that were monitored. These functions 
embody a set of common operations carried out in every component, 
aiming to gauge their performance. It is worth mentioning that addi-

tional analogous operations could be utilized during the data gathering 
process. In total, 215 features formed each one of the collected data 
vectors.

The final dataset contains the following samples per device model: 
505584 samples collected from 10 RPi 1B+ devices, 784095 samples 
from 15 RPi4 devices, 547800 samples from 10 RPi3 devices, and 
548647 samples from 10 RPiZero devices. To collect the data, an array 
of countermeasures were implemented to mitigate the effect of noise 
introduced by other processes operating in the devices: Component fre-

quency was kept constant, kernel level priority was enforced, the code 
was executed in an isolated CPU core (in multi-core devices), and mem-

ory address randomization was disabled. Moreover, the dataset was 
compiled under a variety of temperature conditions, facilitating the 
analysis of the influence this environmental feature has on component 
performance.

5.2.2. Preprocessing

In the preprocessing stage, the time series were generated by ap-

plying a time window over the collected samples, combining them into 
groups of 10 to 100 vectors. This method of grouping facilitates the 
implementation of time series Deep Learning (DL) approaches and is 
adjusted to other literature works (Sánchez et al., 2022). These models 
possess the ability to uncover intricate trends within the data, poten-
tially leading to superior results compared to the standalone processing 
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Table 3

Anomaly detection time series models and hyperparameters tested.

Model Hyperparameters

General 
Parameters

𝑒𝑝𝑜𝑐ℎ𝑠 = [10, 20, 50], 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = [32, 128, 256, 512]

1D-CNN 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = [16, 32, 64, 128], 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = [3, 5, 7], 
𝑛_𝑙𝑎𝑦𝑒𝑟𝑠 = [1, 2, 3]

LSTM 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 = [10, 100], 𝑛_𝑙𝑎𝑦𝑒𝑟𝑠 = [1, 2, 3],
LSTM_1D-CNN 𝑖𝑛𝑝𝑢𝑡_𝑙𝑎𝑦𝑒𝑟𝑠 = [2, 3], 𝑐𝑛𝑛_𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = [16, 32, 64, 128], 

𝑐𝑛𝑛_𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = [3, 5, 7], 𝑙𝑠𝑡𝑚_𝑛𝑒𝑢𝑟𝑜𝑛𝑠 = [10, 100]
𝑛_𝑙𝑎𝑦𝑒𝑟𝑠 = [1, 2, 3]

Transformer 𝑑𝑓𝑓 = [32, 64, 128, 256, 1024], 𝑛𝑢𝑚_𝑙𝑎𝑦𝑒𝑟𝑠 = [1, 2, 3]

and evaluation of individual samples. Moreover, it also permits the 
utilization of attention models such as Transformers, which currently 
represent the pinnacle of performance in this field. For data normal-

ization, QuantileTransformer (Ahsan et al., 2021) was utilized, given 
the variable data distributions originating from the differing hardware 
capabilities of each device model. The division of the data for model 
training and validation purposes consisted of 70% and 10% of the total, 
leaving the remaining 20% for testing. In order to minimize the poten-

tial impact of vector order correlations on the results, the splitting of 
training, validation, and test sets was performed without shuffling the 
samples.

5.3. Transformer-based anomaly detection validation

As detailed in Section 4, the proposed Transformer approach per-

forms hyperparameter tuning personalized for each device. Besides, 
other state-of-the-art DL architectures for anomaly detection in time 
series are tested to compare their performance to the Transformer. The 
tested networks are LSTM, 1D-CNN, and a combination of both of these 
layouts. Table 3 provides a comprehensive overview of the examined 
algorithms along with their corresponding hyperparameters. For vali-

dation, a server equipped with AMD EPYC 7742 CPU, NVIDIA A100 
GPU, and 180 GB of RAM is employed, and the models are implemented 
using Keras library.

In the case of the LSTM and 1D-CNN models, the time series concate-

nation only achieved good results when using groups of 10 vectors or 
smaller due to their limited memory capabilities. In contrast, the Trans-

former achieved good results with all the sliding window lengths from 
5 to 100, with the best results obtained with 100 vectors per sliding 
window.

To set the anomaly detection threshold in the reconstruction of the 
samples fed to the autoencoder models, the 10% of the reconstruc-

tion error in the training samples is chosen as the boundary between 
anomaly and normal sample. Then, the validation set is employed for 
the hyperparameter selection by choosing the model with the higher 
TPR.

5.3.1. Authentication performance

For the authentication capabilities evaluation, the strategy followed 
is one-vs-all, where the trained transformer model evaluates the test set 
of the source device (normal samples) but also the test sets of the rest of 
the devices (anomalies or outliers). Then, the True Positive Rate (TPR) 
of the legitimate device is compared with all the False Positive Rates 
(FPRs) of the rest of the devices, checking that the TPR value is greater 
than all the FPRs. Note that for this approach, different data normaliza-

tions should be performed in the test sets depending on which device is 
employed for training as the training data distribution changes.

Table 4 shows the results of the one-vs-all authentication tests. It can 
be seen how only the Transformer-based approach is able to authenti-

cate all the devices successfully. Although their average TPR is higher, 
LSTM and 1D-CNN networks only can identify some of the devices, of-
7

fering a much lower difference between the average TPR and maximum 
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Table 4

Anomaly detection time series models results.

Model Best window 
size

Devices 
Authenticated

Avg. TPR Avg. Max. 
FPR

1D-CNN 10 32 0.88±0.06 0.67±0.29

LSTM 10 38 0.85±0.09 0.53±0.19

LSTM_1D-CNN 10 35 0.88±0.08 0.59±0.22

Transformer 100 45 0.74±0.13 0.06±0.09

Fig. 3. TPR and maximum FPR distributions of the Transformer autoencoder.

FPR. This occurs because the FPR is much more variable in these mod-

els, and many models have a high FPR when evaluating data from other 
devices, while the FPR variability is smaller in the Transformer models.

Fig. 3 gives a closer look into the distributions of the TPRs and 
maximum FPRs of the 45 devices evaluated. It can be seen that both 
distributions are greatly separated, having only three cases where the 
maximum FPR goes over 0.20 and remains under 0.45. The TPR always 
stays over that value and reaches values close to 1 in some cases, having 
most of its values between 0.6 and 0.8. Besides, Fig. 4 shows the exact 
TPR and maximum FPR values for each one of the devices evaluated, 
having its MAC address as an identifier. In this graph can be observed 
that in the cases where the maximum FPR has a relatively high value 
(0.2 to 0.4), the TPR is way higher, guaranteeing that the authentica-

tion can be made reliably.

According to these results, a threshold-based authentication ap-

proach could be employed by the Authentication Module to determine 
the result of the authentication process. An example can be a thresh-

old for each device with a value 0.1 lower than the TPR achieved in the 
validation, as it is enough to differentiate all the devices present in the 
deployment.

The results achieved by the anomaly detection validation have 
demonstrated the feasibility of the proposed framework, as it was 
able to uniquely authenticate 45 single-board devices with identical 
hardware and software specifications. These findings point towards a 
promising direction for individual device authentication premised on 
hardware behavior, demonstrating the potential of Transformer models 
in this sphere.

5.3.2. Resource usage

Although performance is the key characteristic to decide which 
model to use in the validation setup, resource usage during training 
and evaluation is also a critical point that should be taken into account 
when developing ML/DL-based solutions.

Table 5 shows the time and memory employed by the model. The 
training time statistics were collected using 10 epochs as the number 
of iterations over the training dataset. Besides, the evaluation time was 
obtained while evaluating the entire test dataset of the device. Finally, 
memory usage represents the size of the model after it has been com-
pletely trained.
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Fig. 4. Transformer autoencoder TPR and maximum FPR comparison per device.
Table 5

Resource usage of each model (per device).

Model Training Time Evaluation Time Memory

1D-CNN ≈47.79 s ≈1.44 s 0.86 MB

LSTM ≈283.68 s ≈2.11 s 1.33 MB

LSTM_1D-CNN ≈306.92 s ≈2.45 s 1.83 MB

Transformer ≈157.68 ≈8.93 s 7.77 MB

Each model demonstrates distinct computational characteristics in 
terms of training time, evaluation time, and memory usage. The 1D-

CNN model stands out as the most efficient, boasting the fastest training 
time of approximately 47.79 seconds and the quickest evaluation time 
of around 1.44 seconds. Additionally, it consumes the least amount of 
memory, using only about 0.86 MB. This combination of speed and ef-

ficiency makes it an appealing choice for resource-limited applications.

However, the LSTM model presents a significant increase in training 
time, taking approximately 283.68 seconds, and a slightly longer eval-

uation time of roughly 2.11 seconds. Coupled with a higher memory 
footprint of 1.33 MB, this model may demand greater computational 
resources than the 1D-CNN.

Interestingly, the hybrid LSTM+1D-CNN model exhibits the highest 
training time among the models, approximately 306.92 seconds, and 
has a considerable evaluation time of about 2.45 seconds. Its memory 
usage is also higher, at 1.83 MB, reflecting the complexity inherent to 
the combination of LSTM and 1D-CNN architectures.

Lastly, the Transformer model demonstrates a more moderate train-

ing time of approximately 157.68 seconds, albeit with the longest eval-

uation time of all models, around 8.93 seconds. More notably, it has 
a significantly higher memory usage, at a substantial 7.77 MB. While 
this may limit its applicability in memory-constrained environments, 
the Transformer model may excel in terms of capturing complex data 
patterns or delivering superior model accuracy, which are aspects not 
directly portrayed in the provided table.

In conclusion, while the 1D-CNN model is undeniably efficient re-

garding speed and memory usage, the Transformer models might offer 
better performance under certain circumstances. These trade-offs be-

tween time, memory usage, and potential model accuracy ought to be 
taken into account when deciding on the most suitable model for a par-
8

ticular scenario.
5.4. Additional validation in a simulated IoT deployment

Although the solution has already been validated in a real-world 
ElectroSense deployment, some additional challenges arise when adapt-

ing the framework to further scenarios. One of these challenges appears 
when new hardware models are present and hardware performance 
samples have to be collected from them. In this sense, gathering cy-

cle counters from the device components is dependent on the exact 
hardware component, and the procedure might vary, requiring code 
adaptations in the data gathering process.

ElectroSense is only compatible with Raspberry Pi hardware. Then, 
to explore this problem, an agriculture IoT scenario was simulated using 
nine additional devices from three new hardware models. Concretely, 
the list of devices employed was: 3 Rock64 devices, 3 RockPro64 de-

vices, and 3 Orange Pi 2 Lite devices.

The first step in the deployment process was to adapt the CPU and 
GPU cycle collection in the data gathering in order to be able to obtain 
the metrics described in Table 2. As the GPUs in these devices come 
from ARM Mali family, new counters should be leveraged. Concretely, 
the counter labeled as GPU_ACTIVE was chosen from the available op-

tions (Harris, 2016). The ARM HWCPipe library was utilized for the 
collection of cycle counters (Developers, 2021). In terms of CPU-based 
time collection, the perf time was acquired similarly to the methodology 
for RPi devices, leveraging the perf_counter_ns() function. The software 
to facilitate GPU task execution was modified from the source found in 
the ARM Compute Library (Developer, 2021).

The data collection was executed for one week in these nine devices 
to have a large enough dataset for this secondary validation, around 
4000 samples were collected per device in this period. Then, the data 
preprocessing steps were repeated as in the ElectroSense validation us-

ing Raspberry Pi devices, using a sliding window of 100 values and 
QuantileTransformer normalization. After, the hyperparameter search 
for the Transformer models in charge of the authentication of each de-

vice was performed.

Table 6 shows the authentication results from the nine devices em-

ployed in this validation. It can be seen that the results were even better 
than in the ElectroSense experiments. The TPR for all of the devices was 
above 0.90, while the maximum FPR stayed under 0.05 in all cases, 
enabling the threshold-based authentication as in the ElectroSense de-

ployment. The improved results in this validation occurred due to the 

decreased number of devices from the same model being compared. In 
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Table 6

Validation in simulated IoT scenario.

Device Model Device (MAC) TPR Max. FPR

RockPro64

86:a4:4c:5f:ff:95 0.8894 0.0417

8a:32:38:8c:63:e6 0.9217 0.0131

ee:db:54:9d:8a:67 0.9710 0.000

Rock64

42:58:a0:38:16:11 0.9094 0.007

76:8f:be:c0:c5:3b 0.9318 0.000

9a:1d:93:b3:b5:8f 0.9187 0.041

Orange Pi 2 Lite

c0:84:7d:82:4a:1e 0.9653 0.011

c0:84:7d:82:1c:42 0.9142 0.000

c0:84:7d:82:38:6d 0.9760 0.002

this sense, only three devices per model were present, so the similarities 
between the devices in the scenario were reduced.

This second validation approach serves as an example of how the 
proposed solution could be adapted to new scenarios where novel IoT 
device models are present, and code adoptions for data collection are 
necessary. It can be seen how the solution pipeline is still effective 
once the hardware monitoring is properly modified to gather the cy-

cle counters from the monitored components. Besides, the proposal has 
been validated with some more devices, enhancing the scalability of the 
demonstrated solution.

6. Discussion

This section outlines the limitations intrinsic to the suggested ap-

proach and provides essential understanding obtained from the research 
carried out. Through the series of tests performed in this work, coupled 
with a comparative analysis with existing literature, valuable observa-

tions and conclusions emerge. These findings serve not only as lessons 
gained but also highlight certain restrictions and limitations. The enu-

meration of lessons learned is as follows:

Potential of Transformer Models for IoT Authentication. The 
achieved results illustrate the innovative application of Transformer 
models in the field of hardware-based authentication. By employing 
a Transformer model, the framework was able to capture complex 
patterns in hardware behavior of each device, demonstrating a novel 
approach that could pave the way for future research in security and 
authentication. This lesson emphasizes the adaptability and potential of 
Transformer models in areas beyond natural language processing.

Importance of Resource Usage Consideration. The resource anal-

ysis emphasizes the critical consideration of resource usage during 
training and evaluation when developing Machine Learning or Deep 
Learning-based solutions. Different models demonstrated distinct com-

putational characteristics in terms of training time, evaluation time, and 
memory usage. For example, the 1D-CNN model was found to be the 
most efficient, while the Transformer model had a significantly higher 
memory usage. These trade-offs between time, memory usage, and po-

tential model accuracy must be carefully weighed when selecting the 
most suitable model for an IoT scenario where processing resources are 
limited.

Versatility and Importance of Preprocessing Techniques The pa-

per emphasizes the importance of preprocessing techniques in handling 
time series data. The use of methods like grouping into vectors and data 
normalization (using QuantileTransformer) was essential in uncovering 
intricate trends within the data. This lesson serves as a reminder that 
preprocessing is not a one-size-fits-all step but a critical and adaptable 
component of the data analysis process, with significant implications 
for the success of the modeling and authentication framework.

Adaptability to New Scenarios. Based on the results of the second 
validation using additional IoT devices, it can be seen how only small 
changes in the data collection process are necessary to adapt the solu-

tion to the hardware of new devices. The remaining Transformer-based 
9

authentication pipeline remains functional in different scenarios and is 
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hardware agnostic, enabling the application of the solution in a wide va-

riety of environments as an additional security layer and complimenting 
traditional software-based authentication.

Conversely, the subsequent constraints and limitations have been 
noted and warrant consideration in upcoming studies within this field:

Determining Hardware Behavior Measurements and Hyperpa-

rameter Tuning. The process of identifying the appropriate hardware 
behavior measurements or feature extraction for individual device au-

thentication is complex and multifaceted. The implementation of the 
proposed methodology may necessitate multiple exploratory iterations 
to discover a combination that satisfies all the required properties in 
the generated fingerprint. Additionally, the Transformer model intro-

duces further complexity due to the need for hyperparameter tuning. 
Finding the optimal set of hyperparameters for the Transformer model 
requires a meticulous search, adding to the trial-and-error nature of 
the process. This iterative analysis can be significantly minimized by 
examining the properties of the leveraged devices, including different 
components and operating frequencies, and by employing systematic 
hyperparameter optimization techniques. Since every chip inherently 
contains imperfections, the real challenge lies in devising accurate and 
effective methods to measure them and in fine-tuning the Transformer 
model to capture these unique characteristics. This complexity adds 
multiple layers of difficulty to the process and may require careful con-

sideration, experimentation, and optimization to achieve the desired 
authentication accuracy.

Training and Evaluation Time. The varying training and evalua-

tion times across different models, with the Transformer model exhibit-

ing the longest evaluation time, present a limitation that may affect its 
suitability in time-sensitive applications. This constraint highlights the 
importance of considering both accuracy and computational efficiency 
in model selection and design.

Threshold Setting for Anomaly Detection. During validation, the 
anomaly detection threshold is set at 10% of the reconstruction error 
in the training samples fed to the Transformer models. This choice of 
threshold might have specific implications on the sensitivity and speci-

ficity of the anomaly detection as it is manually assigned.

Possible performance degradation over time. As with any hard-

ware, the components of IoT devices may undergo wear and tear, lead-

ing to gradual changes in their performance metrics. This natural aging 
process can alter the cycle skew and other performance parameters that 
the authentication system initially learned and recognized (Halak et al., 
2016). It has been experimentally verified that during the 100 days of 
data collection, the hardware performance has remained stable. To that 
end, the authentication experiments were repeated with different splits 
in the train/test data of each device, achieving very similar results no 
matter how the data was selected. However, longer periods might have 
a larger impact on hardware degradation.

7. Conclusions and future work

This paper proposes a framework for individual device authenti-

cation based on hardware behavior and outlier detection, which fun-

damentally relies on identifying inherent imperfections in the device 
chips. The framework, which leverages hardware behavior fingerprint-

ing and Transformer autoencoders, establishes a unique ‘fingerprint’ for 
each device based on manufacturing imperfections in CPU, GPU, RAM, 
and Storage, even in those with identical specifications. These imperfec-

tions are modeled by generating a model trained with the “normal” data 
distribution of the hardware performance of each device. This provides 
a robust mechanism for device authentication, distinguishing between 
genuine and potentially harmful devices. The framework follows a mod-

ular design where device monitoring and security enforcement modules 
are deployed in the device and the data processing modules are hosted 
in a server with enhanced processing capabilities.

The practical implementation of this authentication framework in 

the ElectroSense platform demonstrates its effectiveness and real-world 
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applicability. After 100 days of data collection using 45 Raspberry Pi de-

vices, the Transformer-based autoencoder approach was implemented 
and compared with other state-of-the-art Deep Learning architectures 
such as LSTM and 1D-CNN for anomaly detection in time series. Despite 
the competitive performance of LSTM and 1D-CNN, the Transformer 
model emerged as the superior method, successfully authenticating all 
the devices. An average True Positive Rate (TPR) of 0.74±0.13 and an 
average maximum False Positive Rate (FPR) of 0.06±0.09 are achieved 
when performing one-versus-all authentication, a more complex task 
than the classification-based identification performed by other solutions 
in the literature. From these results, it can be concluded that the pro-

posed approach not only prevents unauthorized device intrusions but 
also significantly contributes to the reliability of data analysis and the 
overall trustworthiness of the platform.

Moving forward, this research line has room for future work and 
improvements. While the current study has focused on Raspberry Pi de-

vices, further research should involve testing the proposed model with 
other IoT devices, expanding its scope, and ensuring its applicability 
across a broad range of hardware. In addition, the study has examined 
the model effectiveness primarily in the context of a spectrum crowd-

sensing platform, ElectroSense. Future investigations could explore its 
implementation in different types of crowdsensing applications, thereby 
contributing to a comprehensive understanding of the framework ver-

satility.
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